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ABSTRACT

We constructed explicit expressions of gradients of functional-discrepancies
for identification by gradient methods of different parameters of problems of
thermoelastic deformation of compound hollow sphere under nonstationary
field of temperature. Gradients were constructed on the basis of theory of
optimal control of states of multicomponent distributed systems.
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In publications [1-3] on the basis of results of theory of optimal control [4-6] we obtained explicit
expressions of gradients of functional-discrepancies for identification by the O.M. Alifanov gradient
methods [7] of different parameters of problems of elastic deformation of compound hollow sphere,
compound cylinder and thermoel astic deformation of compound spatial body correspondingly.

In the present article similar questions are considered for identification of different parameters of
problems of thermoelatic deformation of compound hollow sphere under nonstationary field of temperature.

1. Identification of thermoelastic state by surface displacements

Let us consider isotropic hollow sphere. Taking into account symmetry, following [8, 9] its
thermostressed state under assumption about smallness of inertiaterms py (y isradia displacement) is

described by the equation

06, (») . 26, (y)—0g(¥) =04 (»)

=0, (r,1)e Qr, (0]
or r

where Q =Qx(0,T), Q=(ry, ), 0<r <ry <o, (0,T) istimeinterval,

o, =M+ 2u)§—f+ Zk%—(3k+2u)aT,
@)
Gy =0g =k3—i+@y—(3&+2u)oﬁ.

Here A, u are the Lame elastic constants, o is the linear expansion coefficient, T is variation of
temperature 7; fromitsinitial state Tj.
Taking into account (1) the equality (1) is easily transformed to the form

—{(v+2w) 9(,2% -2y -(3x+2u)ar2£ =0, (r,1)e Qr. @)
or or or
Variation of temperature T holds the equation

oT 1 d( 2, 0T\ -
CEZF—Za—r(r kg)'i‘f, (I”,t)E QT' (3)

where ¢ is volumetric heat capacity, & is heat conductivity factor, / is power of sources of heat.
On internal and external surfaces of sphere the stresses are given

0,0, ==pi, i=12, 1 ©.7). (@)

Density of heat flow on internal surfaceis

—kgzu, r=r, te(O,]_"), 5)
or

which is supposed to be unknown, and on external surface boundary condition of the third kind is set

k¥=_ar+ﬁ, r=ry, te(0,T). ()

r



At initial timeinstant distribution of variation of temperature field is known
T),co=To, re Q. )
We assume that on external surface of sphere its displacement is known

¥(r2,0) = fo(0), te (O, T). ®)

In this way we obtained the problem (2)—8), which consists in determination of an element ue % =
= C([0, T]), for which the first component of y of the classical solution Y = (y, ) of the initial boundary

value problem (2)—7) holds the equality (8).
Let usintroduce into consideration the functional-discrepancy

1T 2
J(u)=EI||Au—fO|| dt, 9
0

where Au = y(u;ry, t), ||Au—f0 ||:|Au—f0|.

For every fixed ue % instead of classical solution Y= (y, T') of the initial boundary value problem

(2)7) we shall useits generalized solution.
Definition 1. For every fixed u e % we call asthe generalized solution of the initial boundary value

problem (2)—7) the vector-function ¥ =Y (u) = (y(u), T'(u)) € ¥V, which Vz =(zy, zp) € V5 holdsthe system
of relations

a(yvzl):l(T; Zl)i lE(O, f)v (10)

2 0T . =
(l” Cg,ZZJ-Fal(T, 22)=ll(u,zz), te (O,T), (11)
(r2eT, 25)(0) = (+*cTo, 22), (12)

where

V:{ = (v (r, 1), va(r,0)) 1 v; € Wa(Q), av? € 12(0,T; Ly(Q)),i =12

Vte[0, T, jznv ||W1(Q)dt<oo}
0=l

Vo ={v(r) = (), va(r)) v € W3(Q), i =1 2,

]
a(y,z1) = I rz{(k+ Zu)[ayaazl+2y le+2k[ayﬂ+lﬁ+lz—lj}dr,

ror rr ror rr
n

aT 88 2 dr + rzzaT(rz, 1)z5(rp),
-

ay(T, Zz)—f
n
2 dz;y 2z
I(T;z21) = [ r®(3h+ ZM)OCT(B—:Jrle dr +r{ piz1(r) = 13 p221(r2),
1 .,
W(u; z2) = [ rfzodr +rfuzy(n) + r3Bzo(rp).
n



We shdl solve the problem (10)—<12), (9), which consists in determination of an element u
minimizing on % the functional (9) under the constraints (10)—(12), approximately by means of gradient

methods [7]. Iteration sequence for determination of the (n + 1) -th approximation u,,,, of solution u e %
of the problem (9)—<12) has the form

Upsr =ty =B Py (13)
It starts from certain initial approximation uqg € %, where direction of descent p, and the coefficient

B, aredetermined by the expressions [7]
— for the method of minimal errors

2
, e
pnz‘]un! an " /n”z; (14)
|72,
— for the method of steepest descent
| ’ 2
Pu =i By = (15)
|47,
— for the method of conjugate gradients
;12 ,
, [ o\ pn)
Pn :Jun +YnPp-1 Yo=0, v, = ’M,, 2 Pn = - ”2 , (16)
72,4 [ 4pu
where J;, isgradient of the functional (9) at the point u =u,,, e, = Au, — fo, Au,=y(u,;r,1).
Let usintroduce into consideration denotations
m(u,v) = () - »(0), y(v)-y(0)z,.
17)

L(v)=(fo - ¥(0), ¥(») - ¥(0))L,.
where Yve % y(v) = y(v;ry, 1), y(v;rp, t) isthe first component of the solution ¥ =Y (v) = (y(v), T(v))
T
of the problem (10)(12) for u=v, (3, ¥), = [ 9V dr.

0
The following equality takes place:

2J(v) = (v, v) = 2L() + | fo - 7(0) ||§2 : (18)

Letu,ve . For he (0,1) z=Av+(@-ANu=u+Av—u)e % Taking into account (17), (18) we
obtain

lim Jw+Mv—u))—J(u)
A—0 A

= (W)~ fo. y0) = 3(W)) 1, =( T, v—u). (19)
For every approximation u,, of solution ue % of the problem (9)—12) following [1-3, 10] we

=n(u,v—u)—L(v—u)=

introduce into consideration the following conjugate problem:

-\ + 2@(1(#8—”’)—2\41) =0, (r1)eQr,
or or



o)., =0 0,0, =5 0lw,ira )= fo), 1€ OT),
ra

- rzc%—%(rzkg—f] — 2@+ 20) (e, (W) + &4 (W) +E (W) =0, (1) € Qr, (20)
op

_o, k%
ar V_Vl

=—0 p(rp.1), te (0,T),
ar

r=ry

p|t:f:O, reQ,

where Q7 = x(0,7), o, (v) =<x+2u)g—‘r"+2>» e W)=Y e (w) =€ (¥) =

Definition 2. We call as the generalized solution of the |n|t|al boundary value problem (20) the
vector-function Y™ = (y, p)e ¥, which Vz = (z;, z,) € ¥y holds the system of relations:

a(y, z1) = (W(uy; 12, 1) = fo) 21(r2), 1€ (O, T), (21)

—(rzca—p,zzj+a1(p,22)—jr2(3k+2u)a22(aw wjdr—o te (0,7), (22
ot o d

(r2cp, z,)(T) = 0. (23)

