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The development of a general framework for robust reliability-based design of base-isolated structural systems under

uncertain conditions is presented. The uncertainties about the structural parameters as well as the variability of future

excitations are characterized in a probabilistic manner. Isolation elements composed of nonlinear lead rubber bearings

are used to model the isolation system. The optimal design problem is formulated as a nonlinear constrained mini-

mization problem involving multiple design requirements, including reliability constraints related to the structural

performance. Failure events defined by a large number of random variables are used to characterize the reliability of

the system. A sequential optimization approach based on global conservative, convex, and separable approximations

is implemented for solving the optimization problem. An example problem that considers a 10-story building under

stochastic ground excitation illustrates the beneficial effects of base-isolation systems in reducing the superstructure

response.
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1. INTRODUCTION

There has been growing interest in recent years in the application of base-isolation techniques in order to improve
the earthquake resistant performance of civil structures such as buildings, bridges, nuclear reactors, etc. [1–4]. Infact,
the potential advantages of seismic isolation and the recent advancements in isolation-system products have led to the
design and construction of an increasing number of seismically isolated structural systems. Also, seismic isolation
is extensively used for seismic retrofitting of existing structures [5, 6]. One of the difficulties in the design of base-
isolated structural systems is the explicit considerationof the nonlinear behavior of the isolators during the design
process. Similarly, the consideration of uncertainty about the structural model and the potential variability of future
ground motions are major challenges in the analysis and design of these systems. In view of these issues, this work
introduces a general framework for robust reliability-based design of base-isolated structural systems under uncertain
conditions. The uncertainty about the structural and excitation model parameters is characterized in a probabilistic
manner. A probability density function that incorporates available knowledge about the system is assigned to the un-
certain parameters involved in the problem. In this settingthe design process is called robust stochastic system design
and the associated design optimization problem, stochastic design optimization. The uncertain ground excitation is
modeled as a nonstationary stochastic process with uncertain model parameters. In particular, a class of point-source
models is adopted in the present formulation [7]. It is emphasized that the purpose of this contribution is not in the
development of a specific stochastic model for ground motions but to introduce a general framework for solving a
challenging class of structural optimization problems. Isolation elements composed by uniaxial lead rubber bearings
are used to model the isolation system. The hysteretic behavior of the bearings is characterized by the Bouc-Wen-type
model [8]. The reliability-based design is formulated as a nonlinear constrained minimization problem involving mul-
tiple design requirements, including reliability constraints. First excursion probabilities that account for the uncertainty
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in the system parameters as well as in the excitation are usedto characterize the system reliability. Such probabilities
are estimated by an adaptive Markov chain Monte Carlo procedure [9]. A sequential optimization approach based
on global conservative, convex, and separable approximations is implemented for solving the optimization problem
[10–12]. The optimization scheme is combined with the use ofcommon random numbers throughout all iterations
in the optimization process. The approach explicitly takesinto account all nonlinear characteristics of the combined
structural system (superstructure-isolation system) during the design process. A numerical example is presented to
illustrate the applicability and effectiveness of the proposed framework in the context of reliability-based optimal
design of base-isolated systems in the presence of uncertainties.

2. STOCHASTIC DESIGN PROBLEM

The stochastic design problem is defined as the identification of a vector{φ} of design variables that minimizes an
objective function, that is

Minimize f({φ}) (1)

subject to design constraints
hj({φ}) ≤ 0 , j = 1, ..., nc (2)

and side constraints
{φ} ∈ Φ (3)

whereΦ ∈ Rnd denotes the admissible design space. The objective function is defined in terms of quantities such
as initial, construction, repair, or downtime costs. On theother hand, the design constraints are given in terms of
reliability constraints and/or constrains related to deterministic design requirements. The concept of robust reliability
is used in the present formulation to quantify the stochastic performance of the system under design. The reliability
constraints are defined in terms of failure probabilities. In particular, the probability that design requirements are
satisfied within a particular reference period is used as thereliability measure. Such a measure is referred to as the
first excursion probability and provides a measure of the plausibility of the occurrence of unacceptable behavior of the
system (failure), based on the available information. The probability of failurePFj

({φ}) corresponding to a failure
eventFj evaluated at the design{φ} can be expressed in terms of the multidimensional probability integral [13, 14]

PFj
({φ}) =

∫

Θ

IFj
({φ}, {θ}) q({θ}|{φ}) d{θ} (4)

whereIFj
({φ}, {θ}) is the indicator function for failure, which is equal to 1 if the system fails and zero otherwise;

and{θ}, θi, i = 1, ..., nu lying in Θ ∈ Rnu is the vector that represents the uncertain system parameters involved
in the problem. The uncertain system parameters{θ} are modeled using a prescribed probability density function
q({θ}|{φ}) that incorporates available knowledge about the system. For structural systems under stochastic excitation
the multidimensional integral [Eq. (4)], in general, involves a large number of uncertain parameters (in the order
of thousands). Therefore, the reliability estimation for agiven design constitutes a high dimensional problem that
is extremely demanding from a numerical point of view. A model prediction error—that is, the error between the
response of the actual system and the response of the model—also can be considered in the formulation [15, 16]. In
this case the prediction error may be modeled probabilistically by augmenting the vector{θ} to form an uncertain
parameter vector composed of both system model parameters as well as model prediction errors. The failure domain
ΩFj

