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A procedure is provided for the efficient approximation of solutions of a broad class of stochastic partial differential
equations (SPDEs), that is, partial differential equations driven by additive white noise. The first step is to transform
the given SPDE into an equivalent SPDE driven by a correlated random process, specifically, the Ornstein-Uhlenbeck
process. This allows for the use of truncated Karhunen-Loève expansions and sparse-grid methods for the efficient and
accurate approximation of the input stochastic process in terms of few random variables. Details of the procedure are
given and its efficacy is demonstrated through computational experiments involving the stochastic heat equation and
the stochastic Navier-Stokes equations.
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1. INTRODUCTION

In this paper, we attempt to improve the efficiency and accuracy of computations for evolution-type stochastic partial
differential equations (SPDEs) having the form

{
ut +Au +N (u) = g(t, ~x) + σξ(t, ~x) in (0, T ]×D

u|{0}×D = u0(~x), u|(0,T ]×∂D = h(t, ~x),
(1)

where[0, T ] denotes a time interval andD ∈ Rd is a spatial domain. In (1),A denotes a positive semidefinite, self-
adjoint linear operator;N denotes a nonlinear operator acting on the stochastic processu(t, ~x); g(t, ~x), h(t, ~x), and
u0(~x) denote deterministic data functions;σ denotes a constant; andξ(t, ~x) is a space-time random field represent-
ing a stochastic perturbation. Corresponding to the operatorA with zero Dirichlet boundary condition, we have the
eigenpairs{λj , Φj}∞j=1 such that0 < λ1 ≤ λ2 ≤ ... and limj→∞ λj = ∞; the set{Φj(~x)}∞j=1 forms a complete
orthonormal basis inL2(D).

Certainly, various stochastic perturbationsξ(t, ~x) may be defined in a stochastic dynamical system, see, e.g.,
[1–5]. Our interest is in noise having the form

ξ(t, ~x) =
∞∑

j=1

wj(t)Φj(~x)ς̇j(t), (2)

i.e., the noise is defined by an expansion in terms of the orthonormal eigenfunctions of the linear operatorA;
here,{ςj(t)}∞j=1 denotes a set of independent and identically distributed Brownian motions. Thus, if the coefficients
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{wj}∞j=1 satisfy some restrictions, we have that (2) is awhite noise process in timeand, in general, has some spatial
regularity whose character, e.g., whose spatial smoothness, is determined by the properties of the coefficientswj(t).
Note that one can view (2) as a spectral expansion in thatwj(t)ς̇j(t) =

(
ξ(t, ~x),Φj(~x)

)
for j = 1, 2, . . ., where(·, ·)

denotes theL2(D) inner product.
A specific example of the form (2) process is theQ-Wiener process, [6]. SupposeQ is a symmetric non-negative

operator, and for the sake of convenience, we assume thatQ andA in (1) have the same eigenfunctions{Φj(~x)}∞j=1

and eigenvalues{λj}∞j=1. In this case the random process represented by the expansion

W (t, ~x) =
∞∑

j=1

√
λjΦj(~x)ςj(t) (3)

is a Wiener process with covariance operatorQ. There have been a number of papers devoted to discussing the SPDEs
involving dW ; see, e.g., [7–12], where the definition of the notationdW can be found in [6].

In this paper, the process (2) is approximated in terms of a finite number of independent Brownian motionsςj(t),
j = 1, . . . , N , through truncation, i.e.,

ξN (t, ~x) =
N∑

j=1

wj(t)Φj(~x)ς̇j(t) ≈ ξ(t, ~x). (4)

Note thatξ(t, ~x) = limN→∞ ξN (t, ~x); see, e.g., [13]. Processes of the form (2) and its approximation (4) are used
in spectral Galerkin approximations of SPDEs such as (1), in which the approximate solution of the SPDE is also
expressed in terms of a finite sum of the orthonormal eigenfunctions{Φj(~x)}, i.e., one hasu(t, ~x) ≈ uN (t, ~x) =∑N

j=1 uj(t)Φj(~x); see, e.g., [14–16].
However, in practice, there is a general lack of knowledge about stochastic dynamic systems, including the nature

of stochastic inputs. For example, the coefficient functionswj(t) in the stochastic input (2) are not always known in
practice. It is natural to then investigate specific simple stochastic processes that preserve the essential aspects of more
general processes. Thus, we consider specific, time-independent cases forwj(t).

Crucial to our approach to finding approximate solutions of (1) is knowledge of an auxiliary stochastic process
that satisfies an SPDE related to (1) but for which the correlation function can be explicitly written. In particular, we
consider the Ornstein-Uhlenbeck (OU) processη(t, ~x) that formally solves the stochastic parabolic equation

{
ηt +Aη = −aη + σξ(t, ~x) in (0, T ]×D

η|{0}×D = 0, η|(0,T ]×∂D = 0,
(5)

wherea > 0 is a constant. The OU process is a correlated random field in time. As such and as we discuss in this
paper, it can be approximated more accurately and efficiently compared to the white noise processξ(t, ~x).