If we substitute in (21) z; by the difference y(u, 1) — y(u,) and z, in (22), (23) by the difference
T(u,q)—T(u,), taking into account (10)—(12) we obtain

T
[ Gl 720 0) = ) ttani 72, ) = (ot 7, 0) i = [ (W, y(uuyia) = y(u,)) di +
0 0
T
. [ 2 A n) = Tn)), pjdr+f a1(p, T(tyy) ~ T, )) i -
T
- j [r 2B+ 2) 0T (14,41) — T(un))( Z\derdz: | Au, 12 p(ry, 1) dt,
0Q r 0
i.e.,
(i, Ay )= Buyr pl )1y (24)
Hence,
=V, (25)

T
where ,, = p(ry, 0, [ W, |* = | (@) 2a
0

The presence of gradient J;n makes it possible to use gradient methods (13) for determination of

the (n +1)-th approximation u,,,, of the desired solution u e % of the problem (9)—<12).
Remark 1. If the recoverable heat flow « is assumed to be constant, i.e., if % = (—oo, +), then on
T
the basis of (24) we obtain J;, =V, where i, = [ r{ p(r, D) dt, |J;, ||=|W,|-
0




Remark 2. If the recoverable heat flow u = u(¢) is assumed to be representable as
m
u=u, (1) =2 0,;9;(1), (26)
i=1

where {¢; (1)}~ is asystem of linearly independent functions, then we obtain parametric technique for
recovering the flow. On the basis of (24) we have

T
Ton =W U ={W0} 2, Wy = [ rfeip(r t)at, |
0

J/
uﬂ

225 ()2 (26)
i=1

The presence of gradient J;n makes it possible to use the method of minimal errors (13), (14) for

determination of the (n+1)-th approximation u,, 3 ={a"}", of the solution u ={a,}";€ % = R™ of

the problem (9)—(12), where recoverable flow u of the boundary condition (5) is searched in the
form (26). In this case on determination of solution Y (u,,,4) of the problem (9)—(12)

2

_ m
W(uys1i 22) = [ r2F zodr 1t Y 0 i (0) 22(r) + 5Bz (r2),
r i=1
If we solve the problem of determination of the vector-function Y = (y(Jy, ), T(J;, )), which

Vz =(z1,z5) € Vg holds the system of relations
a(y, Z]_):l(T(J;n);Zz), te (0, f)!
[rzc%—f, zzj+a1(T, 22)=h(J; ; 22), 1€ (0,T), (27)

(r2cT, z5)(0) = (VZCY_b, z5),

we obtain AJ;n = y(J,;n; 9, 1), which makes it possible to use the method of steepest descent (13)—15)
for search of the (n+1)-th approximation u,,; of solution of the problem (9)<12), where
) 2

h(Jy, 22) = J.rzfzzdr+r12J;” 25(r) +Bré z5(r), if ue u=C(0,T]), and ll(J;";zz) = Irzfzzdr—k

Vl rl
m .
+rfzm(pi(t)zz(rl)+[3r2222(r2), if the recoverable parameter u of the boundary condition (5) is

=1
searclhed in the form (26).

If we determine the direction of descent p, by means of the expressions (16), we can solve the
problem of (27) type, where instead of J;n we use p,. This makes it possible to use the method of

conjugate gradients (13), (16) for searching the (n+1)-th approximation u,,, of solution ue % of the
problem (9)—(12).

2. ldentification of ther mostressed state of hollow sphere by displacements of itsinternal point

Let on every fixed ue % = C([0,T]) thermostressed state of hollow sphere is described by the

initial boundary value problem (2)—(7), i.e., the generalized problem (10)—(12). We assume that at the
internal point dq € (rq, ) displacement is known and given by the equality

y(dy, )= f1(0), 1€ (O, 7). (29)



In this case functional-discrepancy has the form

17 5
Jw) = [ (du=f)*d, (29)
0

where Au = y(u;dq, t), y(u;r,t) is the first component of solution Y =Y (u)=(y(u), T(u)) of the
problem (10)—12).

The expressions of (17)—(19) type take place, where y(v) = y(v; dq, t), y(v; r, t) thefirst component
of solution Y =(y, T) of the problem (10)—(12) for u=v.

For every approximation u, of solution ue % of the problem (10)«12), (29) the conjugate
problem has the form:

or or
o,(y)|._, =0 i=12,te(0,7),

[WQ=Qknwm%=j%OWM%ﬂ—ﬁ@%m®f)

2299 (,249P)_ 23 oy a"’ 220, (e Qur, (30)
ot or or r
Jap =
[Ply, =0 |2\ =0, re (.7
"lla
1
_ a_p =0, ka =-0p(r, 1), tE(O,T),
or |, or |,
1 2
p| T =0, re 5,

where Q7 = (Q\ (r = d;))x (0, T), the component &, (y) isdefined in section 1.
Definition 3. We call as the generalized solution of the initial boundary value problem (30) the
vector-function ¥ = (v, p)e V,, which Vz=(zq, zp) € Vdo holds the system of relations

a(y, z1) = (W, dy, 1) = f1(0)) 21(dy), 1€ (0, T), (31)
[ﬂc%—’; 22]+0(1(p,22) [ r2@+2w o0z, @‘V 2‘*’jarr_o te (0, T), (32)
(r%cp, 22)(T) =0, (33)

where

V4 2{\/:(vl(r,t),vz(r,t))iv,-| Q, € Wzl(Qj),[vl-”r:dl:O, i,j=12,

Vte[0,T]

o — N

2 p—
) ||V||W1(g) t<eo, —aavz e I2(0,T; Ly(Q;)), i =1, 2},
Jj=1 t Q[

Vd ={v=010),v200) il  €W2(Q)). 10|,y =00/ =12}



If we select in the relation (31) instead of the function z; the difference y(u,,1) — v(u,) and the
difference T'(u,41) — T(u,,) instead of z, in (32), (33), taking into account (10)—12) we obtain

(i Ay )= | Oy dy, 1) = )0 (pgas da, 1) =y dy, 1) di =

o —"

T
= [ a(y(upsa) ~ y(a,). W) di - j [ 1230+ 20) (T 1) ~ T, »(a"’ "’]d di+
0 0Q

R I[ 2,00 (ya) ~T(w,)) j

T
- di+ [ ay(T () = T(u,), p)di =

0
T T 5

= [(W(as P)=h(uy; P dt = | Au,rf p(ry, 1) dt.
0 0

’ ~ ~ 2 ’ 2 ~
Hence, J, =V, where i, =r{ p(r, ), ||/}, V2d

O'—a'\]\

Remark 3. If instead of the condition (28) we have aso the condition (8), then we write the
functional-discrepancy as

J(u) = Z I(y(u d;, 1) = f;()%dt, dg=ry. (34)
l 00
In this case we have the problem (10)—<12), (34).
L et us introduce denotations
m(u,v) = (¥ ()= y(0), y(v) =¥ (0) 1,
LM =(/ -5 (0.7 -7(0) .

where )_)(V)z(y(V;dOvt)ly(V;dllt))’ J;:(fOYfl)v 6:(({)1(t)1(92(t))! W=(‘U1(f),\lf2(t))y (61W)L2:

T 2
= [ Yo/ dr.
0i=1
Since
2J(v) = (v, v) = 2L(v) + | f=50) ”iz
then
lim @ My =) = J ()
A—0 A

= (@)~ £,y =3@) , = ( Ty, v—u). (35)

For every approximation u,, of solution u e % of the problem (10)«12), (34) the conjugate problem has

the form (30), where instead of the second restriction, which reflects statement of boundary conditions, we
accept

