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Uncertainty quantification (UQ) is the process of quantitative characterization and propagation of input uncertainties
to the response measure of interest in experimental and computational models. The input uncertainties in computa-
tional models can be either aleatory, i.e., irreducible inherent variations, or epistemic, i.e., reducible variability which
arises from lack of knowledge. Previously, it has been shown that Dempster Shafer theory of evidence (DSTE) can be
applied to model epistemic uncertainty in case of uncertainty information coming from multiple sources. The objective
of this paper is to model and propagate mixed uncertainty (aleatory and epistemic) using DSTE. In specific, the aleatory
variables are modeled as Dempster Shafer structures by discretizing them into sets of intervals according to their respec-
tive probability distributions. In order to avoid excessive computational cost associated with large scale applications,
a stochastic response surface based on point-collocation non-intrusive polynomial chaos has been implemented as the
surrogate model for the response. A convergence study for accurate representation of aleatory uncertainty in terms
of minimum number of subintervals required is presented. The mixed UQ approach is demonstrated on a numerical
example and high fidelity computational fluid dynamics study of transonic flow over RAE 2822 airfoil.

KEY WORDS: evidence theory, polynomial chaos, point-collocation, uncertainty quantification, compu-
tational fluid dynamics, representation of uncertainty

1. INTRODUCTION

Uncertainty quantification (UQ) is the process of quantitative characterization and propagation of input uncertain-
ties to the response measure of interest in experimental and computational models. Depending upon the amount of
available information, researchers have been constantly trying to differentiate and characterize various forms of uncer-
tainty. For decades, uncertainties have been segregated mainly as aleatory uncertainty (if sufficient amount of data is
available such that it can be characterized with a probability distribution) and epistemic (probabilistic distributions are
assumed or non-probabilistic methods are used, e.g., interval analysis). Oberkampf et al. [1] have described various
methods for estimating total uncertainty by identifying all possible sources of variability, uncertainty, and error in
computational simulations. As the data are sparse for an epistemic variable, there is a possibility of multiple sources
of uncertainty (different information through expert opinion). This led to the formulation of mathematical structures
for appropriate representation of uncertainty like the evidence theory [2], also known as the Dempster Shafer theory of
evidence (DSTE). The introduction of this theory was accompanied by a discussion of merits, demerits, and different
mathematical operations possible with Dempster Shafer structures [3–5].

In previous years, a number of studies have implemented and explored the concept of evidence theory. Helton
et al. [6] have compared the use of several uncertainty representations like the probability theory, evidence theory,
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NOMENCLATURE

n number of random variables
R support region of random input variable
np oversampling ratio
p order of polynomial chaos
~ξ standard input random variable vector
p(~ξ) probability density function of~ξ
ψ random basis function
α coefficient in polynomial chaos

expansion
α∗ stochastic function
µ mean
σ standard deviation
U universal set

U set of focal elements ofU
Bel belief
Pl plausibility
BPA basic probability assignment
m(ε) BPA corresponding to subsetε of U
PCE polynomial chaos expansion
Nt number of terms in a total-order PCE
cl coefficient of lift
cd total coefficient of drag
Cp coefficient of pressure
M Mach number
α̃ angle of attack in degrees
Re Reynolds number

possibility theory, and interval analysis on a range of test problems proposed as part of a workshop [7]. In the past
decade, extensive research has been dedicated to improvement of the practical application of the Dempster Shafer
theory due to the implicit nature of simulations and excessive computational costs. Bae et al. [8] introduced an approx-
imation approach for uncertainty quantification using evidence theory. Their proposed algorithm includes identifying
the failure region in a defined UQ space by employing an optimization routine. Specifically, the failure region in this
case is considered as the region in which the limit state function for the system under consideration exceeds a partic-
ular limit state value. For example, in an analysis of a composite cantilever beam with a point load, the failure region
is determined by the assessment of the likelihood that the tip displacement (limit state function) of the beam exceeds
the maximum possible displacement (limit state value). Further, a surrogate model constructed using the two-point
adaptive non-linear approximation (TANA2) and the multi point approximation approach (MPA) is used for repetitive
simulations in UQ analysis. Later, they demonstrated the newly proposed algorithm on a large scale structure problem
like the structural model of an intermediate complexity wing (ICW) [9]. Agarwal et al. [10] investigated uncertainty
quantification in multidisciplinary systems analysis subject to epistemic uncertainty through the application of evi-
dence theory. The methodology has been demonstrated using a higher-dimensional multidisciplinary aircraft concept
sizing.

In view of the aforementioned developments in evidence theory for propagating epistemic uncertainty, very little
attention has been given to mixed (aleatory and epistemic) uncertainty quantification using evidence theory. This is
mainly due to two reasons:(1) incorporation of aleatory uncertainty in Dempster Shafer structures and(2) compu-
tational costs due to the implicit nature of simulations required for deriving evidence theory uncertainty measures.
The objective of this paper is to explore the incorporation of aleatory uncertainty in Dempster Shafer structures and
to implement non-intrusive polynomial chaos (NIPC), a computationally efficient stochastic response approach, for
mixed uncertainty quantification using evidence theory.

Eldred and Swiler [11] have reported efficient algorithms for mixed UQ which consist of optimization based in-
terval estimation and stochastic expansion methods. Recently, Eldred et al. [12] have demonstrated mixed UQ using
DSTE by calculating evidence theory uncertainty measures for the outer loop of epistemic variables characterized by
Dempster Shafer structures over the inner loop aleatory statistics. They have compared the DSTE results obtained
through global optimization and sampling approach for a short column test problem. Our work focuses on repre-
senting aleatory uncertainty in terms of Dempster Shafer structures by discretizing the probability distributions into
sets of intervals and treating them as epistemic variables. In order to reduce the computational costs from a sim-
ulation point of view, the NIPC [13–17] technique is employed using the Point-Collocation approach to construct
a stochastic surrogate model which can replace the deterministic model in interval optimization routines for DSTE
analysis.
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In Section 2, we discuss different types of uncertainties that exist in a model. In Sections 3 and 4, we present the
necessary mathematical framework for point-collocation NIPC and Dempster Shafer theory of evidence, respectively.
Further, an approach for mixed uncertainty quantification using DSTE is presented in Section 5. A numerical analysis
is performed in Section 6 in order to quantify the minimum number of subintervals required to accurately represent
aleatory uncertainty within the proposed framework. The approach is demonstrated on a numerical example and a
high fidelity computational fluid dynamics (CFD) study of a transonic supercritical airfoil RAE 2822 in Section 7.
We conclude the paper with important interpretations of the results obtained from mixed UQ analysis using DSTE in
Section 8.

2. TYPES OF UNCERTAINTY

In computational simulations, uncertainties are assigned to the specification of input physical parameters that are re-
quired for computational models. Two types of uncertainties exist in numerical modeling of physical systems: aleatory
uncertainty and epistemic uncertainty.

2.1 Aleatory Uncertainty

Aleatory uncertainty, also known as probabilistic uncertainty, arises due to inherent physical variability present in the
system. A specific probability distribution can be attributed to an aleatory random variable based on the data available.
Aleatory uncertainty is irreducible as it is naturally present in the system under consideration. For example, the Mach
number can be considered as an aleatory uncertain variable in a CFD study of airfoils or wings.

2.2 Epistemic Uncertainty

The epistemic uncertainty, also known as model-form uncertainty, arises due to lack of knowledge and is reducible
by performing more experiments. The stimulant to epistemic uncertainties are the assumptions introduced in the
derivation of mathematical models. This type of uncertainty cannot be defined in a probabilistic framework unless we
assume a specific distribution which may lead to inaccurate results as shown by Oberkampf et al. [18]. Thus, epistemic
variables are usually modeled using intervals derived from experimental data or expert judgment with the lower and
the upper bound. For example, the uncertainty in the closure coefficients for a particular turbulence model used in
CFD simulations can be treated as epistemic in nature.