It is not difficult to show that the integral solution of (5) is given by

η(t, ~x) = σ

∫ t

0

e−(A+a)(t−s)ξ(s, ~x)ds. (6)

Using the definition (2) ofξ(t, ~x), we have

η(t, ~x) = σ

∞∑

j=1

wj(t)Φj(~x)
∫ t

0

e−(λj+a)(t−s)ς̇j(s)ds. (7)

From this explicit solution, the space-time mean and covariance function ofη(t, ~x) can be explicitly deduced; see Sec-
tion 2.2. Consequently, the OU process can be expressed in terms of a Karhunen-Loève expansion whose truncation
provides an efficient means for determining approximations of the OU process; see Section 2.2.1.
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By settingu = v + η in (1), we obtain the equivalent SPDE
{

vt +Av +N (v + η) = g + aη in (0, T ]×D

v|{0}×D = u0(~x), v|∂D = h(t, ~x),
(8)

for the random fieldv(t, ~x). Note that (1) is driven by the white (in time) stochastic processξ(t, ~x), whereas (8) is
driven by the colored (in time) stochastic processη(t, ~x). Of course, the former appears in (1) simply as an additive
forcing function, whereas the latter appears in (8) within the possibly nonlinear termN (·) as well.

The advantage of solving (8) instead of (1) is that becauseη(t, ~x) is acorrelated(in time) random field, one can
use one of several effective numerical tools available for discretization that are not appropriate for discretizing white
noise random fields. For example, one can use stochastic collocation methods based on sparse quadrature rules [17–
24] or polynomial chaos methods [25–29]. Thus, such tools can be used to determine approximations of the stochastic
processv(t, ~x), and eventuallyu(t, ~x), avoiding the direct discretization of the white noise random fieldξ(t, ~x).

Actually, the effectiveness of numerical methods for determining approximations of an SPDE is usually dependent
on the dimensionality of the involved probability field, i.e., the computational complexity is dominated by the number
of degrees of the freedom needed to adequately represent the random inputs. Therefore, in practice, one of the basic
ideas for reducing the computational cost is to develop a good low-dimensional approximation to the probability field
without engendering much loss of accuracy. After converting the system perturbed by the white noiseξ to an equiva-
lent one perturbed by the colored noiseη, we have means for determining such “low”-dimensional approximations so
that a reduction in computational cost is effected.

The paper is devoted to providing details about our approach as well as the results of computational experiments
that illustrate the efficiency gains. In Section 2, we first discuss direct approximations of white noise random fields
such asξ(t, ~x), provide additional details about the Ornstein-Uhlenbeck processη(t, ~x) derived fromξ(t, ~x), and
discuss how the OU process is approximated using truncated Karhunen-Loève expansions. In Sections 3 and 4, we
illustrate our approach by applying it to a stochastic heat equation and a stochastic Navier-Stokes system, respectively.
Concluding remarks are given in Section 5.

2. FROM WHITE TO APPROXIMATE COLORED NOISE RANDOM FIELDS

In this section, we provide details about how we “convert” a white noise random field into a correlated random field,
and how both types of fields are approximated.

2.1 White Noise

We first discuss the white noise stochastic process defined by a spectral (or Fourier) expansion in terms of a basis for
L2(D), whereD ∈ Rd denotes a bounded spatial domain. An example of such a process is given by (2).

Let {φj(~x)}∞j=1 denote an orthonormal basis forL2(D) or for a subspace. Let{ςj(t)}∞j=1 denote a set of i.i.d.
one-dimensionalBrownian motionsor Wiener processeswith respect to time. We consider the infinite-dimensional
random process given by

µ(t, ~x) =
∞∑

j=1

wj(t)φj(~x)ς̇j(t), (9)

where the coefficients{wj(t)}∞j=1 are such that the convergence of the series is guaranteed.
Clearly, the noise is white in time if the coefficients{wj}∞j=1 are constants and, by the definition of Brownian

motion,µ(t, ~x) satisfies

E[µ(t, ~x)µ(s, ~x)] =
∞∑

j=1

wj(t)wj(s)
(
φj(~x)

)2
δj(t− s),

where eachδj denotes the Diracδ-function andE[·] denotes the expected value. Depending on the choice of basis
{φj}∞j=1 and the decay rates of the coefficients{wj(t)}∞j=1, the noiseµ(t, ~x) may represent very different spatial
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behavior. We illustrate this through the two examples given below. To simplify our problem, we assume that the
elements of the set{wj}∞j=1 are independent of time. We note that the behavior of the particular noise processes we
report here resembles the results given in [4], except for a larger magnitude of oscillations.

Before proceeding to the examples, we first introduce a direct approach for approximating the infinite-dimensional
space-time random fieldµ(t, ~x). Note that we have to consider both the infinite dimensionality of the sum in (9) and
of each of the one-dimensional random processes{ςj(t)}∞j=1. As in (4), we truncate the sum in (9) to the firstN terms
to obtain the approximation

µN (t, ~x) =
N∑

j=1

wj(t)φj(~x)ς̇j(t) ≈ µ(t, ~x). (10)

To approximate the finite-dimensional white noise random fields{ς̇j(t)}N
j=1 appearing in (4), we consider a direct,

grid-baseddiscretization approach described as follows. We partition the interval[0, T ] by means of the points{tk =
k∆t}M

k=0 with ∆t = T/M . Then, each of the time-dependent white noise random fieldsς̇j(t), j = 1, 2, . . . , N , is
approximated by the expansions

ς̇j,M (t) =
1√
∆t

M∑

k=1

χk(t)αj,k =

√
M

T

M∑

k=1

χk(t)αj,k ≈ ς̇j(t), j = 1, 2, . . . , N, (11)

whereαj,k ∼ N (0, 1) denote i.i.d. standard Gaussian variables and{χk(t)}M
k=1 denotes the set of characteristic

functions given by

χk(t) =
{

1 if t ∈ [tk−1, tk)
0 otherwise.