=n(u,v—u)—-L(v—u)=

6, )], =0, 6, (W), =5 (Wi 72~ fo(0), 1€ OT)
)



For this initial boundary value problem the generalized problem consists in search of the vector-
function ¥ = (y, p)e V,, which Vz=(z1, zp) € Vc? holds the relations

1 —_—
a(y, z1) =3 (W, d;, )= f;(0) z21(d;) . 1€ (0, 7),
i=0

—( zcg—p, zzj—i-al(p, Zp)— .[ r2(37»+ 2}1)0((8—\'!4-2—\”)22(11” =0, te(0,T), (36)
t o or r

(r?cp, 22)(T) =0.
Taking into account (35) on the basis of (36) we obtain J;n =y, = r? p(n, 1).
3. Restoration of thelinear expansion coefficient by surface displacements

For unknown linear expansion coefficient o the components 6,.(y), 64 (»), 6¢(») instead of (1) take

the form

c,(»)= (k+2u)g—y+2kl—(3k+ 2WuT,
r r

(37)
dy 2(A+
0o0) =00() =222+ 2@t g,
where nonnegative real constant u € % =[0, + o) isto be determined.
Taking into account (37) on the basis of (1) the equilibrium equation takes the form
v+ zu)i 220 (Gh+ 2u)ur28—T— 2(M+2W)y+ =0, (r,1)e Qr, (38)
or or or

where Q7 =Qx(0,T), Q= (11, 7).

Variation of temperature T holds the equation (3). On internal and external surfaces of the hollow
sphere the stresses are given (4), and variation of the temperature 7" holds the mixed boundary conditions

T(ry, t) =g (t), 2T :—&T|r=r2 +B, te (0,T). (39)
r=ry
For t=0theinitia condition has the form
T(r,0) =Ty(r), re Q. (40)

We assume that on externa surface of the sphere the displacements, given by the equdity (8), are
known.

So, we obtained the problem (38)—40), (3), (4), (8), which consists in determination of nonnegative
number u € %, for which the first component y of the classica solution Y = (y, T) of the initial boundary
value problem (38)—40), (3), (4) holds the equality (8).

For every fixed ue % instead of the classical solution Y= (y,T) of the initial boundary value
problem (38)—(40), (3), (4) we shall use its generalized solution.



Definition 4. For every fixed u e % we call asthe generalized solution of the initial boundary value
problem (38)—(40), (3), (4) the vector-function Y = (y, T) e V, which Vz = (zq, z5) € V5 holds the system
of relations:

a(y,z) =1, T; z;), te (0, T),

(}"ana—];,22]+al(T,Zz) 211(22), te (0, f), (41)

(r%eT, 25)(0) = (r2cTp, z,),
where bilinear forms a(-, ), a;(+,-) aredefined in section 1,
2

I, T, z) = j r2(@n+ 2u)uT(?+ﬂjdr+ 12 p1z1(ry) — 2 paz (),
roor

n

h(z2) = [r¥fzodr +Briz(ry),

n

4 ={v = a0, va(r, ) 1] o € WHQ), va(,) = T 1),

T
e[0T [ vl s
0

, V2 _ 120 7.
(Q)dt<°°,l:1, 2,¥EL (O,T,Lz(g))},

Vo ={v=(1(r), v2(r) :v;| o € W3(Q), i =1 2,v(r) = 0}.

The functional-discrepancy has the form (9). We shall solve the problem (9), (41) by means of
gradient methods (13).

For every approximation u,, of solution e % of the problem (9), (41) the conjugate problem has
theform

~(h+ 2”)[3[722_\“}_2"’] =0, (rt)e Qr,

L (42)
o, (W), =0 6, ()|, =5 (0w, r2)= fo), 1€ O.1),
2

where the component o,.(v) is defined in section 1.
Definition 5. We call as the generalized solution of the boundary value problem (42) the function
T
y(r, eV =v(r, 1) ive Wa(Q) Vie[0,T], j||v||§Vl(Q)dz < oo}, which Vz(r)e 12 =W3(Q) holds
2
0
the relation

a(y, z1) = (W) = f0) | y=r,71(2), 1€ (O, T). @)

If we substitute in (43) the function z; by the difference y(u,.1)— y(u,), taking into account the
first relation of the system (41) we obtain

10



o — N

O'—oﬂ\

where T is the solution of the problem, defined by the second and third relations of the system (41).

Hence, J;, =v,, where

0On

Remark 4. If u=u(7), then on the basis of (44) we have J;,

2

7, = Ir(3k+2p)T(aw 2"’]

n

Remark 5. If u=u(r), then J; =y, where
r )
G, =] r? (3x+2u)r[ v,
0

Remark 6. If u=u(r, ?), then J,,

v, = r2(3k+2u)T(a—W+ ZW]
oar r

4. |dentification of thermostressed state on the basis of the problem of elastic equilibrium

L et the equilibrium equation have the form

or

=vy,, where

() = 1)) = ¥, i =

T

0n

Tn
n=[ ] (3x+2u)r(a"’ Wjd dt, |J

ol

/

T
[ alw, y(uyug) - y(u,))di =
0

(U@tias T3 9) =Ly, T3 W))dt = Ay, | fr (3x+2u)7(a\l’ Wjd dt,
or

=vy,, where

(W,)2dr.

o —M

2= [ (W,)%r.

n

Tr
” ,)2drdt.
0n

—{(mzu)[ai(r?a—yj j (3x+2u)ar23} 0, (r.t)e Qr,

(44)

(45)

where we suppose variation of temperature ue % = Cz'l(QT) to be unknown. On internal and external
surfaces of the hollow sphere the stresses (4) are given. We assume that on external surface of the sphere

displacements, given by the equality (8), are known.

We obtained the problem (45), (4), (8), which consists in determination of the function e %, for

which the solution y =y(u) = y(u; r, f) of the boundary value problem (45), (4) holds the equality (8).

Definition 6. For every fixed ue % we call as the generalized solution of the problem (45), (4) the
function y = y(u) = y(u; r, t) € V7, which Vz; = z1(r) € Vlo holds the relation

a(v,z1) =1(u; z7) Vre (0,T),

2
where /(u;z1) = j 23N+ 2u) au[%+ﬂj dr+ rlzplzl(rl) - rzzpzzl(rz).
roor

n

(46)



Remark 7. On solving the problem (46), (9) we can accept % = C(Q7).