({φ}) corresponding to the failure eventFj evaluated at the design{φ} is described in terms of a performance
functiongj as

ΩFj
({φ}) = {{θ} | gj({φ}, {θ}) ≤ 0} (5)

Then, the probability of failure also can be expressed in terms of the failure domain in the form

PFj
({φ}) =

∫

ΩFj
({φ})

q({θ}|{φ})d{θ} (6)
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With the previous notation, a reliability constraint can bewritten as

hj({φ}) = PFj
({φ}) − P ∗

Fj
≤ 0 (7)

whereP ∗
Fj

is the target failure probability. The last inequality expresses the requirement that the probability of system
failure must be smaller than an appropriate tolerance. It isnoted that in the context of stochastic design a system that
corresponds to a feasible design cannot be certified with complete certainty, but with a toleranceP ∗

Fj
. In other words,

the system will operate safely within the pre-specified probability of failure tolerance.

3. PHYSICAL MODEL

Base-isolated systems are designed such that the superstructure remains elastic. Hence, the structure is modeled as a
linear elastic system in the present formulation. The base and the floors are assumed to be infinitely rigid in plane. The
superstructure and the base are modeled using three degreesof freedom per floor at the center of mass. Each nonlinear
isolation element is modeled explicitly using the Buoc-Wenmodel [8]. Let{xs(t)} be thenth dimensional vector of
absolute displacements for the superstructure with respect to the base and[Ms], [Cs], and[Ks] be the corresponding
mass, damping, and stiffness matrices. Also, let{xb(t)} be the vector of base displacements with three components
and[Gs] be the matrix of earthquake influence coefficients of dimension n × 3; that is, the matrix that couples the
excitation components of the vector{ẍg(t)} to the degrees of freedom of the superstructure. The equation of motion
of the elastic superstructure then is expressed in the form

[Ms]{ẍs(t)} + [Cs]{ẋs(t)} + [Ks]{xs(t)} = −[Ms][Gs]({ẍb(t)} + {ẍg(t)}) (8)

where{ẍb(t)} is the vector of base accelerations relative to the ground. On the other hand, the equation of motion of
the base can be written as

([Gs]
T [Ms][Gs] + [Mb])({ẍb(t)} + {ẍg(t)}) + [Gs]

T [Ms]{ẍs(t)} + {fis} = {0} (9)

where[Mb] is the diagonal mass matrix of the rigid base and{fis} is the vector containing the nonlinear isolation
element forces (three components). The characterization of such forces is treated in a subsequent section. Rewriting
the previous equations, the combined equation of motion of the base-isolated structural system can be formulated in
the form

[

[Ms] [Ms][Gs]

[Gs]
T
[Ms] [Mb] + [Gs]

T
[Ms][Gs]

] {

{ẍs(t)}
{ẍb(t)}

}

+

[

[Cs] [0]

[0]
T

[0]

]{

{ẋs(t)}
{ẋb(t)}

}

+

[

[Ks] [0]

[0]
T

[0]

] {

{xs(t)}
{xb(t)}

}

= −
{

[Ms][Gs]

[Mb] + [Gs]
T
[Ms][Gs]

}

{ẍg(t)} −
{

{0}
{fis(t)}

}

(10)

4. STOCHASTIC EXCITATION MODEL

4.1 Point-Source Stochastic Method

The ground acceleration is modeled as a nonstationary stochastic process. In particular, a point-source model charac-
terized by the moment magnitudeM and epicentral distancer is considered here [7, 17]. The model is a simple, yet
powerful, means for simulating ground motions and it has been successfully applied in the context of seismic engi-
neering. The time history of the ground acceleration for a given magnitudeM and epicentral distancer is obtained by
modulating a white noise sequence by an envelope function and, subsequently, by a ground motion spectrum through
the following steps:

1. Generate a discrete-time Gaussian white noise sequence with unitary intensity

ω(tj) =
√

1/∆t θj , j = 1, ..., nT (11)
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whereθj , j = 1, ..., nT , are independent, identically distributed standard Gaussian random variables;∆t is the
sampling interval; andnT is the number of time instants equal to the duration of the excitationT divided by the
sampling interval.

2. The white noise sequence is modulated by an envelope function e(t, M, r) at the discrete time instants.

3. Discrete Fourier transform is applied to the the modulated white noise sequence.

4. The resulting spectrum is normalized by the square root ofthe average square amplitude spectrum.

5. The normalized spectrum is multiplied by a ground motion spectrum (or radiation spectrum)S(f, M, r) at
discrete frequenciesfl = l/T, l = 1, ..., nT /2.

6. Discrete inverse Fourier transform is applied to transform the sequence back to the time domain to yield the
desired ground acceleration time history.

Thus, the synthetic ground motion generated from the model is a function of the independent, identically dis-
tributed standard Gaussian random variablesθj , j = 1, ..., nT and the stochastic excitation model parametersM and
r. Details of the characterization of the envelope functione(t, M, r) and the ground acceleration spectrumS(f, M, r)
are provided in the subsequent sections. It is noted that this excitation model is well suited for generating the high-
frequency components of the ground motion. Low-frequency components also can be introduced in the analysis by
combining the above methodology with near-fault ground motion models [18].