Thus, each infinite-dimensional random fieldς̇j(t) is approximated in terms ofM random variables{αj,k}M
k=1 and

the space-time random fieldµ(t, ~x) is approximated by

µN,M (t, ~x) =

√
M

T

N∑

j=1

wj(t)φj(~x)
M∑

k=1

χk(t)αj,k ≈ µ(t, ~x). (12)

A realization of this approximation requires the sampling of theMN i.i.d. random variablesαj,k ∼ N (0, 1), j =
1, . . . , N , k = 1, . . . ,M .

Example 1.
Let {φj}∞j=1 denote the trigonometric basisφj(x) =

√
2 sin(jπx), j = 1, 2, . . ., defined onL2(0, 1) and letwj =

1/2j or 1/j3/2. Realizations of the approximate noise (12) are given in Fig. 1 forT = 1 andM = 200 for each of
the two choices forwj and for four choices ofN . Plots are provided forµN,M (1, x) andµN,M (t, 1/2). Clearly, the
approximate noise is highly uncorrelated in time, as is expected given that we are approximating white noise in time.
The approximate noise is highly regularized in space. Moreover, we see that there is a higher degree of smoothness
for wj = 1/2j than forwj = 1/j3/2, which is to be expected because of the faster decay, asj increases, of the first
choice relative to the second.

Example 2.
We consider a special case of the random fieldξ(t, ~x) introduced in Section 1. Specifically, we letA = −ν∆ with a
Dirichlet boundary condition, whereν > 0 is a constant and∆ denotes the Laplace operator. As in Section 1, we let
{λj , Φj(~x)}∞j=1 denote the eigenpairs of the operatorA, i.e., forj = 1, 2, . . ., we have

−ν∆Φj = λjΦj in D and Φj |∂D = 0.

Because−∆ with a zero Dirichlet condition is self-adjoint and positive definite, we have0 < λ1 ≤ λ2 ≤ λ3 ≤ ...
andlimj→∞ λj = ∞. Furthermore,{Φj(~x)}∞j=1 constitutes a complete orthonormal basis forL2(D). Hence, we can
define a random process having the form (2), or equivalently, the form (9), and approximate it using (12).
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FIG. 1: Realizations of the approximate space-time noiseµN,M (t, ~x) given in (12) forφj(x) =
√

2 sin(jπx) and for
wj = 1/2j (left two columns) andwj = 1/j3/2 (right two columns).

In particular, letD be the unit square. Then, the eigenpairs are known to be, forn,m = 1, 2, . . .,

λn,m = ν(n2 + m2)π2 and Φn,m(x1, x2) = 2 sin(nπx1) sin(mπx2), (13)

with x1, x2 denoting the components of~x.
We now sort the eigenpairs{λn,m, Φn,m} via a two-dimensional multi-indexl = (l1, l2) ∈ N2

0 with the norm

|l|l2 =
√

l21 + l22, (14)

The resulting noise is then given by

ξ(t, x1, x2) =
∑

l∈N2
0

wlΦl(x1, x2)ς̇l(t). (15)

and is approximated by

ξ
Ñ,M

(t, x1, x2) =

√
M

T

∑

|l|l2≤Ñ

wlΦl(x1, x2)
M∑

k=1

χk(t)αl,k. (16)

Therefore, with the appropriate relations between the components of the multi-indexl andj and betweeñN andN ,
(15) and (16) are of the form (9) and (12), respectively.

For the computational illustration, we setν = 0.001, σ = 0.1, Ñ = 100, M = 200, andwl = 1/|l|3/2
l2 or

1/|l|2l2 . Figure 2 illustrates realizations of the approximate noiseσξ
Ñ,M

(t, x1, x2), whereξ
Ñ,M

(t, x1, x2) is given in
(16); specifically, we showσξ

Ñ,M
(1, x1, x2) andσξ

Ñ,M
(t, 1/2, 1/2). Again, the noise is (discretely) white in time

and regularized in space, with the smoothness being more prominent in the plot in the right column, which again
corresponds the choice ofwl having the faster decay.

2.2 The Ornstein-Uhlenbeck Process and Its Approximation

We now consider the Ornstein-Uhlenbeck processη(t, ~x) defined by (5). We first formalize results given in Section 1,
all of which can be verified by direct substitution.
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FIG. 2: Realizations of the approximate space-time noiseσξ
Ñ,M

(t, x, y) given in (16) fort = 1 (top row) and at the

point (1/2, 1/2) (bottom row) forwl = 1/|l|3/2
l2 (left column) andwl = 1/|l|2l2 (right column). It can be seen that the

faster the coefficientswl decay, the smoother the noise presents in space.

LetA denote the operator−ν∆ with zero Dirichlet boundary condition. Then, by the orthonormality of the basis
{Φj} and It̂o’s formula, we have, for any non-negative integer`,

E[(A`η,A`η)]= E





σ

∞∑

j=1

wjλ
`
jΦj

∫ t

0

e−(λj+a)(t−s)ς̇j(s)ds ,

σ

∞∑

j′=1

wj′λ
`
j′Φj′

∫ t

0

e−(λj′+a)(t−s)ς̇j′ds







= σ2
∞∑

j=1

λ2`
j w2

j E

[(∫ t

0

e−(λj+a)(t−s)ς̇jds

)2
]

= σ2
∞∑

j=1

λ2`
j w2

j

∫ t

0

e−2(λj+a)(t−s)ds

= σ2
∞∑

j=1

w2
j λ2`

j

2(λj + a)
(1− e−2t(λj+a)).