Instead of the problem (46), (8) we shall solve by gradient methods (13) the problem (46), (9). For
every approximation u,, of solution u e % of the problem (46), (9) the conjugate problem has the form
(42) with the corresponding generalized (43). If we substitute in (43) the function z; by the difference
y(u,41)—y(u,), taking into account (46) we obtain

T
(o Auy )= [ aQy, y(uyen) - y(u,))dt =
0
T f”z
= [ (g W) =1, ) de = | | r2(3n+ Zu)aAun(%—w+2—wjdrdt. (47)
0 0n rer
Hence,
=\T’n- (48)
where y, = r2(37\.+2u)0{a—w+ 2‘"} Ji szdrdz
ar r on

Remark 8. If {o;(r)}/Z; isasystem of linearly independent functions, and the recoverable function
u islooked for as

w=ity =3 0001, (48)

i=1

then taking into account (47) we obtain J, ,;n =vy,, where

()2t (49)

O'—:'\]\

)
_ . . )
W =, W= r? (37»+2M)0“Pz[aw :de |72

n

m
Z
Remark 9. If besidesthe point » =r, solution y of the problem (46) is also known at other ones, for

example, d;€ Q,i=1 N, i.e,
y(d;,f)= f;(), i=0,N, te (0, T), (50)

then the functional-discrepancy has the form

1N T
J(u) = z [ d;, 0)- £ @), (51)
i=0 0

where dg =rs.
We shall solve the problem (46), (51) by means of gradient methods (13). In this case for every
approximation u,, of solution u e % of the problem (46), (51) the conjugate problem has the form:

_(7”_2“)[81@28_\”) ij 0, (rnneQy,,

12



i, =0 [o, )|, =- (y(u) Mg i=LN, 1€ (0.7, (52)

6, )], =0, 0,W),_,, =5 (s 2,0~ fo0), 1< OT)
2

N
where the component 6,(y) is defined in section 1, Q; =Q x(0,T), Q,=UQ;, Q; =(d;,dq)
i=0
dN+1=r2, do Zl”l, i=].. N.
Definition 7. We call as the generalized solution of the boundary value problem (52) the function
y(r, 1) € V3, Which vz e 2 holdsthe relation

a(y,z1) =1y (y(u,); 21), 1€ (0,T), (53)
where

Vldz{v(r,t):vbl_eWzl(Qi),izo,_N,[v”di: i=1 N,1e (0,T), “|v||W1dt<oo}

[vl5z = levllwl(g),l () 70 = 30l o) )220,

i=0
Taking into account (46), (51), (53) we can write

NT
(Jie Ay )= 3 [y di 1) = f)Wtt30) = ywy))| , i =
i=0 0 !

O'—:'ﬂ\

Th
= [aw, ylupsa) ()i = | [ r2(30+20) 00w, [aa"’ "’jd . (54)

r
Or

On the basis of (54) we obtain the expression (48).

5. Parametric identification of variation of body temperature

Let us consider the problem (46), (51) under the assumption that it is possible to represent the
desired variation of body temperature 7= u as

U, 1) =ty (1 1) = 3 01101 (2 1), (55)

i=1

where {¢, (r, 1)} is a system of linearly independent functions. Taking into account (55) on the basis
of (54) we obtain

m T’”z

(o, Buy )= ZAOCmJIr (37»+2u)0c(p,[%w W]drdt
i=1 0n
Hence, J, =v,, where
I J mo_
_{Wn}z—lv Wn Ij r (37\.4-2“)0(([)1( aw wj =Z(Wﬁ1)2
On i=1

13



6. I dentification by given displacements of ther mostressed state
of two-layered body with weakly penetrable interlayer

Let on the intervals Qq =(r1,&), Qo =(, 1) (0<r <&<ry <) the equilibrium equation has
the form

_ {(k+ 2u) (i(rza_yj - zyj —(3+2u) ocrza—T} =0, (rn1)eQr, (56)
ar\_ odr oar

where Q; =Qx(0,T), Q=Q; UQ,.
Variation of temperature T holds the relation

or

Oninternal and external surfaces of compound hollow sphere stresses are given

oT 1 0 oT)\ -
C§=r—28—r(}"2k—j+f, (V,t)EQT. (57)

0,0, =-pi i=12 1 (Q.T), (58)

density of heat flow on internal surfaceis

A (%) (59)
or

which we suppose to be unknown, and on external surface we have boundary condition of the third kind

kg_T=_aT+[3, r=ry, te(0,7T). (60)
p

On spherica surface of r=¢& radius of contact of components of compound sphere we have
conjugation conditions
[]1=0, [0,(»]=0,

aT |~ o) "

[k%—ﬂ =w, te(0,7),

where the components 6,.(y), 64(»), 0¢(») havetheform (1').

For ¢t = 0 we have theinitial condition
T(r,0) =To(r), re QUQ,. (62)
We assume that on external surface of compound sphere displacement is known
y(r2, 1) = fo(®), te (O, T). (63)

We obtained the problem (56)—63), which consists is determination of the function u =u(¢)e

e % =C([0,T]), for which the first component y of the classical solution Y= (y, T) of the initial
boundary value problem (56)—(62) holds the equality (63).

14



Definition 8. We call as the generalized solution of the initial boundary value problem (56)—62) the
vector-function Y = (y, T') e V, which Vz =(zq, z5) € ¥ holdstherelations:

a(y’zl):l(T;Zl)’ tE(O,T), (64)
(1”20%,22}4-01(]1, Zz)zll(u;ZZ), te (0, T), (65)
(r%¢T, 2,)(0) = (r2cTy, z5). (66)

Here

rr ror rr

]
a(y.z1) = [r {(mzu)[ay %Zl 212—1)+2x(?ﬂ+1ﬁ+12]}w,
n

r r r
aT 0z [Tllzo] —
al(T,Zz)—f > azd §2R1+1§ ariTz|
r=ry

41

IT;z1) = Ir (37»+2M)0ﬂT[aazl 21jdr+F12P121(F1)—F22P221(F2),
r r

n

2 R0
L zp) = [ r2f zpdr +£2 22
V(W3 2) = [ F2f zpdr +& iR

2 2 2
[22]—&°0z3 + r{uzy(r) +Braza(rp),
2
n

avz

V= {v—(vl(r 1), vo(r,2)) v |Q € WZ(Q ), 5 € LZ(O, T;Ly(Q)) i, j=12

_ T2
[v1]|r=§ =0, Vte [0, T], !) Zl|| v,-||§VZl(Q/)dt<oo,i=l 2},
J=

Vo={v=010)v2() vil g €W3(Q)), i j=1,2,[u]],_ =0}

The functional-discrepancy has the form (9). The expressions of (17)—(19) type are valid. Foe every
approximation u,, of solution ue % = C([0,T]) of the problem (64)—66), (9) the conjugate problem has

the form:
~(n+2) i(rza—“’j—zw -0, (e Qy,
or or

5, =0 0, _, =5 0)~1o)|,_, . 1< ©T),
r

—rzca—p—i[rzka—pj (3“2”)0{85)W 2"’] 0, (rf)eQy,
r

Jat or or
—ka—p =0, ka—p =—ap(r, 1), te (0, T), (67)
ar r=r ar r=ry

15



], =0 [0, |, =0

+
] 2
or r=t or R1+R2

p|t:f:0, reQ,

where the component o,.(v) isdefined in section 1.
Definition 9. We call as the generalized solution of the initial boundary value problem (67) the
vector-function Y™ = (y, p)e ¥, which Vz = (z1, z,) € V,, holdsthe relations

a(y, z1) = (W, 72, )= f0)z1(r2), t€ (0, T), (68)

—( zca—p,zz\J+a1(p, zz)—jr2(3x+2u)zza(a—"’+2—"’]dr=o, te (0,7), (69)
ot o air r

(r%cp, zo)(T) =0. (70)

If we select in the relation (68) instead of the function z; the difference y(u,.,1)— »(«,), and the
difference T'(u,,1)—T(u,) instead of z, in the relations (69), (70), taking into account (64)—66) we
obtain

T

O 720 0) = f) W tsai 720 1) = ¥ty 720 )t = [ a(W(ungn) = y(u,), W)t -
0

O — N

T T
=[] r?@h+2m) 0 (T(t4) - T(u,l))(z—j’+27“’j drdi+ [ ay(T(u,41) = T(u,), p)di =
0Q 0

T
(h(tpsas )=l p))dt = [ Au,rf p(ry, 1)t (72)
0

o — N

Taking into account (19) on the basis of (71) we have

<J,;n,Aun )= Au, 2 p(ry, ) dt . (72)

o —"

Hence, J, =v,, where

G, =rEp(r0), |7, | = [ 2. (73)

o — N

The presence of the gradient J;n makes it possible to use gradient methods (13) for determination

of the (n +1)-th approximation u,+1 of solution u € % of the problem (64)—66), (9).