4.2 Seismicity Model

The probabilistic model for the seismic hazard at the emplacement is complemented by considering that the moment
magnitudeM and epicentral distancer are also uncertain. The uncertainty in moment magnitude is modeled by the
Gutenberg-Richter relationship truncated on the interval[6.0, 8.0], which leads to the probability density function
[19]

p(M) =
b e−bM

e−6.0b − e−8.0b
, 6.0 ≤ M ≤ 8.0 (12)

whereb is a regional seismicity factor. For the uncertainty in the epicentral distancer, a log-normal distribution with
mean valuēr (km) and standard deviationσr (km) is used.

4.3 Envelope Function

The envelope function for the ground acceleration is represented by [7, 20]

e(t, M, r) = a1

(

t

tn

)a2

e−a3(t/tn) (13)

where

a2 =
−0.2ln(0.05)

1 + 0.2(ln(0.2) − 1)
, a3 =

a2

0.2
, a1 =

(

e1

0.2

)a2

(14)

The envelope function has a peak equal to unity whent = 0.2 tn, ande(t, M, r) = 0.05 whent = tn, with
tn = 2.0 Tgm, whereTgm is the duration of ground motion, expressed as a sum of a path-dependent and source-
dependent componentTgm = 0.05

√
r2 + h2 + 0.5/fa, wherer is the epicentral distance, and the parametersh and

fa (corner frequency) are moment dependent given by log(h) = 0.15M − 0.05 and log(fa) = 2.181 − 0.496M
[17].
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4.4 Ground Motion Spectrum

The total spectrum of the motion at a siteS(f, M, r) is expressed as the product of the contribution from the earthquake
sourceE(f, M), pathP (f, r), siteG(f), and type of motionI(f); i.e.,

S(f, M, r) = E(f, M) P (f, r) G(f) I(f) (15)

The source component is given by

E(f, M) = C M0(M)Sa(f, M) (16)

whereC is a constant,M0(M) = 101.5M+10.7 is the seismic moment, and the factorSa is the displacement source
spectrum given by [17]

Sa(f, M) =
1 − ε

1 + (f/fa)
2 +

ε

1 + (f/fb)
2 (17)

where the corner frequenciesfa and fb, and the weighting parameterε are defined, respectively, as log(fa) =
2.181 − 0.496M , log(fb) = 2.41 − 0.408M , and log(ε) = 0.605 − 0.255M . The constantC is given byC =
URΦV F/4πρsβ

3
sR0, whereU is a unit-dependent factor,RΦ is the radiation pattern,V represents the partition of

total shear-wave energy into horizontal components,F is the effect of the free surface amplification,ρs andβs are
the density and shear-wave velocity in the vicinity of the source, andR0 is a reference distance. Next, the path ef-
fect P (f, r), which is another component of the process that affects the spectrum of motion at a particular site, is
represented by functions that account for geometrical spreading and attenuation

P (f, r) = Z[R(r)] e−πfR(r)/Q(f)βs (18)

whereR(r) is the radial distance from the hypocenter to the site given by R(r) =
√

r2 + h2. The attenuation quantity
Q(f) is taken asQ(f) = 180f0.45 and the geometrical spreading function is selected asZ[R(r)] = 1/R(r) if
R(r) < 70.0 km andZ[R(r)] = 1/70.0 otherwise [17]. The modification of seismic waves by local conditions, site
effectG(f), is expressed by the multiplication of a diminution function D(f) and an amplification functionA(f).
The diminution function accounts for the path-independentloss of high frequency in the ground motions and can be
accounted for a simple filter of the formD(f) = e−0.03πf?. The amplification functionA(f) is based on empirical
curves given in [22] for generic rock sites. An average constant value equal to 2.0 is considered. Finally, the filter that
controls the type of ground motionI(f) is chosen asI(f) = (2πf)2 for ground acceleration. The particular values
of the different parameters of the stochastic ground acceleration model used in this work are given in Table 1. For
illustration purposes. Figure 1 shows the envelope function, the ground motion spectrum and a corresponding sample
of ground motion for a nominal distancer = 20 km, and moment magnitudeM = 7.0. For a detaied discussion of
this point-source model the reader is referred to [17, 22].

As previously pointed out, the excitation model consideredin this work is based on a class of point-source models.
In this regard it is important to note that the proposed methodology for robust design of base-isolated structural systems
is not limited in any way to this particular model. For example, excitation models based on second-order processes,
filtered white noise sequences, and spectral representations can be used as well. The particular model to be used will
depend, among other things, on the available seismic information at the site where the structural system is situated.

TABLE 1: Parameters for the stochastic ground acceleration model

Parameter Numerical Value Parameter Numerical Value
r̄ (km) 20.0 σr (km) 9.0

b 1.8 U 10−20

ρs (gm/cc) 2.8 βs (km/s) 3.5
V 1/

√
2 RΦ 0.55

F 2.0 R0 (km) 1.0
T (s) 20.0 ∆t (s) 0.01
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FIG. 1: Envelope function, ground acceleration spectrum, and sample ground motion forM = 7.0 andr = 20 (km).