Thus, if
∞∑

j=1

w2
j λ2`−1

j < ∞, (17)

then
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E[‖A`η‖2L2(D)] ≤
σ2

2

∞∑

j=1

w2
j λ2`−1

j < ∞.

Thus, we have proved the following convergence result about the OU processη(t, ~x).

Theorem 1. If (17)holds, thenE
[‖A`η‖2L2(D)

]
< ∞.

Setting` = 0, we have the following result.

Corollary 2. If
∞∑

j=1

w2
j

λj
< ∞, (18)

then E[‖η‖2L2(D)] < ∞.

Theorem 3. [6] If (17) holds, the solutionη(t, ~x) of (5) is given by(6). Moreover,E[η] = 0. In particular, if
ξ(t, ~x) =

∑∞
j=1 wjΦj(~x)ς̇j(t), where−ν∆Φj = λjΦj with Φj |∂D = 0, then the OU processη(t, ~x) is given by(7).

From the definition of covariance functionCov(·, ·), we have that the covariance of the OU processη(t, ~x) at each
point~x ∈ D is given by

Cov
(
η(t, ~x),η(s, ~x)

)

= E
[(

η(t, ~x)− E[η(t, ~x)] , η(s, ~x)− E[η(s, ~x)]
)]

= E
[(

η(t, ~x), η(s, ~x)
)]

= σ2
∞∑

j,j′=1

E
[(∫ t

0

e−(λj+a)(t−t′)wjΦj(~x)ς̇j(t′)dt′
)

(∫ s

0

e−(λj′+a)(s−s′)wjΦj′(~x)ς̇j′(s′)ds′
)]

= σ2
∞∑

j=1

w2
j

(
Φj(~x)

)2
E

[∫ t

0

e−(λj+a)(t−t′)ς̇j(t′)dt′
∫ s

0

e−(λj+a)(s−s′)ς̇j(s′)ds′
]

= σ2
∞∑

j=1

w2
j

(
Φj(~x)

)2
e−(λj+a)(t+s)E

[∫ t

0

e(λj+a)t′ ς̇j(t′)dt′
∫ s

0

e(λj+a)s′ ς̇j(s′)ds′
]

so that

Cov
(
η(t, ~x), η(s, ~x)

)
= σ2

∞∑

j=1

w2
j

(
Φj(~x)

)2

2(λj + a)
(e−(λj+a)|t−s| − e−(λj+a)(t+s)). (19)

Settingt = s in (19), we see that the variance of the OU processη(t, ~x) at any point~x ∈ D is given by

Var[η(t, ~x)] =
∞∑

j=1

βjΦ2
j (~x)ej(t), (20)

whereVar[·] denotes the variance,

βj = σ2
w2

j

2(λj + a)
, and ej(t) = 1− e−2(λj+a)t.
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For a normally distributed random variableX ∼ N (0, σ2), one has

E
[|X|2p

]
= σ2p(2p− 1)!!. (21)

Note that the OU processη is a stationary Gaussian process having a normal distribution. IfD is a bounded region,
then, based on Ḧolder’s inequality and (21), we observe that

E
[‖η‖2p

L2p(D)

]
= (2p− 1)!!‖

∞∑

j=1

βjΦ2
jej(t)‖p

Lp(D) ≤ (2p− 1)!!




∞∑

j=1

βj




p/2 ∫

D




∞∑

j=1

βjΦ4
j




p/2

dx.

Therefore, ifp = 2 andΦj ∈ L4(D) for all j, we obtain

E[‖η‖4L4(D)] ≤ 3
∞∑

j=1

βj

∞∑

j=1

βj

∥∥Φj

∥∥4

L4(D)
≤ C




∞∑

j=1

βj




2

< ∞.

In particular, forD the unit square, we have from (13) thatΦj ∈ L4(D) so thatη is well defined in the space
{η : E[‖η‖L4(D)] < ∞}.

2.2.1 Karhunen-Loève Representation of the OU Process

We specialize to the case of the OU process results that hold for general random fields having continuous covariance
functions that are symmetric and positive definite. The key step in deriving these results is the application, at each
~x ∈ D, of Mercer’s theorem with respect to the variablest ands; see, e.g., [30] for details.

Consider the problem of determining pairs{τi(~x),ψi(t, ~x)}∞i=1 that satisfy
∫ T

0

Cov
(
η(t, ~x),η(s, ~x)

)
ψi(s, ~x)ds = τi(~x)ψi(t, ~x), i = 1, 2, . . . . (22)

From (19), we have thatCov
(
η(t, ~x),η(s, ~x)

)
is positive-definite and symmetric with respect tot ands. Then, it can

be shown that such a set{τi(~x), ψi(t, ~x)}∞i=1 exists that satisfies
∫ T

0

ψi(s, ~x)ψi′(s, ~x)ds = δii′ =

{
1 if i′ = i

0 if i′ 6= i

and
τ1(~x) ≥ τ2(~x) ≥ τ3(~x) ≥ · · · > 0.