Remark 10. If representation (26) takes place, then the expressions (26") are valid.

16



7. Simultaneous identification of density of heat flow and thermal resistance

Let onthedomain Q7 =Qx(0,T) (Q=Q,UQ,) the equation of elastic equilibrium be given

—J(A+2u) 9(,29 ~2y —(3x+2u)owza—T =0 (74)
or or or
and the diffusion equation
oT 1 0( o,dT) -
) [ il ) 75
cat 2 ar(r 8rj+f (79)

At the ends of segment [r, r»] boundary conditions (58), (60) and the constraint are given

—kaa—T=ul, r=r, te(0,T). (76)
r

At the point » = & conjugation conditions have the form
[»]=0, [6,(»]=0,

. 7
{ a_T}ZO, {ka—T} =up[T], te (0, 7). "
or or

For : = 0 we have the initia condition
T(r, O)=7_"0(r), re Qquls. (78)

Let us imagine that on external surface of the sphere at the point » = and at certain internal points
d; € Q, i=2, N, displacements are known and are given by the equalities

w(d;, )= f;(t), i=O,N, dg=ry, di=§, e (0,T). (79)

So, we obtained the problem (74)—79), (58), (60), which consists in determination of a vector
u=(uy,up)e % =C(0,T])xC, ([0, T]), for which the first component y of the classical solution
Y=(y, T) of theinitial boundary value problem (74)—78), (58), (60) holds the equalities (79).

Definition 10. We call as the generalized solution of the initial boundary value problem (74)—78),
(58)—60) the vector-function ¥ = (y, T') € ¥V, which Vz =(zy, z») € ¥ holdstherelations

a(y’ Zl)zl(T; Zl)v te (01 7_—')1 (80)
[rzc%, 22j+a1(u; T,z5)=1i(u; z), te (0, T), (81)
(2T, 23)(0) = (r%cTy, 22), (82)

wherethe sets V, 7, theforms a(-,-), I(-;-) aredefined in section 6,

a; T, zp) = |

n

rzkglaaz_zdr+a2uz[rl[zZ1+ar§T(r2, ) 22(r2),
r r

17



4]
h(u; zp) = J. rzfzzdr + rlzulzz(rl) + Brzzzz ().
n

Functional-discrepancy has the form

N
033

T
[ 0@ d;,0)- fi@)at. (83)
i=00

We shall solve the obtained problem (80)—(83) by means of gradient methods (13). For every
approximation u,, of solution u € % of the problem (80)—«83) for Vu, ve % weintroduce denotations

mu, v) = () =y (u,), yV) =y @) 1,

N oy - (84)
L) =(f=y(u,),y(v)=y(u,))y,

where Yve % y(v) = Av, Av={y(v; d,;, t)}l-lio, y(v;r, t) isthe first component of solution ¥ =(y,T)

N T
of the problem (80)(82) for u=v, (4, %), =Y. [ ¢;w;dt, 9={9;O} Yo, ¥={wiO} o, /={/}o
i=0 0
The following expression takes place

2J(v) = (v, v) = 2L0) + | £ = () | Z' (85)

On the basis of the problem (80)—(83) for every approximation «, by omitting terms of the second
order of smallness we determine the function ¥ = (v, f) € V' assolution of the problem

a(y,20)=I(T; zy), te (0, T),

(rzca—T, 22]+a1(un; 7-:, Zp) =

a1 (86)
= 1y (uy; 22) ~ &2 Au, [T (u, 23] + Aug,rizo(r), te (0,T),
(rch, z5)(0) = (rzc]_"o, z9) Vz=(zq,25) € V.
We have
P, +AAw,) = () = M (1) — 7(11,)). (87)

where 3 (uy41) ={ 7 (i di, 0} o-
Taking into account (87), (84), (85) we can write

<Jt/t,,7 Aun >: lim J(un +)‘Aun)_‘](”n) = ()_7(“;1)_fv )zz(un+1)—)7(u,1))L2.

A—0 A

For every approximation u,, of solution u e % of the problem (80)—(83) we introduce the following
conjugate problem:

—(h+ 2@(%@2 %—‘fj— 2\pj =0, (rn0eQ, .

18



=

—rzca—p—i(rzka—pj—rz(3l+Zu)ot(a

2y
I :O! ’ Q ’
Jdt  or or i r j (r1)e 2y,

(o5}

7

5., =06, _, =5 ()~ fo)l_, .
]

o

o, k2
or

=—0p(ry 1), te (0,T),
or

G (88)

W], =0, [0, (Wl|, =~ 0w,) = )]y =L, 1€ ©.7)

|

[kg—ﬂzo, {ka—‘:} =uz[pl, r=& 1€ (0.7),

r=n

QO

=0, i=2, N, te(0,T),
d:

i

[p1],, =0 {ka—p

QD

where Q,; =Q,x(0,T), Qs =Q\vy, v, = _uzd,..
1=
Definition 11. We call as the generalized solution of the initial boundary value problem (88) the
vector-function Y™ = (y, p)e ¥, which Vz = (z1, zp) € V[? holds the relations

N _
a(y,z) =2 Wy di, )= 1;(0) 21(d;), 1€ (0,T), (89)
i=0
—( an—p,22j+al(un;p, zz)—jr2(3x+2p)zza[a—"’+2—"’]dr=o, te (0,7), (90)
dat o or r
(r%ep, 22)(T) =0, (91)

where

V4 :{v:(vl(r,t),vz(r,t)):vi|QAE Wzl(Qj),i:L 2, j=1LN+1,

92 € L2(0,T; Lp(Q,)), j=L N +1[w]| , =0,i=1 N;[v,]| , =0,i=2,N;

ot

Q;

N+1 > .
[ vi||W21(Qj)dt <ei=12

o —N|

J=1

vy ={v=(v1(r),v2(r)):vl- |Qje W3(Q;),i=12; [v1]|di:0,i:1,_N,[v2]|d’_ :O,i:T}
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If we select in the relation (89) instead of the function z; the difference y(u,,1)— »(u,) and the
difference T (t41) — T (u,) instead of z, in (90), (91), taking into account (86) we assume

T

<J;H’Aun >z (u,) - f, ;(un+1)_y(un))L2 = J. a(y, ;(un+l)_y(un))dt_
0

T
_J.J. r2(37\,+2H)(f(un+l)—T(un))a(a_w+2_wjdrdt+
0Q ar r

T _ T T
+ [ ag (s Tpen) = T(uy), p)de = [ Aug,rf plry, 0 de = [ E2Aug, [T(u, [ pldt. (92)
0 0 0
Therefore,
Jo =W, (93)

2 T2 i\2
= [ 2 ) %ar.
0i=1
Remark 11. On the basis of the expression (92) we can easily obtain approximation of the gradient
J{,n (93) in the case of parametric representation of one or two parameters uq, u,, simultaneously, i.e.,

where §, ={¥,} 24, W = r{ p(re, 1), W5 ==E°[T @, )(p), | /2,

representing them similar to (55).
Remark 12. If uy, up = const, then on the basis of (92) we obtain J;, = v,,, where

_ T T
U, ={Wi e, W = [ il p(0de, 9 == E2Tw)llplar, |
0 0

’
Jun

2 2 _ 2
:Z(Wn) .
i=1

8. Identification of coefficients of heat conductivity of components of compound hollow sphere

Let onthedomain Q; (Q=Q,UQ,) theeguation of elastic equilibrium be defined

—%X+an(glﬁlglj—2y}—@k+&0ar2%z}=O,OJ)GQT. (94)

Variation of temperature 7 holds the equation

oT 1 d( o dT -
Cg—r—zg(}’ ng‘f’(f, (I",t)E QT' (95)

where u = (ug, up) € U = (0, +0) X (0, +0), u; =u|§_,i=1, 2.