5. ISOLATION MODEL

Several isolation elements can be used to model isolation systems. They include elastic, viscous, nonlinear fluid
dampers, hysteretic (uniaxial or biaxial) elements for bilinear elastomeric bearings, hysteretic (uniaxial or biaxial)
elements for sliding bearings, etc. Uniaxial bearings withhysteretic behavior, such as lead rubber bearings, are used
in the present implementation. The behavior of the bearingsis characterized by the Buoc-Wen model as [8]

Uy ż(t) =

{

ẋb(t)(α− zn(t){γ sgn[ẋb(t)z(t)] + β}) if n is even

ẋb(t)(α− zn(t){γ sgn[ẋb(t)] + β sgn[z(t)]}) if n is odd
(19)

wherez(t) is a dimensionless hysteretic variable;α, β, andγ are dimensionless quantities;Uy is the yield displace-
ment;xb(t) andẋb(t) represent the base displacement and velocity, respectively; and sgn(·) is the sign function. The
forces activated in the isolation bearing are modeled by an elastic-viscoplastic model with strain hardening

fis(t) = αLke xb(t) + cv ẋb(t) + (1 − αL)ke Uy z(t) (20)

whereke is the pre-yield stiffness,cv is the viscous damping coefficient of the isolation element,Uy is the yield
displacement, andαL is a factor that defines the extent to which the force is linear.

6. SEQUENTIAL APPROXIMATE OPTIMIZATION

6.1 Approximate Sub-Optimization Problem

The solution of the stochastic optimization problem given by Eqs. (1)–(3) is obtained by transforming it into a se-
quence of sub-optimization problems having a simple explicit algebraic structure. Thus, the strategy is to construct
successive approximate analytical sub-problems. To this end, the objective and the constraint functions are represented
by using approximate functions dependent on the design variables. In particular, a hybrid form of linear, reciprocal,
and quadratic approximations is considered in the present formulation [10, 23, 24]. At thekth iteration the approxi-
mate discrete sub-optimization problem takes the form

Minimize f̃k({φ}) (21)
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subject to
h̃jk({φ}) ≤ 0 , j = 1, ..., nc (22)

with side constraints
{φ} ∈ Φ (23)

wheref̃k andh̃jk, j = 1, ...nc represent the approximate objective and constraint functions at the current point{φk}
in the design space, respectively. The approximate objective function is obtained as

f̃k({φ}) = f1k({φ}) + f2k({φ}) + f3k({φ}) (24)

wheref1k({φ}) is a linear function in terms of the design variables,f2k({φ}) is a linear function with respect to the
inverse of the design variables, andf3k({φ}) is a quadratic function of the design variables. They are given by

f1k({φ}) =
∑

(i+)

∂f({φk})
∂φi

φi , f2k({φ}) = −
∑

(i−)

∂f({φk})
∂φi

(φk
i )2

φi
(25)

f3k({φ}) = −2χf
∑

(i−)

∂f({φk})
∂φi

φi

(

φi

φk
i

− 2

)

(26)

where(i+) is the group that contains the variables for which the partial derivative of the objective function is positive
and (i−) is the group that includes the remaining variables. On the other hand, the constraint functions involving
reliability measures (reliability constraints) are first transformed asht

j({φ}) = Ln[PFj
({φ})]. Then, the transformed

constraint functions at thekth iteration are approximated in the form

h̃t
jk({φ}) = ht

j1k({φ}) + ht
j2k({φ}) + ht

j3k({φ}) + h̄t
jk({φk}) (27)

with

ht
j1k({φ}) =

∑

(i+j )

∂ht
j({φk})
∂φi

φi , ht
j2k({φ}) = −

∑

(i−j )

∂ht
j({φk})
∂φi

(φk
i )2

φi
(28)

ht
j3k({φ}) = 2χht

j

∑

(i−j )

∂ht
j({φk})
∂φi

φi

(

φi

φk
i

− 2

)

(29)

h̄t
jk({φk}) = ht

j({φk}) −
∑

(i+j )

∂ht
j({φk})
∂φi

φk
i − (2χht

j − 1)
∑

(i−j )

∂ht
j({φk})
∂φi

φk
i (30)

where
∑

(i+j ) and
∑

(i−j ) mean summation over the variables belonging to group(i+j ) and(i−j ), respectively. Group

(i+j ) contains the variables for which∂ht
j({φk})/∂φi is positive and group(i−j ) includes the remaining variables.

The same type of approximations can be applied to the deterministic constraint functions. In the above expressions
the parametersχf andχht

j are user-defined positive scalars that control the conservatism of the approximations [25].

6.2 Solution Scheme

The solution scheme of the optimization process is summarized as follows:

1. At the beginning of thekth design cycle (k = 0, 1, 2, ...) the objective functionf and constraint functions
hj , j = 1, ..., nc are approximated by using the approach defined in the previous section. The approxima-
tions require function evaluations [f({φk}), ht

j({φk}), j = 1, ..., nc] and sensitivity analyses [∇f({φk}),
∇ht

j({φk}), j = 1, ..., nc].
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2. Using this information an explicit sub-optimization problem is constructed. The explicit problem is solved by
standard methods that treat the problem directly in the primal design variables space to arrive at the design
{φ∗k}.