3. POINT-COLLOCATION NON-INTRUSIVE POLYNOMIAL CHAOS

The point-collocation non-intrusive polynomial chaos is derived from the polynomial chaos theory, which is based
on spectral representation of uncertainty. In previous years, many researchers have utilized polynomial chaos theory
in stochastic computations. The importance of spectral representation of uncertainty lies in the fact that a stochastic
response function can be decomposed into deterministic and stochastic components. Thus, for any stochastic response
functionα∗,

α∗(~x,~ξ) ≈
P∑

j=0

αj(~x)ψj(~ξ), (1)

whereαj(~x) is the deterministic component andψj is the random basis function corresponding to thejth mode.
Generally,α∗ can be a function of deterministic independent variable vector~x and then-dimensional standard random
variable vector~ξ = (ξ1, . . . , ξn). Theoretically, Eq. (1) should include an infinite number of terms for absolute
accuracy. However, for practicality purposes, a discrete sum is taken over a number of output modes. For a total order
expansion, the number of output modes is given by:

Nt = P + 1 =
(n + p)!

n!p!
, (2)
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wherep denotes the order of polynomial chaos andn is the number of random variables. The basis functions used
in Eq. (1) are polynomials that are orthogonal with respect to a weight function(p(~ξ)) over the support region(R)
of the input random variable vector. In terms of convergence of statistics, the Hermite polynomial is optimal for
normal distribution whereas the Laguerre and Legendre polynomials are used for exponential and uniform input
uncertainty distributions, respectively. The mathematical basis for the formulation of the polynomial basis functions
is well explained by Hosder et al. [14].

The main objective of the NIPC method is to obtain the polynomial coefficients without making any modification
to the deterministic code, i.e., treating it as a ”black box.” The coefficients are solely based on deterministic code
evaluations. The coefficients and orthogonality of the basis functions can be used to evaluate the statistics of the
distribution for a stochastic function. For example, the zeroth mode of the expansion corresponds to the expected
value ofα∗(~x,~ξ), which is given by:

µα∗ = ᾱ(~x) =
∫

R

α∗(~x,~ξ)p(~ξ) dξ = α0(~x). (3)

Similarly, by inferringψ0 = 1 from Eq. (3), the variance of the distribution can be obtained as:

σ2
a∗ = V ar[α∗(~x,~ξ)] =

∫

R

(α∗(~x,~ξ)− α0(~x))2p(~ξ) dξ =
P∑

j=1

[α2
j (~x)〈ψ2

j (~ξ)〉]. (4)

We use the fact that〈ψj(~ξ)〉 = 0 for j > 0 and〈ψi(~ξ)ψj(~ξ)〉 = 〈ψ2
j (~ξ)〉δij . Also, the inner product ofψi(~ξ)

andψj(~ξ) in the support regionR is given by:

〈ψi(~ξ)ψj(~ξ)〉 =
∫

R

ψi(~ξ)ψj(~ξ)p(~ξ) dξ. (5)

Further, the strategy for point selection in random space for deterministic code evaluations depends upon the non-
intrusive technique used. Three techniques often used are sampling based, quadrature based, and point-collocation
based NIPC. In this paper, we will be focusing on using the Point-Collocation method to obtain the surrogate model.

The collocation based NIPC starts with replacing uncertain variables of interest with their polynomial expansions
derived from Eq. (1). Next,P + 1 (Nt) vectors(~ξi = {ξ1, ξ2, . . . , ξn}i, i = 0, 1, 2, . . . , P ) are chosen in design
space with a latin hypercube (LH) structure for a given polynomial chaos expansion with number of modes evaluated
using Eq. (2) and the deterministic code is evaluated at these points. LH design has the advantage of improving the
coverage of the design space when a small sample set is used. A linear system of equations can be obtained using the
left-hand side of Eq. (1) evaluated from the solution of deterministic code at chosen random points:




ψ0(~ξ0) ψ1(~ξ0) . . . ψP (~ξ0)
ψ0(~ξ1) ψ1(~ξ1) . . . ψP (~ξ1)

...
...

. ..
...

ψ0(~ξP ) ψ1(~ξP ) . . . ψP (~ξP )







α0

α1

...
αP


 =




α∗(~x,~ξ0)
α∗(~x,~ξ1)

...
α∗(~x,~ξP )


 . (6)

Equation (6) represents a linear system of equations which needs to be solved in order to determine the spectral
modesαk for the stochastic functionα∗. Equation (2) is considered as the minimum number of deterministic samples
required to solve the linear system of equations. However, if more deterministic samples are available, the over-
determined system is solved using a least squares approach. The term ”over-sampling ratio” (OSR) denoted bynp is
related to Eq. (2) in the following manner:

Nt = np × (n + p)!
n!p!

. (7)

Thus, an OSR of 1 corresponds to the minimum number of deterministic samples required. Hosder et al. [13]
demonstrated through different stochastic model problems that an OSR of 2 is the optimum value. Once the spectral
modes are evaluated, various statistics like the mean and the variance of the solution can be obtained as shown in
Eqs. (3) and (4), respectively.
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4. DEMPSTER SHAFER THEORY OF EVIDENCE

This section summarizes the evidence theory which is traditionally used for pure epistemic analysis. The next section
will extend this idea to perform mixed UQ analysis with NIPC based stochastic expansions and convert the aleatory
uncertain variables into Dempster Shafer structures.

4.1 Fundamentals of Evidence Theory

In comparison to probability theory, evidence theory introduces two new measures of uncertainty, belief(Bel), i.e.,
lower limit of probability, and plausibility(Pl), i.e., upper limit of probability. Evidence theory application involves
the specification of(U,U ,m) whereU denotes the universal set,U denotes the collection of subsets or set of focal
elements ofU andm is the basic probability assignment (BPA), which can be viewed as the belief of the user of how
likely it is that the uncertain input falls within the specified interval. BPA, a value between 0 and 1, can be assigned
for any possible subset of the universal set based on experimentation or expert opinion. The advantage of this theory is
that it does not assume any particular value within the interval nor does it assign a specific distribution to the interval.

Figure 1 illustrates that the axiom of additivity is not imposed, as the evidential measure for the occurrence and
negation of an event does not have to sum to unity(Bel(A) + Bel(Ā) ≤ 1, Pl(A) + Pl(Ā) ≥ 1, Bel(A) + Pl(Ā) = 1)
whereĀ represents the negation of eventA. According to the definition,m(ε) denotes the BPA corresponding to
subsetε of U . Any additional evidence supporting the claim that the uncertain variable lies within a subset ofε, say
B ⊂ ε, must be assigned another non-zero BPAm(B). Further,m(ε) should satisfy the following axioms of evidence
theory:

m(ε) > 0 for anyε ∈ U ,

m(ε) = 0 if ε ⊂ U andε 3 U ,

m(Ø) = 0 whereØ denotes an empty set,
∑

m(ε) = 1 for all ε ∈ U .

Once the uncertainty associated with the domain is characterized by an evidence space in the form of BPA’s, an input
sample space is constructed. For example, ify = f(~x) where~x = [x1, x2, . . . , xn] with the evidence space defined as
(Xi,Xi,mi), the input sample space is given by:

X = {x : x = [x1, x2, . . . , xn] ∈ X1 × X2 × . . .× Xn}. (8)

Further for~x, the evidence space can be defined by(X,X ,mX) whereX is developed from the sets contained in
Eq. (9):

C = {ε : ε = [ε1, ε2, . . . , εn] ∈ X1 ×X2 × . . .×Xn}. (9)

Under the assumption that thexi are independent,mX is defined as:

mX(ε) =





n∏

i=1

mi(εi) if ε = ε1 × ε2 × . . .× εn ∈ X

0 otherwise

, (10)

for subsetsε of X.

FIG. 1: Schematic of belief and plausibility.
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Once the BPA’s for input sample space in Eq. (8) are defined by Eq. (10), belief and plausibility for the outputy
with evidence space(Y,Y,mY ) can be evaluated as:

BelY (ε) =
∑

S|S⊆f−1(ε)

mX(S), (11)

PlY (ε) =
∑

S|S∩f−1(ε) 6=Ø

mX(S), (12)

wherem(S) is the likelihood associated withS that cannot be further assigned to specific subsets ofS.
As no assumptions were made to calculate these measures, Bel and Pl provide a more realistic uncertainty structure

consistent with the given evidences. It is clear from Eqs. (11) and (12) that belief is the minimum likelihood associated
with an event, i.e., the sum of BPA’s of the propositions that totally agree with the event, and plausibility is the
maximum likelihood associated with an event, i.e., the sum of BPA’s of the propositions that agree partially and
totally with the event. The evidence theory statistics can be summarized in terms of cumulative belief function and
cumulative plausibility function (CBF and CPF) and complementary cumulative belief function and complementary
cumulative plausibility function (CCBF and CCPF). Figure 2 below shows an example of these uncertainty measures
obtained through the application of DSTE.