It easily follows thatCov
(
η(t, ~x), η(s, ~x)

)
has the eigendecomposition

Cov
(
η(t, ~x), η(s, ~x)

)
=

∞∑

i=1

τi(~x)ψi(t, ~x)ψi(s, ~x)

from which one has

Var[η(t, ~x)] =
∞∑

i=1

τi(~x)ψ2
i (t, ~x).

It also follows that the OU processη(t, ~x) has theKarhunen-Lòeve expansion

η(t, ~x) =
∞∑

i=1

√
τi(~x)ψi(t, ~x)ζi, (23)

where{ζi}∞i=1 areuncorrelatedstandard Gaussian variables; (23) is simply the decomposition ofη(t, ~x) in terms of
the eigenpairs{τi(~x), ψi(t, ~x)}∞i=1 of its correlation matrix. Thus, the KL expansion (23) provides a second way, in
addition to (7), for expressing the OU process.
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2.2.2 Approximation of the Ornstein-Uhlenbeck Process

A computable approximation to the OU process can be defined by truncating its KL expansion (23). Thus, one de-
termines the dominantNKL eigenpairs{τi(~x),ψi(t, ~x)}NKL

i=1 of the covariance function (19) and then defines the
truncated KL expansion approximation

ηNKL
(t, ~x) =

NKL∑

i=1

√
τi(~x)ψi(t, ~x)ζi ≈ η(t, ~x). (24)

Of course, the KL eigenpairs can also only be determined approximately; one can do so by discretizing (22) using
a finite element method for spatial discretization and a quadrature rule for approximating the integral. We note that
truncated KL expansions are in common use forreduced-order modeling(ROM) of deterministic systems [31, 32].
Most of the properties of KL approximations for deterministic ROM also hold in the current stochastic setting. For
example, the Galerkin projection ofη(t, ~x) onto the space spanned by the basis function{ψi}NKL

i=1 is, in the Fourier
sense, a best approximation [30].

The effectiveness of (24) as an approximation to the OU processη(t, ~x) is of course dependent on the rate of
decay of the KL eigenvaluesτi(~x). Figure 3 depicts theL2(D) norm of the first 25 KL eigenvalues{τi(~x)}25i=1

corresponding to the OU covariance function (19) asσ = 1. That figure also depicts, forNKL = 1, . . . , 25, the
correspondingenergy ratio

eNKL =
∑NKL

i=1 ‖τi‖L2(D)∑∞
i=1 ‖τi‖L2(D)

(25)

that is used to measure the amount of information or “energy” ofη “captured” by the firstNKL orthonormal basis
functions, i.e., by{ψi}NKL

i=1 . The denominator in (25) is approximated by summing over1000 À 25 terms. Obviously,
‖τi(~x)‖L2(D) is almost identical to zero asi > 10, which implies that

∑∞
i=1 ‖τi‖L2(D) could be approximated by

summing over the leading 10 terms of{‖τi(~x)‖L2(D)}∞i=1, not to mention 1000 terms.
One can use (25) to select the value ofNKL in the KL approximation (24). One simply selects a desired value

ê for the energy ratio and then selects the smallest integerNKL such thateNKL given by (25) is greater than̂e. Our
simulations result ine5 > 0.96 for a = 0 andwl = 1/|l|2l2 ande10 > 0.97 for a = 1 andwl = 1/|l|3/2

l2 . Clearly,
most of the energy of the OU processη(t, ~x) can be captured by a very limited number of eigenfunctions. Thus,

0 10 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

N
KL

|τ
i| L2

 

 

a=1, w
l
=1/|l|

l
2
1.5

a=0, w
l
=1/|l|

l
2
2

5 10 15 20 25

0.94

0.95

0.96

0.97

0.98

0.99

N
KL

e N
K

L

 

 

a=1, w
l
=1/|l|

l
2
1.5

a=0, w
l
=1/|l|

l
2
2

FIG. 3: TheL2(D) norm of the first 25 KL eigenvalues and the energy ratio (25) fora = 0 andwl = 1/|l|2l2 (circles)

and fora = 1 andwl = 1/|l|3/2
l2 (asterisks).

Volume 3, Number 4, 2013



330 Ming & Gunzburger

the feasibility of the KL approximation (24) with relatively small values ofNKL is demonstrated. The importance
of this observation is that the infinite-dimensional OU processη(t, ~x) can be accurately approximated by theNKL-
dimensional processηNKL

(t, ~x), i.e., by a process involving only theNKL uncorrelated variables{ζi}NKL
i=1 . As a

result, the computational cost of simulating a stochastic dynamic system involving the random inputη(t, ~x), e.g.,
the system (8), can be substantially economized by using the relative low-dimensional approximation that (24) can
provide.