At the ends of the segment [r;, »] boundary conditions are given

0,0, =P i=12

_ (96)
or =—&T|r:r2+[32, te (0, T).

r=r,
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Atthepoint r=& Vte (0,T) conjugation conditions have the form

=0, [0, (]=0,

+ (97)
u§z: =0, uQZ: =7r[T].
or or
For t = 0 we have the initial condition
T|l:0:7_—b’ re ﬁluﬁz. (98)

We assume that on external surface of the sphere at the point »=& and at some internal points
d; e Q, i=2,N Vte (0, T) displacements, given by the equalities (79), are known.

We obtained the problem (94)—98), (79), which consists in determination of the vector
u=(ug,up)e U, for which the first component y of the classical solution Y =(y,7) of the initia
boundary vaue problem (94)—98) holds the equalities (79). The functional-discrepancy has the form (83).

For every fixed ue % instead of the classical solution of the initial boundary value problem (94)—
(98) we shall use its generalized solution.

Definition 12. For every fixed ue % we call as the generalized solution of the initial boundary
value problem (94)—98) the vector function ¥ = (y, T) € V', which Vz =(zq, z,) € ¥y holdstherelations

a(y1 Zl) =Z(T, Zl)! te (Ov ZT), (99)
297, +a T, z0) =li(z,), te (0,T) (100)

8[12 1\, 1,23)=10(z2), 1€l '
(r2cT, 23)(0) = (r2cTy, z2), (101)

wherethe sets 7, ¥, theforms a(-,-), I(-;-) aredefined in section 6,

HPI: _ _
ay(uiT, z) = | rzua—rgdr+§2r[T][22]+0(r22T(r2, 1) 2(r),

1

]
h(z2)= | r2fzadr + rf Bizo(r) + B2 13 22(r2).
n

For every increment 8 = AY of the solution Y(u), which corresponds to increment Au of the element
ue %, on the basis of the boundary value problem (94)—98) we obtain the following initial boundary
value problem:

—J(L+2) i[rzﬂj—zel —(37»+2u)0cr2& =0, (r1)eQr,
or dr or
ca&:ii(ﬂu&},ii(rzAqu' (r, 1) e Qrp,
ot r2 or or r2 or or

c,(e)|r=ri =0, i=12 te(0,T),
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26,

oT (u
—ula—r=Au1 ( )

or

uzaairz=—a92—Au2¥, r=ry, te (O, f),

[6:11=[c,(0)]=0, r=¢&, 1 (0,7),

{uaairz}:_{mlagiu)} {u%irz}_:;[ez]_{Au%}_, r=E&, te(0,T),

, r=n, te (0,T), (102)

where u™ =uy, u” =uy, Aut =Auy, Au” =Aug, 0=(01,05), 0, =Ay, 8, = AT.

Definition 13. We call as the generalized solution of the initial boundary value problem (102) the
vector-function 6 ¥, which Vz =(zq, z,) € V' holds the system of relations

a(0q, z1) = I§(Au; z7), te (0,T),

(rzcaaitz, zzj+al(u; 0. 2) = iy (Au, T(w); z5), te (0, T), (103)

(r%c8,, 2,)(0) =0,
where

)
1§(Au; zp) = [r2(@h+ 2u)aez(%+ﬁjdr,
or r

n

zp(r) —

r=n

2
By (A, T(); 22) = Y Iai( Auyr? 8g(u)J22 s Aulrlzag(u)
=l Q, r r r

- }"ZAuz aT(u)

zo(rp)+ Auzgz{m}+zg - Aulﬁz{m}_zi.
or or

r=ry

The expressions (84), (85), (87) take place, where y(u,,,1) = y(u,,) + 61.
For every approximation u, of solution ue % of the problem (99)<101), (83) we write the
conjugate problem in the following way:

—(+ 2@(%(#%-‘1’}-2@:0, (r.)eQy

o (2 @ dy 2
_7208_];_5(’/2’4”fj_r2(3k+zu)a(a—jl+7\llj=0, (r,t)GQdT.

)
_”]n_p =0, u2na_p
or | =y, ad

:_ap|r:rz, te (O, T),

r=r,
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v, =0, [cr(w)1|r:di=—d—12(y(un, di)-f), =1 N,

9
[p1l,, =0, [ aﬂ

o, )|, =0, 0,)|,_, =5 (luwsira, )= fo),
2

=0, i=2,
d;

or or
p|t:f =0, re Q,

{u a_p}_o, {una—p}_=7[l7]- r=¢ 1e(0,7),

9
where o, () = (A + 2u)a—‘i’+2x%, [91l,, =l9ll

(104)

Definition 14. We call as the generalized solution of the initial boundary value problem (104) the

vector-function Y = (y, p)e V;, which Vz =(zq, z5) e Vf holds the relations

N —_—
a(y, z1) = 3 (v(u,; d;, ) = f7)z1(d;), te (0,7),
i=0

—[rzcg—p, zz)+al(u; P, zo)— f I’2(37L+ Zu)zzoc(a—w+2—wjdr =0, te (0,7),
t o ar r

(r%p, 25)(T) =0,

where the sets V, Vf aredefined in section 7, u =u,,.

(105)

(106)

(107)

If we select in the relation (105) instead of the function z; the difference y(u,1) — (4, ), and the

difference T (ty41) —T(u,,) instead of z, in (106), (107), taking into account (103) we get

T

(2, Ay )= () = 1 F(tpar) = 5@, = [ aQy, 3ye1) = 5(u,)) di -
0

—”r (3N +2u) (T (1t 4) — T(ut ))oc(a—w+2—wjd dt +

0Q
T = r 1
+ [ ay(uy; T (pan) = T(uy), p)dt = [ g (Au,, Tu,); p)dt.
0 0
Therefore,
= ‘T]n'
where
Wy ={\Tl£z}i2=1!
T T -
'” aT(u drdt+_[ rlz—aT(u") p dt—_[&z 9T wn) pdt,
0 ar or 0 or _ or
1”1 r Vl 0
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T (u,) T 0T,
-T2 -] 0,

0

T +
dt + j&z{m} ptar,

2 )
17 ° =X w2
=1

Remark 13. On the basis of the expression (108) we can obtain representation of approximation v,
of gradient J;n under other assumptions about the set %, for example, parametric representations
changeable from variables r, ¢ and other.