Let the uncertainty iny be characterized by the evidence space(Y,Y,mY ); consequently the evidence theory
statistics can be defined as follows:

CBF = [ρ, BelY (f−1(Yc
ρ))], ρ ∈ Y, (13)

CCBF= [ρ, BelY (f−1(Yρ))], ρ ∈ Y, (14)

CPF= [ρ, PlY (f−1(Yc
ρ))], ρ ∈ Y, (15)

CCPF= [ρ, PlY (f−1(Yρ))], ρ ∈ Y, (16)

whereYρ = {y : y ∈ Y andy > ρ} andYc
ρ = {y : y ∈ Y andy ≤ ρ}. Detailed explanation of the evidence theory

with numerical examples has been provided by Oberkampf et al. [18] and Nikolaidis et al. [19].

4.2 Rule for Combination of Evidences

Dempster Shafer theory is capable of handling data from a single source or multiple sources for an uncertain variable
with the only assumption that the different sources and the random variables are independent of each other. Infor-
mation from different sources is aggregated using therules of combinationto further evaluate the evidence theory

FIG. 2: Example of cumulative and complementary cumulative belief and plausibility functions.
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uncertainty measures. The detailed explanation for the rules of combination is beyond the scope of this paper and can
be referred from the research work of different authors [3, 5, 20]. In our study, we follow the mixing or averaging
rule of combination which generalizes the averaging operation used for probability distributions. The formula for the
mixing combination rule is given by:

m1...n(A) =
1
n

n∑

j=1

wjmj(A), (17)

wheremj ’s are the BPA’s for belief structures being aggregated andwj ’s are the weights assigned according to the
reliability of the sources. For demonstration purposes, the weights are assumed to be 1 for the examples presented
in Section 6. However, Eq. (17) can be effectively used to incorporate the reliability or the confidence that can be
associated with any of the sources.

5. APPROACH FOR MIXED UQ USING DSTE AND STOCHASTIC EXPANSIONS

In this section, we will describe the implementation of the stochastic response surfaces based on NIPC (Section 3) in
DSTE for mixed UQ. The stochastic response surface will be used as a surrogate for the deterministic code with the
overall objective of reducing original function evaluations, which can be expensive. The flow chart in Fig. 3 describes
the integration procedure of NIPC into DSTE and steps to compute belief and plausibility structures.

5.1 Aleatory Uncertainty Representation in Terms of Dempster Shafer Structures

Although Dempster Shafer theory is primarily used for epistemic uncertainty quantification, there may be instances
when aleatory uncertainties are present in the model along with the epistemic. One may choose to segregate the
aleatory uncertainties and treat them within an inner loop in which case we may end up with multiple belief and
plausibility structures as shown by Eldred et al. [12] or one may choose to discretize the aleatory variables into sets of
intervals according to their respective probability distributions.

In this paper, we focus on the latter option of discretizing the aleatory variables into sets of intervals and assign
BPA’s to each interval based on the probability distribution. The discretization process depends upon the amount
of information needed by the Dempster Shafer structure to accurately cover the uncertainty domain. For example, a
random variable with uniform distribution between 0.3 and 0.7 as lower and upper bounds, respectively, can be divided
into n number of intervals with an equal BPA of 1/n assigned to each subinterval (as shown in right plot of Fig. 4). In
order to discretize a random variable with normal distribution, we need to characterize the same with a lower bound

FIG. 3: Flowchart for utilization of NIPC methodology for evidence theory.
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FIG. 4: Discretization of normal and uniform variable distributions; standard normal distribution withµ = 0 and
σ = 1 (left plot), uniformly distributed variable with lower and upper bounds [0.3, 0.7] (right plot).

and an upper bound. The left plot in Fig. 4 shows a standard normal distribution, i.e., with 0 mean(µ = 0) and 1
standard deviation(σ = 1). As per the theory, for a normally distributed random variable with meanµ andσ as the
standard deviation, 99.7% of the area under the curve is withinµ± 3σ. Hence, this can be treated as a benchmark for
bounding all the normal variables in our analysis. However, the BPA should be assigned to each subinterval according
to the Gaussian distribution by solving the definite integral in Eq. (18).

P (a < X < b) =
∫ b

a

f(X)dx where f(X) =
1

σ
√

2π
exp

−(X − µ)2

2σ2
, (18)

wherea andb denote the upper and lower bounds of the subinterval andP (a < X < b) denotes the probability ofX
betweena andb.

Theoretically, an infinite number of intervals for the aleatory variables with appropriate BPA’s will accurately
represent the uncertainty domain. However, we focus on determining the optimum number of subintervals needed
to accurately represent the aleatory domain. Within a different perspective, suppose that the epistemic interval is
modeled with a single interval with 100% BPA. As we increase the number of subintervals for the aleatory variable
in the analysis, the results (belief and plausibility) will tend to approach the second order probability (SOP) measures
(upper and lower bounds for cumulative distribution function (CDF)). The SOP [17] method uses a double loop for
mixed uncertainty propagation: inner aleatory loop and outer epistemic loop. In the outer loop, a specific value for the
epistemic variable is prescribed and passed on to the inner loop. Any traditional aleatory uncertainty method may then
be used to perform aleatory uncertainty analysis in the inner loop. SOP provides the interval bounds for the output
variable of interest at different probability levels. The SOP method is widely used for mixed uncertainty quantification
with a single interval for the epistemic variable. In this paper, we utilize DSTE since it can handle multiple sources
with different BPA’s for the characterization of epistemic variables.

5.2 Evidence Theory Analysis

Once the aleatory variables are represented as Dempster Shafer structures, we follow the procedure described in the
flow chart (Fig. 3) where the first step is to interpret data for each variable from different sources and to define a
matrix for identifying intervals with non-zero evidences. These intervals are referred to as “focal elements” of each
variable in DSTE terminology. The next step is to combine the evidences for each uncertain variable using Eq. (17).
This will lead us to step3 wherein we construct the input sample space in the form of different combinations of the
focal elements from each uncertain variable using Eq. (8). Consequently, the composite BPA for each combination
in the input sample space is evaluated using Eq. (10), which is the product of the BPA’s of individual focal elements.
The fourth step is to construct the stochastic surface based on point-collocation NIPC to be used as a surrogate for the
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response as mentioned in Section 3. The response surface is created within the global bounds (global minimum and
global maximum) for each uncertain variable. Step5 is to propagate the uncertainty through the surrogate model which
involves finding the minimum and maximum response values for each input sample space. This can be accomplished
using two different approaches: sampling or optimization.

5.2.1 Sampling Approach

Akram et al. [21] compared Monte Carlo simulation and the evidence theory approach for technology portfolio plan-
ning. Their work presented the impact of sample size, uncertainty quantification method selection, and evidence
combination rule selection. Helton [22] used a sampling approach for the representation of epistemic uncertainty in
his work. First, hundreds of thousands of samples were chosen in the domain (e.g., for each input sample space) and
the samples with minimum and maximum response values were treated as the bounds of that particular sample space.
However, accuracy of the sampling approach is highly dependent on the number of samples chosen for the analysis.
This method would eventually become computationally expensive with the increase in the number of variables and the
uncertainty information per variable. To overcome the computational costs, we implement the optimization procedure
to find the minimum and maximum response.