To obtain a realization of the approximate OU process (24) one merely has to sample values for the random
variables{ζi}NKL

i=1 . In Sections 3 and 4, we use such realizations as inputs for discretized versions of the modified
equation (8) so as to obtain approximate realizations of the random fieldv(t, ~x). In this section, we want to examine
the accuracy of statistical information, specifically statistical moments, obtained using (24) as an approximation to the
OU process. Therth statistical moment is approximated by evaluating anNKL-dimensional integral, i.e., we have

E[
(
η(t, ~x)

)r] ≈ E
[(

ηKL(t, ~x)
)r] =

∫

RNKL

(
ηKL(t, ~x)

)r
dρ(ζ1) · · · dρ(ζNKL

), (26)

wheredρ refers to the Gaussian measure. One has to further approximate by discretizing the integral in (26). For ex-
ample, approximations to the statistical moments of the OU process may be determined using anRNKL -dimensional
quadrature rule to approximate the integral appearing (26). Let{ωq}Q

q=1 denotes the quadrature weights correspond-

ing to the quadrature points{~ζq}Q
q=1, whereQ denotes the number of quadrature points and where~ζq ∈ RNKL . Then,

we obtain the approximation

E[
(
η(t, ~x)

)r] ≈ E
[(

ηKL(t, ~x)
)r] ≈

Q∑
q=1

ωq

( NKL∑

i=1

√
µi(~x)ψi(t, ~x)ζi,q

)r

(27)

for therth statistical moment ofηKL(t, ~x), where{ζi,q}NKL
i=1 denote the components of~ζq.

The accuracy of the approximation defined in (27) depends not only on how many terms are kept, i.e., onNKL, but
also on the quadrature rule used. For moderate values ofNKL (certainly forNKL ≤ 10 ), using an appropriateRNKL -
dimensional Smolyak quadrature rule is a good option; in our setting, a Smolyak rule based on the one-dimensional
Gauss-Hermite quadrature rule is appropriate. See, e.g., [18, 33] for details about the Smolyak quadrature points
and weights. In this case, we refer to the approximation (27) as the KL-Smolyak, or more succinctly, the KL-S
approximation to the OU process. In the sequel,Qk

NKL
denotes the Smolyak quadrature rule withNKL random inputs

and levelk accuracy.
To examine the accuracy and efficiency of the KL-S approximation, we compare it with the direct approximation

of the defining system (5) for the OU process. Note that this requires the approximation of the white noise random
input fieldξ(t, ~x), e.g., by an MC approximation of the type (12). Of course, we would not use such a approximation
of the OU process to solve (8) because, if one is willing to discretizeξ(t, ~x), one can discretize (1) directly with
no need for introducing the OU process. In fact, this is exactly what we want to avoid doing. So, we only solve (5)
directly using a white noise discretization in order to evaluate the efficacy of the KL-S approximation.

Determining the KL-S approximation of the OU process requires the “off-line” determination of theNKL domi-
nant KL eigenpairs{τi(~x),ψ(t, ~x)}NKL

i=1 . After that, to obtain statistical information about the approximate OU pro-
cess simply requires the evaluation of (27). Note that because one is able to exactly determine the covariance function
for the OU process, one completely avoids having to solve the PDE system (5) in determining the statistics of the
KL-S approximation of the OU process. This should be contrasted with using direct discretization of (5) by an MC
method for which one has to solve that system of PDEs to obtain realizations of the approximate OU process.

We introduce the following error measures for therth statistical moments of the OU processη(t, ~x):

Er
MC(t) = ‖E[ηr]− E[ηr

MC ]‖L2(D), Er
KL(t) = ‖E[ηr]− E[ηr

KL]‖L2(D) (28)

and

ET,r
MC =

∫ T

0

Er
MC(t)dt, ET,r

KL =
∫ T

0

Er
KL(t)dt, (29)
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where(·)MC refers to the direct solution of (5) by a Monte Carlo method whereas(·)KL refers to our KL-S approach.
Note thatE[ηr] can be determined exactly because we have an explicit solution for the OU processη(t, ~x).

Figures 4 and 5 provide plots of the errorsET,r
MC andET,r

KL for r = 1, 2, 3, 4. For the KL error, the level 3 Gauss-
Hermite Smolyak ruleQ3

NKL
is used withNKL = 1, . . . , 11. The errors are plotted against the total number of points

sampled, i.e., the total number of realizations of the approximate OU processes used to estimate the errors. The two
figures correspond to the two choicesa = 0 andwl = 1/|l|2l2 (Fig. 4) and fora = 1 andwl = 1/|l|3/2

l2 (Fig. 5). The
results indicate that similar to the use of KL expansions in deterministic cases, the efficiency of KL expansions are
determined by the decay rate ofµi(~x); also, the accuracy of the moments is proportional to the dimensionality of the
random inputs. For the first and third statistical moment, whose exact values are identical zero, the KL expansion can
provide an excellent approximation (< 10−15) by the properties of the quadrature rule. The dominated errors are thus
the round-off errors at the quadrature points, which explains the behavior ofET,r

KL asr = 1, 3.

Note the stability of the KL approximation. Taking the fourth moment as an example, from (4),ET,4
MC computed for

the sample size400 is smaller than the ones obtained with500 samples or even700. ET,4
KL is monotonically decreasing

as the number of samples increases.
Now that we have demonstrated the high accuracy of the KL-S approximation of the OU process, we proceed

in the next two sections to use that approximation to determine approximations of the given system (1) by instead
solving the the modified equations (8).

3. STOCHASTIC HEAT EQUATIONS

In this section, we use the OU process to transform a stochastic heat equation driven by white noise into one driven
by the OU process. As a result, to determine approximate solutions of the stochastic heat equation we can use the KL
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l2 .

approximation (24) of the OU process to effect a discretization of noise instead of relying on a discretization of white
noise.