3. The new point{φ∗k} is tested if it is acceptable in terms of a conservative criterion; that is, if f̃k({φ∗k}) ≥
f({φ∗k}) and if h̃t

jk({φ∗k}) ≥ ht
j({φ∗k}), j = 1, ...nc. If these conditions are satisfied (conservative step)

the point{φ∗k} is used as the current design for the next cycle; that is,{φk+1} = {φ∗k}. If the design{φ∗k}
does not represent a conservative step an inner loop is initiated to affect conservatism. For functions that are not
conservative at{φ∗k} the corresponding coefficients of the second-order terms are increased by multiplying
the corresponding scalarχ by a constant greater than 1. The modified approximations areused to construct a
new sub-optimization problem to obtain a new point. It is noted that the conservatism of the approximations
affects the global convergence of the optimization process[11, 25, 26]. It ensures that the optimal solution of
the sub-optimization problem is a feasible solution of the original problem.

4. The design process is continued until some convergence criterion is satisfied.

The requirement of a conservative step in the above algorithm can be relaxed and demand that a feasible descent
step is made instead; i.e., iff({φ∗k}) < f({φ∗(k−1)}) and if ht

j({φ∗k}) ≤ ln[P ∗
Fj

], j = 1, ...nc. In this case, the
conservatism is only enforced when a feasible descent step could not be made. This approach, which is called relaxed
conservatism, inherits the global convergence propertiesof the algorithm that enforces conservatism at each design
cycle [26]. The level of effectiveness of the above sequential optimization scheme depends on the degree of convexity
of the functions involved in the optimization problem. For example, if the curvatures are not too large and relatively
uniform throughout the design space the proposed algorithmconverges within a few iterations [12, 27]. For more
general cases, methods based on trust regions and line search methodologies may be more appropriate [28–30].

7. IMPLEMENTATION ASPECTS

7.1 Exterior Sampling Approximation

Solution approaches to optimization problems using stochastic simulation are based on either interior or exterior
sampling techniques [31]. In the present formulation an exterior sampling approximation is adopted. The approach
uses the same stream of random numbers throughout all iterations in the optimization process. Thus, the approximate
optimization problem [Eq. (21)–(23)] is transformed into adeterministic one. It is noted that several asymptotic results
are available for exterior sampling techniques and their rate of convergence under weak assumptions [32]. For finite-
dimensional sample sizes, the final solution depends on the sample selected; i.e.,ΘN = [{θ1}, {θ2}, ..., {θN}], where
theN samples of the uncertain parameters are drawn from the probability density functionq({θ}|{φ}). In order to
get good quality estimates for the reliability measures—and, thus, accurate solution to the optimization problem—the
exterior sampling approximation is implemented by selecting N sufficiently large. A scheme that considers higher
accuracy estimates as the algorithm converges to the final solution is implemented in the present formulation. In
addition, the average of several independent estimations of the failure probability is considered for controlling the
variability of the estimators. Numerical validations haveindicated that for the class of problems considered in the
context of this study only a small number of independent simulation runs is required to obtain the estimates with
sufficient accuracy. For the general case, the number of simulation runs needs to be established for the particular type
of problems under consideration.

7.2 Reliability Estimation

The reliability constraint functionshj({φ}), j = 1, ..., nc defined in Eq. (7) are given in terms of the first excursion
probability functionsPFj

({φ}), j = 1, ..., nc. Subset simulation is adopted in this formulation for the purpose of
estimating the corresponding failure probabilities during the design process [9]. In the approach, the failure probabil-
ities are expressed as a product of conditional probabilities of some chosen intermediate failure events, the evaluation
of which only requires simulation of more frequent events. Therefore, a rare event simulation problem is converted
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into a sequence of more frequent event simulation problems.For example, the failure probabilityPFj
({φ}) can be

expressed as the product

PFj
({φ}) = P (Fj,1({φ}))

mFj
−1

∏

k=1

P [Fj,k+1({φ})/Fj,k({φ})] (31)

whereP [(·)] denotes the probability of occurrence,Fj,mFj
({φ}) = Fj({φ}) is the target failure event, and

Fj,mFj
({φ}) ⊂ Fj,mFj

−1({φ}) ⊂ ... ⊂ Fj,1({φ}) (32)

is a nested sequence of failure events. Equation (31) expresses the failure probabilityPFj
({φ}) as the product of

P [Fj,1({φ})] and the conditional probabilitiesP [Fj,k+1({φ})/Fj,k({φ})], k = 1, ..., mFj
− 1. It is seen that, even

if PFj
({φ}) is small, by choosingmFj

andFj,k({φ}), k = 1, ..., mFj
− 1 appropriately, the conditional probabil-

ities still can be made sufficiently large and, therefore, they can be evaluated efficiently by simulation because the
failure events are more frequent. The intermediate failureevents are chosen adaptively using information from simu-
lated samples so that they correspond to some specified values of conditional failure probabilities. Then, to compute
PFj

({φ}) based on Eq. (31) one needs to estimate the probabilitiesP [Fj,1({φ})] andP [Fj,k+1({φ})/Fj,k({φ})],
k = 1, ..., mFj