5.2.2 Interval Optimization Approach (Implemented in the Proposed Methodology)

As the epistemic uncertainties are characterized by lower and upper bounds, we perform bound-constrained opti-
mization within each input sample space. Limited memory Broyden-Fletcher-Goldfarb-Shanno bound constrained
optimization (L-BFGS-B [23]); a local gradient-based solver is used for interval minimization and maximization
which uses the BFGS update to approximate the inverse Hessian matrix. Thus, we perform two different optimiza-
tions: one for the minimum response and the other for the maximum response. This procedure is computationally
efficient as compared to the sampling approach and also the accuracy is improved. An important point to note is that
we perform the optimization using the surrogate model which further reduces the computational cost. The uncertain
variables are transformed into their respective standard random variable bounds within each input sample space before
the optimization procedure. Mathematically, the bound constrained problem can be expressed as follows:

minimize/maximize f(~ξ),

subject to ~ξL ≤ ~ξ ≤ ~ξU ,

wheref(~ξ) is the required response value,~ξL and~ξU correspond to lower and upper bounds of the standard random
variable. The final step is to calculate the belief and plausibility structures using the minimum and maximum response
values according to Eqs. (11) and (12).

The advantage of using NIPC as the surrogate of the response can be understood especially for high fidelity
simulations if the output statistics are approximated accurately with a second degree polynomial. In such cases, we
can directly use Newton’s optimization method which would require one iteration to optimize the NIPC response
surface due to its Taylor series approximation. In this manner, we can even reduce the NIPC function evaluations
along with the original function evaluations.

6. ANALYSIS FOR OPTIMUM DISCRETIZATION OF ALEATORY VARIABLES

In order to provide a baseline for discretization of an aleatory uncertain variable and quantify the number of subinter-
vals required to accurately represent the aleatory uncertainty, a numerical analysis based on mixed UQ using evidence
theory is presented. Numerous combinations of uncertain variables (normal or uniform) have been adopted for the
analysis in two multidimensional test functions; (1) exponential function and (2) Runge function. These problems
have been widely used as challenge problems due to the inherent nature of variation which is feasible for any opti-
mization algorithm testing. A stochastic response surface based on point-collocation NIPC as explained in Section 3
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is implemented as the surrogate model for each of the test functions. At first, NIPC order convergence is achieved in
order to demonstrate the efficiency of DSTE with NIPC.

Mathematically, the two test functions are given by:
Exponential function

Y 1 = f1(~x) = exp

{
−

n−1∑

i=0

1
i + 1

xi

}
, (19)

Runge function

Y 2 = f2(~x) =
1

1 +
n∑

i=1

x2
i

, (20)

wheren represents the number of random variables.

6.1 NIPC Order Convergence

We study the NIPC order convergence with the exponential function in Eq. (19) including 8 input variables(xi

with i = 0, 1, . . . , 7) and the Runge function in Eq. (20) consisting of input variables(xi with i = 1, 2, . . . , 4),
characterized by purely epistemic multiple source uncertainty.Y 1 andY 2 denote the system responses, respectively.
The input uncertainty information for both test functions is given in Tables 1 and 2.

The evidence theory analysis is carried out for both test functions as explained in Section 5–5.2. There are 7680
and 96 combinations in the input sample space structure for the exponential and the Runge function, respectively.
The NIPC response surface was constructed based on the global bounds for each uncertain variable. For example,x0

in Table 1 has 2 sources of uncertainty with 1 interval from the first source and 3 intervals from the second. Using
these intervals, we choose the global minimum, i.e., 0.1 as the lower bound and the global maximum, i.e., 0.9 as the
upper bound forx0. Similarly, choosing the global bounds for the other variables, NIPC order convergence analysis
is conducted. An over-sampling ratio of2 is utilized and the linear system of equations in Eq. (6) is solved using the
least squares approach. The DSTE analysis results for both test problems are presented in Fig. 5.

TABLE 1: Input uncertainty information for the exponential function. The format for uncertainty information is:
[lower bound, upper bound] BPA (%)

Variable Source 1 Source 2 Source 3

x0 [0.6, 0.9] 100%
[0.1, 0.3] 33%, [0.4, 0.6] 34%, [0.5,
0.9] 33%

—

x1 [0.2, 0.3] 50%, [0.4, 0.5] 50% [0.0, 0.6] 70%, [0.5, 0.9] 30% [0.1, 0.4] 100%
x2 [0.1, 0.5] 40%, [0.6, 0.9] 60% [0.3, 0.8] 100% [0.4, 0.5] 100%
x3 [0.1, 0.4] 100% [0.3, 0.7] 100% —
x4 [0.2, 0.4] 100% [0.5, 0.8] 20%, [0.7, 0.9] 80% —
x5 [0.1, 0.3] 100% [0.2, 0.5] 100% [0.3, 0.6] 30%, [0.7, 1.0] 70%
x6 — [0.1, 0.5] 100% [0.3, 0.6] 100%
x7 [0.2, 0.8] 100% — [0.7, 0.9] 100%

TABLE 2: Input uncertainty information for the Runge function
Variable Source 1

x1 [0.6, 0.9] 30%, [0.2, 0.4] 20%, [0.1, 0.5] 40%, [0.9, 1.0] 10%
x2 [2.1, 3.5] 30%, [1.5, 3.0] 40%, [1.0, 2.0] 30%
x3 [0.12, 0.25] 20%, [0.3, 0.6] 25%, [0.1, 0.4] 15%, [0.5, 0.9] 40%
x4 [0.4, 0.6] 40%, [0.3, 0.8] 60%
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(a) Exponential function (b) Runge function

FIG. 5: Results for DSTE with NIPC.

It is evident that as the polynomial degree increases, the accuracy of the approximation increases. In order to
quantify accuracy, we define error in area as the integral of absolute difference between the original function value
Yorg(z) and NIPC response valueYnipc(z) at thezth belief/plausibility level. Mathematically it can be represented as
given in Eq. (21) and the integral is evaluated numerically. Further, the error is scaled with respect to the error in first
order NIPC approximation.

Error =
∫ 1

0

|Yorg(z)− Ynipc(z)|dz. (21)

Error convergence plots are shown in Fig. 6. The95% confidence interval (CI) is evaluated in terms of belief and
plausibility measures. The lower bound of CI is represented by the response value at2.5% plausibility level and the

(a) Exponential function (b) Runge function

FIG. 6: Error convergence results using Eq. (21).
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upper bound is indicated by97.5% belief level. Table 3 gives the convergence summary for different NIPC orders as
compared to the original function statistics.

Based on the results of the polynomial order convergence study, we shall use a third-order expansion for the expo-
nential function and a fourth-order expansion for the Runge function in further analysis for computational efficiency
as the results are within acceptable limits of accuracy for demonstration purposes (<4% difference). It is certain that
the final results for the minimum number of discretized intervals required for an aleatory variable will not be affected.
330 original function evaluations are needed to construct an inexpensive third-order NIPC response surface for the
exponential function over the uncertainty domain as opposed to 82,496 crude deterministic evaluations. Similarly,
140 original function evaluations will be needed in order to represent the Runge function accurately. Thus, point-
collocation NIPC is an effective and computationally efficient uncertainty propagation tool even in case of multiple
sources of uncertainties.

6.2 Optimum Number of Intervals for Representing Aleatory Domain

This study will provide an overview of different parameters affecting the number of subintervals needed to accurately
represent aleatory variables in terms of Dempster Shafer structures. These parameters are as listed below:

1. Number of aleatory variables

2. Number of epistemic variables

3. Number of sources for epistemic variables

4. Distribution of the aleatory variables (normal and uniform distributions studied in this paper)

Different cases considered for the numerical analysis are summarized in Table 4. Note that cases1, 2, 4, and5 are
with single source epistemic uncertainty with100% BPA. These cases are specifically chosen so as to be compared

TABLE 3: Convergence of 95% CI with NIPC order
Exponential function Runge function

Case
(Response

used in
optimiza-

tion)

# of
original
function
evalua-
tions

95% CI results % Difference

# of
original
function
evalua-
tions

95% CI results % Difference

Original
function

82496 [0.1151, 0.6348] — 1046 [0.0645, 0.4729] —

order1 18 [0.0209, 0.5421] [138.53, 15.75] 10 [-0.0160, 0.3548] [162.46, 28.54]
order2 90 [0.1325, 0.6170] [14.05, 2.84] 30 [0.0548, 0.3927] [11.42, 18.53]
order3 330 [0.1125, 0.6310] [2.28, 0.60] 70 [0.0558, 0.4541] [10.18, 4.06]
order4 990 [0.1154, 0.6344] [0.26, 0.06] 140 [0.0613, 0.4669] [3.63, 1.28]
order5 — — — 252 [0.0632, 0.4754] [1.46, 0.53]

TABLE 4: Combination of uncertain variables studied for optimum interval discretization
Case Description

1 1 Epistemic (single source with100% BPA) and 1 aleatory variable
2 1 Epistemic (single source with100% BPA) and multiple aleatory variables (2, 4, 6, and8)
3 1 Epistemic (multiple sources) and 1 aleatory variable
4 2 Epistemic (single source with100% BPA each) and 1 aleatory variable
5 2 Epistemic (single source with100% BPA each) and 2 aleatory variables
6 2 Epistemic (multiple sources) and 2 aleatory variables
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with the SOP results and present the error convergence based on Eq. (21). For cases3 and6, which exhibit multiple
source epistemic uncertainty, the analysis is based on the asymptotic convergence of relative error between succes-
sive iterations as we increase the number of subintervals for the aleatory variable. Table 5 provides the uncertainty
information for both test problems.