9. Identification of thermostressed state by given displacements
(inhomogeneous mixed conjugation conditions)

Let onthedomain Q; (Q=Q;UQ,) theeguation of elastic equilibrium is defined

—{(M 2u1) (i[rz a_y}_ Zyj —@+20)0r? a—T} =0, (rf)eQr. (109)
or or ar

Variation of temperature 7 holds the equation

aT 18[28T

8z 25, P j+f (r,t)e Qr. (110)

At the ends of segment [, 7,] Vte (0, T) boundary conditions are given

G,,(y)|,,=ri =—PDi i=12,

o, ()

ar

=—arT| o, B

At the point »=& Vre (0, T) conjugation conditions for disjointing pressure [11, 12] and compound
weakly penetrable interlayer have the form

[1=8,{c,(} =-p {0, 0N =P

oT |~ or )"
|:ka_T:| =W,
or

where Ry, R, =const, Ry +R, >0, §=38(/)e C([0,T]), p isthevalueof disointing pressure.
For ¢=0theinitial condition (98) is given. We assume that at the point » =, displacement isknown

Wr2,0) = fo(®), 1 (O.7). (113)

We obtained the problem (109)—(113), (98), which consists in determination of a real function
u=u(t)e % =C([0,T]), for which the first component y of the classical solution ¥ =(y, T) of the initial

boundary vaue problem (109)—(112), (98) holds the equality (113). Instead of the classical solution of the
boundary value problem (109)—112), (98) we shall use its generalized solution.

24



Definition 15. For every fixed ue % we cal as the generalized solution of the initial boundary
value problem (109)—112), (98) the vector-function Y = (y,T)e V', which Vz =(zq, z,) € ¥y holds the
system of relations

a(y,z1)=1(T; zy), e (0,T),

(rzc%, ZZJ"‘“l(T' z9) =l (u;zy), te (0,T), (114)

(2T, 25)(0) = (r?cTo, 2),
where

V= {v: (v, vp)eV: [v1]|r=§ =3§,Vte (0, 7)’%2 e 1%(0,T; Ly(Q,)),i =1, 2},

Q

Vo={ve Vo 3[V1]|r:§ =0},
Vi=v= 00 0ol ) vil g € W2Q)), [[villyq ydt <o j=1.2 1€ O T),
0

Vo ={v=010)v2()vil o €W2(Q)). 0 /=12,

theforms a(-,-), a1(+,-) aredefined in section 6,

o) 2 —
17 2= [ @ 2 ar{ Ze EL a2 pa @+ sl - F o),
Q

2
ll(u, Zz) = I f'szz dl”+7‘12Ll22(1’1)+BV2222(I’2)+§2

n

RZ(,O
Rl +R2

[25] - &2wz3.

Functional discrepancy has the form (9). We shall solve the problem (114), (9) by means of gradient
methods (13). The expressions of (17)—(19) type take place.
For every approximation u,, of solution ue % of the problem (114), (9) we write the conjugate

problem as:

_(k+2“){a%(r2?9_lf)_2wJ:O’ (r,H)e Qr,

—rzc%—a%(rzkg—fj—rz(3l+ 2u)a@—‘l’+27‘“j =0, (r,0)e Qr,

o, )|, =0, 0, =5 (lyir2:0) fo),
ra

o

o, k2
or

Pl =), (115)

r=rp

r=n

|, =0, [0, ()], =0,
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+
=0, {ka_p} __[nl ,
}_& ar R1+R2

p|t:f=0’ re Q.

Definition 16. We call as the generalized solution of the initial boundary value problem (115) the
vector-function ¥ "= (y, p)e V;, which Vz = (z, z5) € ¥, holds the system of relations:

a(y, z1) = (W(u,; 72, 1) = fo) z1(r2), t€ (O, T), (116)

—( ana—f,zszral(p,zz)—er(sm 2u)zza(aa—w+2—w]dr=0, te (0, 7), (117)
Q r r

(r%ep, 22)(T) =0, (118)

where
_ _2r.
Vd:{ve 7iball =00 O.T), 3 [|nlyq <=
i,j=10

Iz
Jt

e L2(0,T; Ly(Q,)),i =1, 2}.

1

Q

If we select in the relation (116) instead of the function z; the difference y(u,,1) — y(u,,) and the
difference T(u,,1) —T(u,) instead of z, in (117), (118), taking into account (114) we have

(0 By ) = (5y) = fo, P(tia) = ¥(up)) 1, =

T
A Y(tys1) ~ (g~ | | r2(30+20) (T(un+1>—T(un))oc[aa—‘f+27“’jdr i+

o —"

0Q
T T
+ [ ay(p, Twysn) T, ) dt = [ Auyrf plry,)dt. (119)
0 0

On the basis of (119) weobtain .J;, =1, , where 7, = rEp(r, 1), | Jh

5 T
= [ 2.
0
The presence of gradient J,;” makes it possible to use gradient methods (13) for determination of
the (n +1)-th approximation u,,,4 of the solution u € % of the problem (114), (9).

10. Simultaneous identification of density of heat flow and source

Let on the domain Q; (Q=Q,UQ,) the equation of elastic equilibrium (109) is defined, and
variation of temperature 7T holds the equation (110). At the ends of segment [r;, r,] Vze (0, T) boundary
conditions are given

6,0, ==pi» i=12,

o7 (120)

| 2T

k=

o Z—aT(Fz,[)'l‘B.

r=ry

r=ry
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Atthepoint =& Vre (0,T) conjugation conditions have the form:

[1=38, {o,(M} =-p, {o,(M} =P

+

{ka—T} Rz{ka—T} 171, (121)

or ar

oT
K| =

[ ar} -

L et us specify for 7= O theinitial condition (98). We assume that at points d;, i =0, N, displacements
are known and are given by the equalities

y(d; )= f;(t), i=0,N, te (0,T), (122)

where dg =rp, d;je Q, i =1 N.

We obtained the problem (109), (110), (120)—(122), (98), which consists in determination of avector
u=(uy,up)e % =C(0, T))xC([0, T]), for which the first component y of the classical solution
Y =(y,t) of theinitia boundary value problem (109), (110), (120),(121), (98) holds the equalities (122).
Instead of the classical solution Y =(y,T) of the initial boundary value problem (109), (110), (120),

(121), (98) we shall useits generalized solution.
Definition 17. For every fixed ue % we cal as the generalized solution of the initial boundary

value problem (109), (110), (120), (121), (98) the vector-function Y = (y, T) e V, which Vz =(z1, z5) € Vj
holds the system of relations

a(y,z1) =I(T; z1), Vte (0,T), (123)
(VZC%—Z,sz'Fal(T, 22)=ll(u; Zz),VlE (0, T), (124)
(r2cT, 23)(0) = (r2cTy, z2), (125)

wherethesets V, 7 aredefined in section 9, and the bilinear forms a(-,-), a4(-,-) are specifiedin section 6,
821 221 2
UT;z)= IV Gr+2n)oT 5 dr = 2625z (&) + r{ prz1(r)) = 15 poza (r2),

2 2
- Rou
h(u;z2) = | 72.f22d7+”:L2”122(”1)+BV2222(”2)+i ZRZ
1+

n
The functional-discrepancy has the form (51). We shall solve the problem (51), (123)—125) by
means of gradient methods (13).
For every approximation u, of solutions ue % of the problem (51), (123)125) we write the
conjugate problem as

[20] - &%upz3 .