Consider the stochastic heat equation for the random fieldu(t, ~x) given by

{
ut − ν∆u = f + σξ for (t, ~x) ∈ (0, T ]×D

u|t=0 = u0 for ~x ∈ D, u|(0,T ]×∂D = g,
(30)

whereξ(t, ~x) is the white noise (in time) random field given in (2). Of course, (30) bears a strong resemblance to the
defining equations (5) for the OU process, except for the nonzero deterministic data functionsg, f , andu0 in (30)
and the term−aη in (5). Thus, we will use the OU process for which the data functions vanish and for which one can
explicitly write the correlation function [see (2.2)] so that one can define KL approximations.

Let u(t, ~x) = v(t, ~x) + η(t, ~x), whereη(t, ~x) denote the OU process satisfying (5). Then, (30) is equivalent to

{
vt − ν∆v = f + aη for (t, ~x) ∈ (0, T ]×D

v|t=0 = u0 for ~x ∈ D, v|(0,T ]×∂D = g.
(31)

Unlike (30) which is driven by the white noise random fieldξ(t, ~x), (31) is driven by the correlated OU process
η(t, ~x). We then discretize the noiseη(t, ~x) by using its truncated KL expansionηNKL

(t, ~x) given in (24).
The simple example we use has the spatial domainD be the unit square,T = 1, ν = 0.001, f(t, ~x) = 2(1 +

κπ2)e2t sin(πx1) sin(πx2), g(t, ~x)=0, u0(~x)= sin(πx1) sin(πx2), and noise parameterswl =1/|l|3/2
l2 andσ=0.5.

The corresponding exact expected value of the solutionu of (30) is clearly

E[u] = e2t sin(πx1) sin(πx2).
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Temporal discretization is effected using the Crank-Nicolson scheme with∆t = 5 × 10−3, whereas a continuous
piecewise-quadratic finite element method based on a uniform triangulation ofD is used for spatial discretization; the
grid sizeh ≤ 0.007.

We use the MC method to approximately solve the given stochastic heat equation (30) with the sample size500.
Specifically, in addition to the temporal and spatial discretization, we discretize the white noise (in time) random
field ξ(t, ~x) as in (12) and then perform 500 realizations of the resulting discrete system. Each of the 500 realiza-
tions requires the sampling of theMN standard Gaussian parametersαj,k. This provides a direct approach toward
approximating the solution of (30).

We also use the indirect approach of solving for an approximation of the solutionv of (31), then adding to it the
KL approximation of the OU process to obtain an approximation of the solutionu of (30). To obtain the approximation
of v, we use theQ3

5 Smolyak rule, for which the resulting sample size is61.
Results for the two approaches are presented in Fig. 6. Specifically, for the comparison, we compute the error

measuresEr
MC(t) andEr

KL(t) for the random fieldu(t, ~x) defined in (28) withr = 1. The results suggest that
compared to the MC method, the KL expansion combined with a Smolyak rule has the ability to approximate the
expected value of the solution of (30) effectively by solving a relatively small low-dimensional system.

We also compare therth statistical moments forr = 1, 2, 3, 4 obtained by the MC method and KL expansions by
defining the difference measure

eT
r =

∫ T

0

‖E[(uMC)r]− E[(uKL)r]‖L2(D)dt, (32)

whereE[(uMC)r] andE[(uKL)r] denote therth statistical moments obtained by the MC method and KL-S expansion,
respectively. In Fig. 7, plots ofeT

r are given with KL-S approximation fixed to beQ3
5 and for different MC sample

sizes. For our example problem, an examination of Fig. 7 shows the reduction in differenceeT
r . Note that the MC

solutions tend to approximate the exact stochastic solutions as the sample size increases and Fig. 7 shows that the MC
approximation also approaches the KL-based approximation as the MC sample size increase. Thus, the effectiveness
of the low-dimensional approximation based on KL expansion is verified for higher-order statistical moments as well.

4. STOCHASTIC NAVIER-STOKES PROBLEM

In this section, we use the OU process to transform a two-dimensional stochastic Navier-Stokes (SNS) system [34]
driven by white noise into one driven by the OU process. Because of the continuity equation and the nonlinear
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level 3 accurate Smolyak rule (resulting in 61 samples) is used for the right plot.
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convection terms in the Navier-Stokes equation, the OU process appears in the modified equations in ways other than
as a simple additive forcing term.

Letting u = (u, v), P , andθ denote velocity, pressure, and temperature fields, respectively, we consider the
nondimensionalized system holding in a bounded domainD ⊂ R2 over the time interval[0, T ]





ut − ν∆u + (u · ∇)u +∇P = σξ

θt + u · ∇θ = κ4θ

∇ · u = 0
(33)

along with boundary conditions, whereD is a bounded subset ofR2. In (33),ξ = (ξ1, ξ2) is a white noise (in time)
vector with independent components defined by (15),σ = diag(σ1,σ2) accounts for possibly different variances in
different directions, andκ andν represent the temperature diffusivity and fluid viscosity, respectively. For simplicity,
we consider only one-way temperature-momentum coupling.

In our computational example, we again assume that the domain is a square and that the velocity fieldu vanisihes
on the boundary. The initial condition foru is given indirectly via vorticityω = vx − uy which is initially set to

ω = γ

[
C − 1

2δ
exp

(
−I(~x)(y − 0.5)2

2δ2

)]
, (34)

whereγ > 0 is a constant,I(~x) = {1 + ε[cos(4πx)− 1]}, andC is a constant such that
∫

D
ω(x, y)dxdy = 0. Then,

the initial condition foru = (u1, u2) is determined by solving

−∆u1 = ωy, u1|∂D = 0

∆u2 = ωx, v2|∂D = 0.