Evidence theory analysis using NIPC response surface is carried out for each case, starting with the particular
number of subintervals for aleatory variables. For iterative convergence, we start with 5 subintervals for each aleatory
variable in the case of1, 2, and4 aleatory variables per analysis and increase it by 5 at every iteration. Similarly, in
the case of6 and8 aleatory variables, we start with 2 subintervals. The difference in choosing the initial number of
subintervals is due to the fact that the combined BPA of more number of variables is expected to be smaller due to
the multiplicative effect for the product space expressed in Eq. (10). As two aleatory distributions are studied in this
paper, the mathematical functions are tested for each case with 1 aleatory distribution at a time which will enable us
to compare the interval discretization for both distributions.

6.2.1 An Exponential Decay Model for Predicting Error Convergence

As the number of aleatory variables increases, the analysis for error convergence becomes more and more expensive in
terms of number of combinations in the input sample space. This subsection will describe an exponential decay model
which can predict the convergence based on the initial 3 to 4 error evaluations. This is especially useful in problems
with higher dimensions which are computationally expensive otherwise. For example, in the present analysis, the
decay model is used to predict the error convergence for the cases with 4, 6, and 8 aleatory variables. The decay
model is given by:

Errp = E0 × 1
1− exp(−N/k)

, (22)

whereErrp is the predicted error,E0 andk are constants based on initial error evaluations, andN is the number of
subintervals.

The constants are evaluated by minimizing the sum of squares of differences between the initial error evaluations
and predicted error values for the same number of subintervals. A generalized reduced gradient (GRG) solver was
used to minimize the sum of squares in this analysis. Once they are evaluated, the error prediction model can be used
for different number of intervalsN , being the only variable in Eq. (22).

TABLE 5: Uncertainty information for the cases described in Table 4 (k = 0 for exponential function andk = 1 for
Runge function)

Case
Aleatory uncertainty

Epistemic uncertainty
[Number of subintervals per variable per iteration]

1
xk: N(2.5, 0.15) or U(3.5, 5.5)

xk+1 : [0.1, 1.0]100%
[5, 15, 50, 75, 100, 125]

2

xk to xi(i = 2, 4, 6, 8) N(2.5, 0.15) or U(0.5, 1.5)

xp : [0.1, 1.0]100%For i = 2 : [5, 15, 50, 75, 100, 125]
For i = 4 : [5, 10, 15, 25, 30, 35]
For i = 6 : [2, 4, 6, 8, 10] p: total number of variables
For i = 8 : [2, 3, 4, 5]

3
xk: N(2.5, 0.15) or U(3.5, 5.5)

xk+1 : [0.1, 0.4]30%, [0.3, 0.7]40%, [0.8, 0.9]30%
[5, 15, 50, 75, 100, 125]

4
xk: N(2.5, 0.15) or U(3.5, 5.5) xk+1 : [0.1, 1.0]100%
[5, 15, 50, 75, 100, 125] xk+2 : [2.0, 3.5]100%

5
xk andxk+2 N(2.5, 0.15) or U(3.5, 5.5) xk+1 : [0.1, 1.0]100%
[5, 15, 50, 75, 100, 125] xk+3 : [2.0, 3.5]100%

6
xk andxk+2 N(2.5, 0.15) or U(0.5, 1.5) xk+1 : [0.1, 0.4]20%, [0.35, 0.6]40%, [0.7, 1.2]40%
[5, 15, 50, 75, 100, 125] xk+3 : [0.2, 0.5]30%, [0.9, 1.5]40%, [0.6, 1.0]30%
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Figures 7 and 8 show the error convergence for both test functions in terms of increasing subintervals. The most
important parameter affecting the choice of number of subintervals is the number of aleatory variables in the design
problem. The other three parameters, i.e., distribution of aleatory variables, number of sources for the epistemic
variables, and number of epistemic variables seemed to have minimal effect with decreasing order of sensitivity. It
can also be inferred that the increase in number of subintervals, and thereby the accuracy of the approximation, will be
accompanied with increased computational time and effort. Thus, a trade-off needs to be made between the required
accuracy and the computational efficiency.

In the case of 1 and 2 aleatory variables, deciding the number of subintervals required is straightforward as the
number of intervals at which the convergence achieved is evident. For higher dimensions, i.e., 4, 6, and 8 variable
cases, we choose the minimum number of subintervals at a point where there is approximately90% reduction in error
as compared to the first iteration. Increasing the number of intervals beyond this point will be considered infeasible in
terms of reduction in error with significant increase in number of combinations for DSTE analysis.

(a) 1 E –1 A (b) 1 E –2 A (c) 1 E –4 A

(d) 1 E –6 A (e) 1 E –8 A (f) 1 E (multiple src)1 A

(g) 2 E –1 A (h) 2 E –2 A (i) 2 E (multiple src)2 A

FIG. 7: Exponential function error convergence (1)–(9) with normal and uniform distributions for aleatory variables
(E: epistemic variable, A: aleatory variable).
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(a) 1 E –1 A (b) 1 E –2 A (c) 1 E –4 A

(d) 1 E –6 A (e) 1 E –8 A (f) 1 E (multiple src)1 A

(g) 2 E –1 A (h) 2 E –2 A (i) 2 E (multiple src)2 A

FIG. 8: Runge function error convergence (1)–(9) with normal and uniform distributions for aleatory variables (E:
epistemic variable, A: aleatory variable).

Table 6 lists the optimum number of subintervals for each case which is the minimum recommended to cover the
aleatory uncertainty domain. In the case of an odd number of uncertain aleatory variables, the optimum number of
subintervals can be evaluated using interpolation. The optimum number of subintervals should be interpreted as a good
enough approximation to accurately represent an uncertain aleatory variable. The accuracy can always be improved
by taking more number of subintervals per variable and/or by increasing the±3 standard deviation limit to±6 for a
normal random variable if the computational architecture permits. In case of a huge number of uncertain variables,
advanced dimension reduction techniques based on sensitivity analysis may be adopted.

6.3 The Effect of the Distribution Type on Aleatory Interval Discretization

As the distributions of aleatory variables vary, the contribution of each discretized interval also varies. Error conver-
gence plots in Figs. 7 and 8 imply two mathematical conclusions: (1) the error while discretizing the uniform variable
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TABLE 6: Optimum number of intervals for each case
Description Nopt

1 Epistemic (single source with100% BPA) and 1 aleatory variable 75
1 Epistemic (single source with100% BPA) and multiple aleatory
variables (2, 4, 6, and8)

(50, 40, 20, and12, respectively)

1 Epistemic (multiple sources) and 1 aleatory variable 75
2 Epistemic (single source with100% BPA each) and 1 aleatory variable 75
2 Epistemic (single source with100% BPA each) and 2 aleatory variables 50
2 Epistemic (multiple sources) and 2 aleatory variables 50

is less as compared to that of the normal variable due to the truncation effect at the tail region, and (2) after a certain
number of subintervals, the rate of decrease in error is not as prominent for a normal variable as compared to a uniform
variable. This is mainly due to the fact that as the number of subintervals increases, the resulting BPA’s for most of
the intervals are derived from the tail regions which have a minimal probability value.