− 1. The probabilityP [Fj,1({φ})] can be estimated readily by Monte Carlo as

P [Fj,1({φ})] ≈ P̃ [Fj,1({φ}), ΘN ] =
1

N

N
∑

k=1

IFj,1
({φ}, {θk}) (33)

whereΘN = [{θ1}, {θ2}, ..., {θN}] are independent and identical distributed samples simulated according to the
probability density functionq ({θ} | {φ}). On the other hand, the conditional failure probabilityP [ Fj,k +1 ({φ})
/Fj,k({φ})] is estimated in a similar manner; i.e.,

P [Fj,k+1({φ})/Fj,k({φ})] ≈ P̃ [Fj,k+1({φ})/Fj,k({φ}), ΘN ] =
1

N

N
∑

k=1

IFj,k+1
({φ}, {θk}) (34)

with samples according to the conditional distribution of{θ} given that it lies inFj,k; that is, samples{θk} simulated
according toq({θ}|Fj,k, {φ}). It is noted that the direct generation of samples simulatedfrom q, which lie in the
failure regionFj,k, is not efficient since on the average it takes1/P [Fj,k({φ})] samples before one such sample
occurs. In view of this difficulty the conditional samples are generated by an efficient Markov chain Monte Carlo
method based on the Metropolis algorithm [9, 33]. The probabilities are estimated usingN = 500 samples during
the initial iterations of the optimization process. This number is increased toN = 1000 as the algorithm converges
to the final solution. Validation calculations have shown that subset simulation can be applied efficiently to first
excursion problems for a wide range of dynamical systems, including the systems considered in this study. For a
detailed discussion of the approach the reader is referred to [9].

7.3 Sensitivity Estimation

It is clear that the characterization of the approximate optimization problems [Eqs. (21)–(23)] requires the estimation
of the sensitivity of the transformed failure probability functions. The sensitivity of the transformed failure prob-
ability functions with respect to the design variables is estimated by an approach recently introduced in [34]. The
approach is based on the approximate representation of two different quantities. The first approximation involves the
performance function while the second includes the failureprobability function. For completeness, the basic ideas
of the methodology are presented below. Recall that the failure domainΩFj

for a given design{φ} is defined as
ΩFj

({φ}) = {{θ} | gj({φ}, {θ}, ) ≤ 0}. If {φk} is the current design, the performance functiongj is approximated
in the vicinity of the current design as

ḡj({φ}, {θ}) = gj({φk}, {θ}) + {δgj}T{∆φ} (35)

where{φ} = {φk} + {∆φ}. The evaluation of the coefficients{δgj} is carried out in two steps:
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1. In a first step, for samples{θi}, i = 1, ..., M near the limit state surface—that is,gj({φ}, {θi}) ≈ 0—the
performance function is evaluated at points in the neighborhood of{φk}. These points are generated as

{φpk} − {φk} = {∆φ} =
{ξp}

‖ {ξp} ‖R , p = 1, ..., Q × M (36)

where the components of the vector{ξp} are independent, identically distributed standard Gaussian random
variables;Q is a positive integer andR is a user-defined small positive number. This number defines the radius
of the hypersphere{ξp}/ ‖ {ξp} ‖ R centered at the current design{φk}.

2. In a second step, the coefficients{δgj} of the approximation (35) are computed by least squares. To this end,
the following set of equations is generated

gj({φpk}, {θi}) = gi({φk}, {θi}) + {δgj}T {ξp}
‖ {ξp} ‖R

p = i + (q − 1) × M , q = 1, ..., Q , i = 1, ..., M

(37)

Since the samples({θi}), i = 1, ..., M are chosen near the limit state surface the approximate performance
function ḡj is expected to be representative, on the average, of the behavior of the failure domainΩFj

in the vicinity
of the current design{φk} [30]. Numerical experience has shown that the approximation introduced in Eq. (35)
is adequate in the context of the proposed optimization scheme. Issues such as the number of points required for
performing least square (Q andM ), and the generation of design points in the vicinity of the current design (calibration
of the radiusR) are discussed in [34].

Next, the failure domainΩFj
for a given design{φ} is defined in terms of the normalized demand function as

ΩFj
({φ}) = {{θ} | Dj({φ}, {θ}) ≥ 1} whereDj({φ}, {θ}) = 1− gj({φ}, {θ}). The failure probability function,

evaluated at the current design{φk}, is then approximated locally as an explicit function of thenormalized demand
aroundD∗

j = 1 as

P
[

Dj({φk}, {θ}) ≥ D∗
j

]

≈ eψ0+ψ1(D∗

j −1)

D∗
j ∈ [1 − ε, 1 + ε]

(38)

whereD∗
j is a threshold of the normalized demand (in the neighborhoodof 1) andε represents a small tolerance.