A plot of the initial velocity is given in Fig. 8. A horizontal layer is centered aty = 0.5 whose width is determined
by the parametersδ andε. According to [34], asδ tends to zero, the initial vorticityω will become a flat vortex sheet
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FIG. 8: Initial velocity (left) and temperature (right). The sharp transition between temperature layers is due to the
small value ofδ.

with some perturbations having size determined byε. In our computational examples, we setγ = 0.005, δ = 0.025,
andε = 0.3.

The initial condition for temperature is given as

θ0(x1, x2) =





Hδ(x2 − 0.5) if x2 ≤ 0.4
1− 2Hδ(x2 − 0.25) if 0.4 < x2 < 0.6
−Hδ(0.75− x2) if x2 ≥ 0.6,

whereHδ(x) is the mollified Heaviside function

Hδ(x) =





0 if x < −δ

x + δ

2δ
+

sin(πx/δ)
2π

if |x| ≤ δ

1 if x > δ.

Figure 8 shows thatθ0 has four smoothly connected layers symmetric with respect tox2 = 0.5. The thickness of the
interfaces between any two different layers isδ.

Instead of directly discretizing the SNS system (33), which would necessitate approximating the white noise
random vector fieldξ(t, ~x), we setu = v + η and instead discretize the modified system





vt − ν∆v + (v + η) · ∇(v + η) +∇P = aη

θt + (v + η) · ∇θ = κ4θ

∇ · (v + η) = 0, v|t=0 = u0,

(35)

where each component ofη = (η1, η2) satisfies the OU system (5). In addition,v vanishes on the boundary.
In our computational examples, we chooseν = κ = 0.001, σ = 0.05, andT = 1.3. The system (35) is solved

for a = 1 and via approximating the components ofη by KL-S expansion using theQ3
4 Smolyak rule, resulting

in a sample size of 41. In addition, the finite element method based on Crank-Nicolson method is used. The mean
value and the variance of bothu andθ are plotted in Figs. 9 and 10, respectively. From those figures, we see that
through convection by the velocityu, the sharp interfaces in the temperature field are smeared. A clockwise rotational
vortex is formed. The structure of the variance of the temperature is similar to that of the mean value. Our results
also correspond to those obtained by [34] in that the random perturbationξ acts like an extra random diffusion for the
mean equation and the random processesu andθ are obviously not Gaussian processes.

To verify the accuracy of the KL solutions, analogous to (32), we introduce the following difference measurement:

eT
r =

∫ T

0

{
‖E[(u1,MC)r]− E[(u1,KL)r]‖L2(D) + E[(u2,MC)r]− E[(u2,KL)r]‖L2(D)

+ E[(θMC)r]− E[(θKL)r]‖L2(D)

}
dt.
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The MC expectations are obtained using 200 realizations. From Fig. 11 one sees that to reach a similar accuracy as
that obtained with 41 KL-S realizations, the direct MC approach needs hundreds of realizations. Thus, for the two-
dimensional Navier-Stokes/temperature system considered here, it is clear that at least for short time integrations, the
KL-S approximation is more efficient than the MC method.
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FIG. 11: eT
m asm = 1, 2, 3, 4.

5. CONCLUSION

Obtaining precise statistics about solutions of nonlinear SPDEs driven by white noise in the form of (2) is, in general,
very costly due to the large number degrees of the freedom needed to represent the random inputs. In this paper, via
the OU process (5), we show that the white noise can be “regularized” into a Gaussian colored noise so that a low-
dimensional stochastic system (8) can be determined by using the truncated KL-S expansion (24). We consider the
stochastic heat equation and the stochastic Navier-Stokes Boussinesq system as our linear and nonlinear examples,
respectively. Numerical tests are given. The convergence of the Monte Carlo solutions to the KL-S solutions in both
examples suggests the accuracy and effectiveness of our algorithm.

For the SPDEs (1) defined on arbitrary spatial domains, the eigenfunctions ofA have to be determined numerically.
However, taking into account the low-dimensional approximation to the transformed equation (8) that the truncated
KL-S approximation can provide, our algorithm is still, in most cases, more efficient than approximating the SPDE
(1) directly.

We also note that our approximation is based on the KL expansion at every point in the spatial region, i.e., we
approximateη(t, ~x) by ηKL(t, ~x) at every point~x in the domain. However, according to the definition of the KL ex-
pansion, the derivatives ofηKL(t, ~x) may not give a good approximation to the random processηx(t, ~x) or ηy(t, ~x).
To avoid this difficulty, in our stochastic Navier-Stokes Boussinesq test, for example, we construct KL approxima-
tions ofηx(t, ~x) andηy(t, ~x) directly instead of differentiatingηKL(t, ~x). This can be understood as constructing a
probability space spanned by the random variables{ζ1, ζ2, . . . , ζNKL} such that the the random processesη(t, ~x),
ηx(t, ~x), andηy(t, ~x) can be well approximated by the KL expansion (24).

We note that much of our consideration can be extended to a variety of similar SPDEs, e.g., the Cahn-Hilliard
equation and reaction diffusion equations. Thus, future investigations in such related fields are called for.
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