In case there are random variables with different distributions in the design problem, which is the most practical
case, a relation can be proposed to identify the number of subintervals for each distribution:

Ñopt =
Nopt

number of distributions
, (23)

whereÑopt represents the number of subintervals for each distribution,Nopt corresponds to the case of total number of
aleatory variables in the problem under consideration, and “number of distributions” in this paper is adopted as2. This
proposition is based on the numerical experiments performed in the previous section where two types of distributions
were studied (normal and uniform). Each of these distributions represented the complete aleatory domain in the
problem. In case of multiple distributions in a specific problem, the aleatory domain is shared by those distributions
and hence the optimum number of intervals required to represent the domain can be divided between the participating
distributions.

Now the question is which distribution should be given more preference in terms of number of intervals in case of
multiple distributions? Using the fact that the normal variable contributes less as compared to a uniform variable with
the same number of subintervals and based on the numerical analysis performed, the required number of subintervals
can be reduced for the normal variable by approximately20% of Ñopt. For example, evaluating Eq. (23) for a specific
problem yields anÑopt of say25, the required number of subintervals for the normal variable can be reduced by
25× 0.2 = 5 intervals, i.e., the variable divided into20 subintervals. However, in order to cover the aleatory domain
after the correction for the normal variable, we increase the number of subintervals for the uniform by the same
amount (i.e.,Ñopt for uniform variable will be30). This point will be clear in the next subsection and Section 7 where
the implementation of Eq. (23) is demonstrated and verified.

6.4 Demonstration of Difference Between DSTE and Pure Interval Analysis

One approach in epistemic uncertainty quantification is to approximate the range of output uncertainty by adopting
the interval defined by the global minimum and maximum of the input uncertainty. Ignoring the multiple sources of
information for the input uncertainty may provide a conservative estimation of the output uncertainty. This subsection
provides a comparison between pure interval analysis and the evidence theory with the proposed methodology. The
Runge test function is reconsidered with the uncertainty information as presented in Table 7.

Two different analyses are carried out for the above problem: (1) SOP analysis by choosing global bounds for
both the epistemic variables (i.e.,[1.5, 3.0] for x2 and[0.2, 0.85] for x3), and (2) evidence theory analysis for mixed
uncertainty incorporating the information from the sources. Note that for both methods; SOP and DSTE, a fourth-
order chaos expansion was chosen in order to propagate the uncertainty. The number of original function evalua-
tions required were 140, evaluated using Eq. (7) with an OSR of 2. Ideally, using Eq. (23), we calculateÑopt as25
which corresponds to the number of subintervals needed for each distribution. After the correction is implemented
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TABLE 7: Input uncertainty information for the Runge function for comparison with
pure interval approximation

Variable Distribution Uncertainty information
x1 Uniform (0.5, 1.5)
x2 Epistemic Source 1: [1.5, 2.0] 30%, [1.7, 2.5] 40%, [2.1, 3.0] 30%
x3 Epistemic Source 1: [0.2, 0.6] 70%, [0.55, 0.85] 30%
x4 Normal (2.5, 0.15)

for the normal variable, the numbers of subintervals are obtained as20 and 30 for normal and uniform, respec-
tively.

For the purpose of convergence demonstration, five different cases for number of subintervals summarized in
Table 8 with results plotted in Fig. 9. It shows that the interval analysis provides us with a conservative or over-
prediction of the uncertainty range. However, an important point to note is that the global bounds of the uncertainty
range do match with the pure interval analysis results, which is due to the fact that the uncertainty domain (i.e., the
minimum and maximum bound) is unchanged. The response values using DSTE analysis and pure interval analysis
are compared at different levels in Table 9.

TABLE 8: Number of intervals
for aleatory variables

Case Normal Uniform
1 2 5
2 5 10
3 10 15
4 20 30
5 25 40

FIG. 9: SOP and DSTE results for Runge function.
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TABLE 9: UQ results for the Runge function
Probability/belief/ Pure interval analysis DSTE analysis
plausibility level [lower bound, upper bound] [plausibility, belief]

0 [0.04765, 0.07377] [0.04611, 0.06754]
2.5% [0.04987, 0.07926] [0.05167, 0.07101]
25% [0.05337, 0.08847] [0.05835, 0.08092]
50% [0.05543, 0.09429] [0.06577, 0.08768]
75% [0.05746, 0.10031] [0.07316, 0.09489]

97.5% [0.06108, 0.11235] [0.08624, 0.10911]
100% [0.06477, 0.12489] [0.09241, 0.12915]

7. DEMONSTRATION OF MIXED UQ USING EVIDENCE THEORY

7.1 Rosenbrock Function

Before we demonstrate the mixed UQ approach on a CFD problem, we test the conclusions for the selection of the
optimum number of subintervals on a numerical problem, which includes the Rosenbrock function as the response. It
is a smooth nonlinear function for which the generalized formulation is given as:

f(~x) =
n−1∑

i=1

[(1− xi)2 + 100(xi+1 − x2
i )

2], (24)

wheren represents the number of uncertain variables. For this problem, we choosen = 3. The uncertainty information
is as given below in Table 10:

A fourth-order chaos expansion was chosen to model the uncertainty propagation with the NIPC response surface.
The number of original function evaluations required was 70, evaluated using Eq. (7) with an OSR of 2. The DSTE
analysis results obtained with the mixed UQ approach for the Rosenbrock function are given in Fig. 10. With the
objective to demonstrate the convergence, Table 11 lists the different cases considered in terms of number of subin-
tervals and compares the response intervals at two different levels: 2.5% and 97.5%. The percent differences between
successive iterations give an overview of the convergence as we move towards the optimum number of intervals for
the case of 2 aleatory variables (Nopt = 50). Case (3) seems to provide comparable results with case (4) and the
number of combinations is also decreased from 6125 to 4200. Thus, choosing the optimum number of intervals as
explained in Section 6–6.2 and 6–6.3 does provide the uncertainty results with desired accuracy and efficiency.

7.2 Transonic Flow Over RAE 2822 Airfoil

To demonstrate the mixed UQ approach based on DSTE and stochastic expansions on a high fidelity CFD problem, we
study steady, two-dimensional, viscous, turbulent flow over RAE 2822 airfoil subject to mixed (aleatory and epistemic)
input uncertainties. Witteveen et al. [24] have previously compared the stochastic collocation (SC) method based on
Gauss quadrature to the simplex elements stochastic collocation (SESC) method for transonic flow UQ analysis over
RAE 2822. This paper will focus on using the mixed UQ with DSTE approach through interval discretization for the

TABLE 10: Input uncertainty information for the Rosenbrock function
Variable Distribution Uncertainty information

x1 Uniform [–2.048, 2.048]
x2 Normal (N [0.215, 0.04])

x3 Epistemic
Source 1: [–3.7, 2.0] 50%, [1.5, 4.5] 50%
Source 2: [0.0, 2.5] 33.34%, [–5.0, –1.7] 33.33%, [3.7, 5.0] 33.33%
Source 3: [1.25, 4.15] 35%, [–2.9, 1.4] 65%
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FIG. 10: Mixed UQ results for Rosenbrock function.

TABLE 11: Mixed UQ convergence results for Rosenbrock function analysis
Discretization Response intervals at different levels

Case Normal Uniform
# of Combi-

nations
2.5% % Difference 97.5% % Difference

1 5 5 175 [0.816, 759.42] — [1489.86, 4149.45] —
2 15 15 1575 [1.181, 613.60] [36.55, 21.24] [1748.01, 4050.18] [15.94, 2.42]
3 20 30 4200 [1.376, 611.43] [15.25, 0.35] [1808.07, 3720.43] [3.38, 8.49]
4 25 35 6125 [1.456, 611.25] [5.65, 0.029] [1852.79., 3696.77] [2.44, 0.64]

aleatory variables with NIPC as the surrogate model for the response variables of interest. The CFD code used in
this study for numerical solution of steady Reynolds-averaged-Navier-Stokes (RANS) equations is ANSYS FLUENT
13.0 [25]. The Mach number and the angle of attack have been treated as aleatory uncertainties. One of the closure
coefficients used in the Spalart-Allmaras [26] turbulence model is treated as an epistemic uncertainty with multiple
sources of information.