The coefficientψ0 corresponds to the probability of failurePFj
({φk}) and the coefficientψ1 can be calculated by

least squares with samples generated at the last stage of subset simulation [9, 30, 34]. The sensitivity of thejth failure
probability function can be estimated by means of the limit:

∂PFj
({φ})

∂φl

















{φ}={φk}

= lim
∆φl→0

PFj
({φk} + {δ(l)}∆φl) − PFj

({φk})
∆φl

l = 1, . . . , nd

(39)

wherend is the total number of design variables and{δ(l)} is a vector of lengthnd with all entries equal to zero, except
by thelth entry, which is equal to 1. Considering the definition of failure probability in terms of the normalized demand
function, the linear expansion of the performance functionin Eq. (35), and the approximation of the failure probability
function given in Eq. (38), the partial derivative of thejth transformed failure probability function{ht

j({φ}) =
ln[PFj

({φ})]} can be expressed as

∂ht
j({φ})
∂φl















{φ}={φk}

≈ 1

PFj
({φk}) × lim

∆φl→0

eψ0+ψ1δgjl∆φl − eψ0

∆φl
= ψ1δgjl

l = 1, . . . , nd
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whereδgjl is thelth element of the vector{δgj}, and all other terms have been previously defined. It is notedthat the
previous approach for estimating the gradients of the failure probability functions requires a single reliability analysis
plus the evaluation of the performance functions in the vicinity of the current design. Validation calculations have
shown that this approach is quite efficient for estimating the sensitivity of failure probability functions with respect
to design variables. It is important to note that the proposed sensitivity analysis attempts to generate metrics that can
approximate the gradient of the failure probability functions (whenever they exist) or provides information on the
local sensitivity of the failure probability functions in cases where the associated gradient does not exist.

8. NUMERICAL EXAMPLE

8.1 Description

A 10-story reinforced concrete (RC) frame including a base-isolation system (composed of lead rubber bearings)
subject to a stochastic ground acceleration is considered as a numerical example. A schematic representation of the
model is shown in Fig. 2. The frame can be considered as one resistant element of the three-dimensional model
characterized in Section 3. Each floor of the RC frame is supported by six columns of square shape and a height of
3 m leading to a total height of 30 m. It is assumed that the beamsof the frame are rigid in the axial direction, so
each floor can be described by a single horizontal degree of freedom. As previously pointed out (see Section 3 on the
physical model), the frame structure remains linear throughout the duration of the ground acceleration. The Young’s
modulus is equal to3 × 1010 N/m2. The mass of each floor is equal to1.5 × 105 kg, while the mass of the base
is equal to3.0 × 105 kg. A 5% critical damping is assumed in the model. The base-isolation system is composed
of six uniaxial lead rubber bearings with hysteretic behavior. The nonlinear behavior of these devices is modeled by
the equation described in Section 5 with model parametersn = 1, α = 1.0, β = −0.65, γ = 0.5, Uy = 0.5 cm,
αL = 0.1, ke = 3 × 106 N/m, andcv = 0.0. Figures 3 and 4 show a schematic representation of a lead rubber
bearing and a typical displacement-restoring force curve of the isolation element, respectively. The structural system
is excited horizontally by a ground acceleration that is modeled as described in Section 4. For clarity and simplicity
all structural parameters are assumed to be known in this case. Therefore, the uncertain system parameters involved in
this problem are represented by the stochastic excitation model parameters. However, it is emphasized that the effect
of uncertain structural parameters can be considered directly by the methodology proposed in the previous sections.

Base Slab

Isolation Bearing

Ground Acceleration

5@5m

10
@

3m

FIG. 2: Ten-story RC frame with base-isolation system.

Volume 2, Number 2, 2012



106 Jensen, Sepulveda, & Becerra

Lead Core
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FIG. 3: Lead rubber bearing.
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FIG. 4: Typical displacement-restoring force curve of the isolation element (lead rubber bearings).

8.2 Stochastic Design Problem

The objective functionf is defined as the total area of the column elements of the frame. The design variables
{φ} are chosen as the inertia of the columns throughout the height, grouped in 10 design variables; i.e., the inertia
of the columns of each floor constitutes each of the design groups. The failure events are formulated as first passage
problems. The structural responses to be controlled are the10 interstory drift displacements. Thus, the failure domains
evaluated at the design{φ} are given by

ΩFj
({φ}) = {{θ} | max

tk,k=1,..,2000
|δj(tk, {φ}, {θ})| − δ∗ ≥ 0} , j = 1, ..., 10 (40)

whereδj(tk, {φ}, {θ}) is the relative displacement between the(j − 1, j)th floor evaluated at the design{φ}, tk are
the discrete time instants,δ∗ is the critical threshold level and equal to0.2% of the floor height, and{θ} is the vector
that represents the uncertain system parameters (stochastic excitation model). Note that the duration of the excitation
is 20 s and the sampling interval is equal to 0.01 s (see Table 1). Therefore, the vector{θ} has 2000 components.
This, in turn, implies that the estimation of the failure probability for a given design represents a high dimensional
reliability problem [see Eq. (4)]. The tolerable probability of failure (P ∗

F ) is set equal to10−3. Additionally, geometric
and side constraints are incorporated in the problem. The reliability-based optimization problem is defined as

Min f({φ})
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subject to
PFj

({φ}) − P ∗
F ≤ 0, j = 1, . . . , 10

φi+1 − φi ≤ 0, i = 1, . . . , 9

−φi + 5.0 × 10−3 ≤ 0, i = 1, . . . , 10

φi − 7.0 × 10−2 ≤ 0, i = 1, . . . , 10

(41)

8.3 Results

The initial design is shown in Table 2. The results of the optimization procedure are presented in Fig. 5 in terms of
the evolution of the objective function. It is observed thatonly a few optimization cycles are required for obtaining
convergence. In fact, most of the improvement of the objective function takes place in the first three optimization
cycles. Then, the design process takes few excursion probability and sensitivity estimations. The details on the opti-
mization procedure for the initial design and the final design are summarized in Table 2. The numerical results also
show that the method generates a series of steadily improvedfeasible designs that move toward the optimum. This
property is important from a practical viewpoint since the design process may be stopped at any stage still leading