7.2.1 CFD Model and Grid Convergence

The geometry of RAE 2822 airfoil is defined by the design airfoil coordinates tabulated in Cook et al. [27]. A suitable
computational mesh size for stochastic simulations is selected by performing a grid convergence study. The grid
convergence analysis is performed for the flow conditions corresponding to Case 6 in Cook et al [27] withM∞ =
0.725, α̃ = 2.92◦, and Re= 6.5 million (wind tunnel corrected values areM∞ = 0.729 andα̃ = 2.31◦). A second-
order spatial discretization is used along with the Roe flux difference splitting scheme. The iterative convergence is
achieved through the reduction of the residuals of the governing equations by six orders of magnitude.

Four grid levels are generated for the grid convergence. The finest grid (level 4) consists of 86,400 quadrilateral
cells with a mesh size of721 × 121. The chord length for the airfoil is1.0 ft with 589 points on the airfoil surface
and 66 in the wake region. The far-field is27 ft away from the trailing edge and the ratio of outer boundary distance
to the wake distance is 0.75. The coarser grids (levels 3, 2, and 1) are obtained by halving the number of points in the
streamwise and normal direction. Thus, grid levels 3, 2, and 1 are represented by361 × 61, 181 × 31, and91 × 16
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mesh sizes, respectively. Figure 11 shows the third grid level selected after the convergence study, which is used for
further analysis. The pressure distribution of the deterministic simulations for all the grid levels is compared with the
experimental results of Case 6 in Fig. 12 along with the estimation of the discretization error for the drag coefficient
calculated by the Richardson extrapolation technique explained by Hosder et al. [28].

7.2.2 Stochastic Problem Description

For this study, the Mach number (M ) and the angle of attack (α̃) have been treated as aleatory variables with uncer-
tainty in the form of normal distributions with the mean values corresponding to the experimental conditions for Case

FIG. 11: Grid around the airfoil (grid level 3).

(a) Pressure distribution comparison (b) Discretization error for the drag coefficient

FIG. 12: Grid convergence results.
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6 in Cook et al. [27] whereas the standard deviations areσM = 0.005 andσα̃ = 0.1, respectively. One of the closure
coefficients used in the Spalart-Allmaras turbulence model is treated as an epistemic uncertainty.

The standard form of the Spalart-Allmaras model consists of various closure coefficients such asCb1, Cb2, Cv1,
σSA, Cw2, andCw3, a detailed description of which can be found in Spalart and Allmaras [26]. The variation in
these parameters has been studied in detail by many researchers. Recently, Kato and Obayashi [29] proposed an
approach for uncertainty in turbulence modeling based on assimilation technique. They claim that the original val-
ues proposed by the model proposer were statistically accurate for the closure coefficients. Godfrey and Cliff [30]
derived the sensitivity equations for turbulent flow simulations for different turbulence models. In their study, the
Spalart-Allamaras model analysis showed that the most influential coefficients in order of decreasing sensitivity mag-
nitude areCv1, Cb1, σSA, andCw2. The other coefficientsCb2 andCw3 had minimal effect on the output quantity
studied.

In this work, the top three sensitive parameters were tested using the wind tunnel corrected conditions within the
bounds obtained with a coefficient of variance (CoV ) of approximately9% from their baseline values (i.e.,Cv1 = 7.1,
Cb1 = 0.1355, andσSA = 2/3). The variation in closure coefficients was mainly based on the ranges adopted
in previous research work by Rhee [31] and Cheung et al. [32]. The pressure coefficient on the airfoil surface was
monitored for all the simulations and the results showed that the shock region on the upper surface was the most
critical region being affected by the variation in closure coefficients (see Fig. 13). Apart fromCv1, none of the other
parameters seemed to have considerable effect on the flow properties in the flow field. Therefore, theCv1 coefficient
is retained as the epistemic uncertain parameter in the CFD problem along with aleatory variables Mach number and
the angle of attack. The input uncertainty information for RAE 2822 transonic airfoil case is given in Table 12.

(a) Pressure distribution comparison (b) Pressure distribution at the shock region

FIG. 13: Variation inCp due to variation inCv1 in Spalart-Allmaras turbulence model.

TABLE 12: Uncertainty information for RAE 2822: transonic
airfoil case

Variable Uncertainty type Uncertainty information
M Aleatory N(0.725, 0.005)
Cv1 Epistemic [6.5, 7.7]
α Aleatory N(2.92, 0.1)
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7.2.3 Determination of DSTE structure for the Epistemic Variable

The information for the epistemic variable can have different sources such as an expert opinion which states that the
value of a particular variable will lie within a single interval or multiple intervals. Another source of information can
be the data obtained from experiments. Evidence theory provides the tools required to incorporate the information
from different sources. In the present analysis, evidence (uncertainty information) forCv1 is acquired from two dif-
ferent sources: (1) expert opinion from the literature, and (2) the comparison of numerical simulations to the selected
experimental data.

Spalart and Allmaras [26] preferred the value ofCv1 as 7.1 instead of Mellor and Herring’s [33] 6.9, which
they believe yields a low intercept for the log law. The proposed value ofCv1 is validated by different researchers
to be accurately calibrated using different methods, especially for boundary layer flows. Based on these analyses, for
demonstration purposes the epistemic interval in Table 12 is segregated into three subintervals: [6.5, 6.85], [6.85, 7.15],
and [7.15, 7.7]. Note that the sub-intervals do not need to be continuous but can also be overlapping or discontinuous
in the application of the evidence theory. As the values of6.9 and7.1 both lie within the second interval,100% BPA
is assigned to that particular interval on the basis of expert opinion from literature review.

The second source of information regarding the uncertain parameter has been obtained from the comparison of the
CFD simulations with different values ofCv1 in the selected intervals to the available experimental data. The following
procedure is adopted in order to derive an error-based BPA assignment for each subintervalk wherek = 1, 2, . . . , Nint

(Nint = 3 in the present study):

1. Three differentCv1 values have been chosen from each subinterval (two values close to the upper and lower
bounds and the third value approximately at the mean of that particular interval). Letj denote the index of
the CFD simulation for each subinterval wherej = 1, 2, . . . , NCFD with NCFD = 3 for each interval in the
present analysis.

2. As the maximum deviation is observed in the shock region, we select three points (x/c = 0.525, 0.55, 0.575)
for comparison with the experimental results as shown in Fig. 13(2). Leti denote the index for the number of
points selected to be compared with the experimental results for each subinterval wherei = 1, 2, . . . , Nexp

(Nexp = 3 in the present analysis).

3. Error εk as a function of coefficient of pressureCp on the upper surface at the selected points for comparison
can be given by:

εk =
1

NCFD





NCF D∑

j=1

√√√√√√

Nexp∑

i=1

[((Cpexp)ij)k − ((CpCFD)ij)k]2

Nexp





. (25)

4. Weights (ωk) are assigned to each subinterval on the basis of error value evaluated,ωk = 1/εk.

5. BPA’s can now be assigned to each subinterval by normalizing the weights with the cumulative weight which
can be mathematically expressed as:

BPAk =
ωk

Nint∑

k=1

ωk

. (26)

The DSTE structure for the epistemic variableCv1 obtained through the stepwise procedure explained above is
outlined in Table 13.
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TABLE 13: Uncertainty information for the epis-
temic variableCv1

Source BPA
[6.5, 6.85] [6.85, 7.15] [7.15,7.7]

1 29.40% 31.68% 38.91%
2 100%

7.2.4 UQ Results

Following the observations made in Section 6, the aleatory variables were discretized into 50 subintervals in the
mixed UQ analysis of this CFD problem. Three output quantities have been monitored in the airfoil case study,
namely, coefficient of pressure (Cp) on the airfoil surface, coefficient of lift (cl) and coefficient of drag (cd). NIPC
response surface is used as a surrogate for each output quantity and DSTE results in the form of belief and plausibility
have been derived. The surrogate model was created with a first-, second-, and third-order NIPC expansion with an
over-sampling ratio of 2, which required 8, 20, and 40 deterministic CFD evaluations respectively.

The convergences of NIPC expansion orders in terms of uncertainties in lift and drag coefficient are shown in
Fig. 14. They can be interpreted as lower (plausibility) and upper (belief) bounds similar to the second-order prob-
ability analysis for each polynomial order. For example, the probability ofcl ≤ 0.82 is between 0.25 (indicated by
third-order CBF) and 0.4 (indicated by third-order CPF). These quantities are not affected much by the epistemic
parameterCv1 which is evident from the width of the probability box (region between the belief and plausibility
curves). This is in accordance with the turbulence model parameter studies which show that the closure coefficient,
Cv1 does not significantly affect the flow properties at lower angles of attack where there is minimal separation of
flow. Evidently, the results may be different if we perform the analysis at higher angles of attack.

In the case ofCp, uncertainty is represented in terms of error bars which is similar to the documentation standards
for experimental data, using a third-order NIPC expansion at each point. The third-order expansion is created at 296
different points on the airfoil surface using the same 40 deterministic function evaluations, i.e., CFD runs utilized in
the analysis ofcl andcd for each surface pressure coefficient. Belief and plausibility curves are generated at each
point using the corresponding surrogate model. The95% CI is obtained using the response value at2.5% plausibility
level and97.5% belief level as shown in Fig. 15. It is clear that the maximum uncertainty is in the shock region and
the changing shock wave location varies the pressure distribution denoted by the length of uncertainty bars. Note that

(a) Uncertainty incl (b) Uncertainty incd

FIG. 14: UQ using mixed DSTE results forcl andcd.
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FIG. 15: UQ using mixed DSTE results forCp.

the local oscillations in the shock region are likely due to the global polynomial approximation of the large gradients
present in the flow field. Hence application of local approximation methods can also be considered for uncertainty
quantification in regions of discontinuity.

Further, to quantify the individual contribution of each uncertain parameter to the uncertainty incl andcd, Sobol
indices [34] were evaluated. The basic procedure to calculate the Sobol index for a particular variable is explained in
the Appendix. The sensitivity results forcl andcd for NIPC orders 1, 2, and 3 are provided in Table 14. As expected,
the angle of attack (̃α) is the highest contributor followed by Mach number (M ) andCv1 in terms of coefficient of
lift, whereas the Mach number contributes more towards the uncertainty in coefficient of drag as compared toα̃.
The variation in Sobol indices for the epistemic parameterCv1 for both output quantities are in accordance with the
uncertainty plots in Fig. 15 with the uncertainty range being wider forcl as compared tocd.

8. CONCLUSIONS

In this paper, we have presented an approach for mixed UQ with evidence theory and stochastic expansions. The
aleatory variables are discretized into sets of intervals with appropriate BPA’s according to their probability distri-
butions. They are treated as well characterized epistemic variables in the DSTE analysis. Also, the point-collocation
NIPC has been implemented for construction of a stochastic surrogate model with the overall objective of reducing
original function evaluations and achieving computational efficiency.

TABLE 14: Sobol indices for the uncertain input parameters for coefficient of lift and drag

Uncertain
parameter

Coefficient of lift (cl) Coefficient of drag (cd)

First-
order
NIPC

Second-
order
NIPC

Third-
order
NIPC

First-
order
NIPC

Second-
order
NIPC

Third-
order
NIPC

Mach number (M ) 0.1149 0.1042 0.1002 0.7514 0.7505 0.7450
Cv1 0.0145 0.0107 0.0188 0.0011 0.00085 0.00047

Angle of attack (̃α) 0.8706 0.8891 0.8951 0.2475 0.2650 0.2766
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A detailed analysis is carried out in order to quantify the optimum number of subintervals required to accurately
represent an aleatory domain. In this study, we focus on normal and uniform distributions for the aleatory variables.
A minimum number of subintervals in case of 1, 2, 4, 6, and 8 aleatory variables in a specific problem have been
recommended as 75, 50, 40, 18, and 12 intervals per aleatory variable, respectively. Also, the effect of distributions
on the number of intervals required has been discussed.

The mixed UQ using, NIPC based DSTE approach and verification of the proposed minimum number of inter-
vals for aleatory discretization is demonstrated using two examples: (1) three-variable Rosenbrock function and (2)
transonic flow over RAE 2822 airfoil.

The first model problem (Rosenbrock function) was modeled with multiple sources of uncertainty for the epistemic
variable. A fourth-order chaos expansion was chosen for propagation of input uncertainty using DSTE analysis. The
normal variable was modeled with 20 intervals whereas the uniform variable was modeled with 30 intervals (a total
of 50 intervals) representing the aleatory domain for the model problem. This was found to be in accordance with the
numerical analysis carried out for optimum number of subintervals.

For our second model problem, the mixed UQ approach is demonstrated on the transonic CFD study of the airfoil
(RAE 2822). Mach number and angle of attack are treated as aleatory and the closure coefficientCv1 in the Spalart-
Allmaras turbulence model is treated as the epistemic uncertainty. A method to derive BPA’s for the epistemic variable
based on expert opinion and comparison between experimental data and CFD simulations is demonstrated. Since both
aleatory variables are normally distributed, 50 intervals are used to discretize the aleatory domain. The epistemic
parameter did not have a major contribution in the output uncertainty which was clear from the Sobol indices and is
also in accordance with the previous findings that variation inCv1 has minimal effect at lower angles of attack.

Overall, the examples demonstrated that the NIPC based evidence theory is capable of capturing mixed uncertainty
in the case of multiple sources of uncertainty for epistemic variables. It was also shown that global bound approxi-
mation for the epistemic variable by neglecting the sources of uncertainty with beliefs can lead to overestimation of
the output uncertainty. Future research will include application of the proposed approach for large scale problems by
implementing the sensitivity analysis based dimension reduction techniques.
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APPENDIX A. GLOBAL SENSITIVITY ANALYSIS WITH SOBOL INDICES

In a system where multiple uncertain variables are present, it is often useful to demonstrate and rank the relative
importance of each input uncertain variable to the overall output quantity of interest using a global sensitivity analysis
approach. In the current study, Sobol [34] indices are used to perform this analysis. Sobol indices can be derived via
Sobol decompositionwhich is a variance-based global sensitivity analysis method. First, the total variance (D) can be
written in terms of the PCE as follows:

D =
P∑

j=1

α2
j (t, ~x)

〈
Ψ2

j (~ξ)
〉

. (A.1)

Next, as shown by Sudret [35] and Crestaux et al. [36], the total variance can be decomposed as:

D =
i=n∑

i=1

Di +
i=n−1∑

1≤i<j≤n

Di,j +
i=n−2∑

1≤i<j<k≤n

Di,j,k + · · ·+ D1,2,...,n, (A.2)

where the partial variances (Di1,...,is) are given by:

Di1,...,is =
∑

β∈{i1,...,is}
α2

β

〈
Ψ2

β(~ξ)
〉

, 1 ≤ i1 < . . . < is ≤ n. (A.3)

Further, the Sobol indices (Si1···is) are defined as:

Si1···is =
Di1,...,is

D
, (A.4)

which satisfy the following equation:

i=n∑

i=1

Si +
i=n−1∑

1≤i<j≤n

Si,j +
i=n−2∑

1≤i<j<k≤n

Si,j,k + · · ·+ S1,2,...,n = 1.0. (A.5)

The Sobol indices provide a sensitivity measure due to individual contribution from each input uncertain variable
(Si), as well as the mixed contributions ({Si,j}, {Si,j,k}, · · · ). As shown by Sudret [35] and Ghaffari et al. [37], the
total (combined) effect (STi) of an input parameteri is defined as the summation of the partial Sobol indices that
include the particular parameter:

STi =
∑

Li

Di1,...,is

D
; Li = {(i1, . . . , is) : ∃ k, 1 ≤ k ≤ s, ik = i} . (A.6)
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For example, withn = 3, the total contribution to the overall variance from the first uncertain variable (i = 1) can
be written as:

ST1 = S1 + S1,2 + S1,3 + S1,2,3. (A.7)

From these formulations, it can be seen that the Sobol indices can be used to provide a relative ranking of each
input uncertainty to the overall variation in the output with the consideration of nonlinear correlation between input
variables and output quantities of interest.
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