TABLE 2: Initial and final designs
Design variables Initial design Final design
φ1 × 10−2 (m4) 5.4 4.7

φ2 × 10−2 (m4) 5.4 4.7

φ3 × 10−2 (m4) 5.4 4.7

φ4 × 10−2 (m4) 5.4 4.6

φ5 × 10−2 (m4) 5.4 4.5

φ6 × 10−2 (m4) 3.4 3.7

φ7 × 10−2 (m4) 3.4 3.5

φ8 × 10−2 (m4) 3.4 3.0

φ9 × 10−2 (m4) 3.4 2.1

φ10 × 10−2 (m4) 3.4 1.5

1 2 3 4 5 6 7 8
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135
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FIG. 5: Iteration history in terms of the objective function.
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to acceptable feasible designs better than the initial feasible estimate. This is particularly attractive for dealingwith
involved problems such as robust stochastic design of base-isolated systems under stochastic excitation.

The effect of the base-isolation system can be observed, forexample, from a constraint violation viewpoint. To
this end, the failure probability associated with the final design is computed for the case where no base-isolation
system is considered. The resulting probability of occurrence of the failure events exceeds the target failure probability
(P ∗

F = 10−3) in more than two orders of magnitude. This result highlights the beneficial effect of the base-isolation
system in protecting the superstructure (in this case the 10-story RC frame). The maximum force mobilized in the
isolation bearings at the final design is of the order of 25 tonwith a maximum base displacement of about 5.0 cm.
These values are within the operational range of the devicesand, therefore, the final design is physically feasible in
terms of the forces and displacements in the lead rubber bearings. The favorable effect of the base-isolation system
also can be illustrated by comparing the objective functionof the final designs obtained with and without the isolation
system. It turns out that the value of the objective functionincreases about 40% for the final design of the model
without the isolation system. Thus, the structural components (columns) at the final design of the model without the
isolation system are bigger than the corresponding components of the protected system, as expected. Based on the
previous results, the beneficial effect of the base-isolation system is evident.

8.4 Numerical Efforts

The main numerical efforts involved in the solution of the stochastic optimization problem are due to the estimation
of the reliability (by means of subset simulation) and its sensitivity. Table 3 summarizes these numerical efforts.
The first column in Table 3 indicates the type of analysis performed, while the second column shows the number
of times the aforementioned analysis was repeated throughout the optimization procedure. Finally, the third column
indicates the average number of simulations required for performing one particular type of analysis. For example, a
total of 30 reliability analyses are required for solving the stochastic optimization problem. Each of these analyses
involves (on the average) 3000 simulations. Similarly, a total of 30 estimates of the gradient of the probabilities are
required for solving the problem, and each of these analysesrequires (on the average) 1000 simulations for calibrating
the approximate model shown in Eq. (35). The last row of Table3 indicates the amount of CPU time required to
solve the problem in a workstation with an Intel Core 2 Quad processor. This computational cost is substantially
different for the case of direct optimization. In that case the number of excursion probability and sensitivity estimations
increases dramatically with respect to the proposed approach. In direct optimization the excursion probabilities and
their sensitivities need to be estimated for every change ofthe design variables during the optimization process.

9. CONCLUSION

A general framework for robust reliability-based design ofbase-isolated buildings under uncertain conditions has
been presented. The reliability-based design problem is formulated as a stochastic optimization problem with a single
objective function subject to multiple reliability constraints. First excursion probabilities that account for the uncer-
tainties in the system parameters are used to characterize the reliability of the system. The high computational cost
associated with the solution of the optimization problem isaddressed by the use of approximate reliability analyses
during portions of the optimization process. This is achieved by implementing a sequential optimization approach
based on global conservative, convex, and separable approximations. The proposed approach takes into account the
uncertainty in the system model parameters explicitly during the optimization process. Numerical experience has

TABLE 3: Summary of numerical efforts required to solve the optimization problem

Type of analysis
Number of analysis required
for solving the problem

Average number of simulations
required per single analysis

Reliability 30 3000
Gradient of probability 30 1000

CPU time (hour) 1.6
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shown that the algorithm converges in a relatively small number of optimization cycles. This, in turn, implies that
only a moderate number of reliability estimates has to be performed during the entire design process. In addition,
numerical results have shown that the approach generates a sequence of steadily improved feasible designs. That is,
the design process has monotonic convergence properties. This property is particularly attractive for dealing with
involved problems such as robust reliability-based optimization of dynamical systems under stochastic excitation. In
these problems, which are the cases of interest in this work,each iteration of the optimization process is associated
with high computational costs. The results obtained in thiswork and additional validation calculations highlight the
beneficial effects of base-isolation systems in reducing the superstructure response provided that the uncertainty in
the system parameters is considered explicitly during the design process. This, in turn, implies more robust and safer
designs. Future research directions will aim at expanding the study reported here by considering a sensitivity analysis
for model parameters. This type of information gives valuable insight into the effects of uncertain model parameters
on the general performance of base-isolated systems.
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