—(x+2u)[ai(r2§—"’j—2w]=0. (r.)eQq,,

—rzca—p—i(rzka—p

2 dy 2y
-r(3L+2 0, Q,
dt  or arj reEh ”)O{ar rj (€ Qq,
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6, )], =0, 6,(W)],_, =5 (uyi72:0) fo),
ra

—k?}—p =0, ka—p =-0p(ry, 1),
r r=r ar r=r,
1 T
1], =0 [0, (W] =~ 5 00y . =), =L, (126)

1

[\If]|,:§ =0, {0, ()} ={c,(¥)}" =0,

dap =2 N
=0, k_ :O’ :2,N'
[p]| V:di |: a}’:| r=d.: l
+
S 2 | 7
2] o ) e
or J|,—¢ or =t Fatke

p|t:f:0, reQ,

N
where Q = Q\y,, v, =Ud;, Q4 =Q,x(0,T), cr(\p)z(x+2p)%—“’+zxi
i=1 r r

Definition 18. We call as the generalized solution of the initial boundary value problem (126) the
vector-function Y*= (y, p)e ¥, which holds Vz = (zy, zp) € VC? the system of relations

N —
a(y, z1) = D, (v(uy,; d;, 1) = f;)71(d;), 1€ (0,T), (127)
i=0
—[rzca—p, zzj—i-al(p, z5)— j r2(3k+ 2u) Zza[a_\lf+2_\|’jdr =0, te (0,T), (128)
ot o ar r
(r2cp, z,)(T) = 0. (129)

If we select in the relation (127) instead of the function z; the difference y(u,.1) —»(u,) and the
difference T'(u,.1) —T(u,) instead of z, in (128), (129), taking into account (123)—125) we have

(Tt Aty )= () = for us1) = 51, =

T
a(y, y(upaa) = () de = [ [ r?(3h+20) (T(un+1)—T(un))oc[aa—‘f+27“’jdrdr+

o —N

00
T T
+ [ ar(T(upar) = T(uy), p)dt = [ (i p)—hi(uy; p))dt =
0 0
T ) T R )
= [ Auy,rf plry, 1) dt + [ Auy, Z_[p]-p* |e%dt.
0 0 Rl + R2
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Hence, J, =wv,, where
\Tfn :{\Tfiz}iz:l’ \TI:}I:t =r12p(rll t)!

2 2 T ~i\2
=> [ ()%t
=10

—> _ Rip" +Ryp” £2 | (130)

- Ry +R,

J/
uﬂ

n

The presence of gradient J{,n makes it possible to use gradient methods (13) for determination of

the (n +1)-th approximation u,, ., of solution u € % of the problem (123)—(125), (51).

10.

11

12,
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Introduction

For a spacecraft (SC) that moves along a circular or weakly elliptical orbit consideration is given to
the problem of single failure detection and identification in a set of sensing elements (sensors) of
spacecraft (SC) attitude control system. Unlike the known solutions requiring for identification of a failed
sensor not less than five one-type devices, the paper in question suggests the procedure of detecting
a single failure by using smaller number of actively operating sensors. This effect is attained by involving
a data on SC motion parameters from the previous step of identification and arranging “virtual”
measurements. Operability of proposed procedures of failures identification is illustrated by results of
modeling the process of identifying failures of angular rate measurers and Sun position sensor.

To basic directions of using an artificial intelligence in vehicle-borne segment of control system of
some moving objects one generally refers control and diagnosis of state of control system facilities and
other subsystems of controlled object [1]. The problems of this direction are related to increase of
reliability of control system operation attained via forecasting a state of subsystems and implementing
an operation principle by the real state of system.

The information subsystem of SC attitude control system contains a set of sensors for obtaining
information required for calculating and correcting SC attitude parameters. The measurement set can
include angular rate sensors (ARS), triaxial magnetometer, Sun position sensor and other facilities. The
sensor failure generally implies such its state that the measurement error exceeds a certain admissible
level N. Solving the problem of the above subsystem insensibility to sensors failures is feasible through
duplicating the subsystem as a whole or reserving sensors and control of redundant data.

The increase of primary information reliability due to reservation of sensors and control of redundant
data is related to sufficiently deep reservation of each type sensors. So, for identifying & simultaneous
failures the number » of sensors in a unit while one-time measurement of three dimensional vector
(for example, the angular rate vector) should satisfy the condition [2] n>2k+3.. From this relation it
follows that while identifying a single failure the measurement unit is to contain not less than five
sensors. However, in practice there could be a situation when it is necessary to detect and identify in
a real time a single failure in nonredundant sensor unit or in conditions of their minimum redundancy.

For the above situation the given paper presents the technique and algorithm of identifying failures
of angular rate sensors. Consideration is also given to procedure of detecting Sun sensor failure in a set
of sensing elements.

Algorithms of failure identification

For synthesis of failures identification algorithms in a unit of sensing elements we make use of parity
space method [3-6]. Its essence consists in controlling consistency of equations of the system (relations
of analytical redundancy) by using results of real measurements. There exist two forms of relations of
analytical redundancy [5]: algebraic relations between measurements of redundant sensors and relations
in the form of difference or differential equations. We consider both variants in detail.

Let in the right orthogonal system of coordinates xyz rigidly related with the object there is installed
the redundant unit of sensing elements of »n sensors for measuring three-dimensional vector x. It is
assumed that sensitivity axes of any three measurers do not lie in the same plane. With sensors dynamics
neglected, the output y of the unit is related to the measured quantity x by the relation

y=A4x+e, 1)

inwhich 4 ={a;} is (nx3)-matrix of direction cosines of angles between sensitivity axes of sensors and
coordinate axis x, y, z; e={e;} (i=1,..., n) is the vector of measurements error.
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The senor numbered i is considered operable if |e[|< N. The failure identification suggests the

process of identifying the failed sensor and the estimated error of its measurement.
Now we show, that with the available information on the output y ={y;} (i=1..., n; n>5) of the

measurer unit and the matrix 4 of direction cosines of axes of sensor sensitivity we synthesize the
identification algorithm of sensors failures.
The existence of matrices V' satisfying the conditions

VA =0,
Vv =1,-44"4)4", )
wl =1,

is known [3-5]. These matrices allow one to present the vector p =Vy, called the parity vector in the

form
p="Ve. ?3)

The number m of possible linearly independent equations (3) equals the difference between the number
of sensors n and the dimensionality of the quantity being measured [4] (in the case of three-dimensional
vector x m =n—3).

Since the rank of matrix ¥ in (3) equals m, then for the known vector p the equations (3) have the
infinite set of solutions which can be written in the form

e=e, +E. (@)

Here e, is one of the solutions satisfying the equation (3) and the vector E belongs to the kernel X of

operator V.
Ee X ={e:Ve=0}.

We determine the vector E in (4) in the form of relation
E=(I,-VV)I, (5)

in which 1 is the arbitrary n-dimensional vector.
By substituting (5) in (4) from the set of vectors e by the corresponding selection of 1 we find such
vector eq the norm of which is minimal. It is determined due to minimizing the functional

Jo =e|? =[e. + @, -¥ )%

Taking into consideration that 7, vV in equality (5) is the projection matrix, the vector 1

bringing the minimum value to the functional J; is calculated by the formula

1=—(, -V V)e,. (6)
The substitution of (6) in (4), (5) yields the required solution:

eo=Ge,, G=VV. @)
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It is important to note, that for the given vector p the relation (7) is the mapping of set X, of vectors
e, into the vectors ey of minimum length.
From (7) it follows that calculation of vector ey assumes one of the solutions of equation (3) to be

known. In [6] to find the solution e, one employed the method of linear programming. However, the
vector eg of minimum length can be obtained via pseudoinversion of matrix 7 in the equation (3) [7].
Indeed,

eo=V'p, vV =rTrT™

or considering the third equality in (2) we have
e =V"p. ®

If we consider (8) as one of the possible solutions e, of equation (3), then substitution of (8) into (7)
naturally leads to the identity.

If the vector p contains only information about the error e; =p; of the i-th sensor (small random
errors being neglected), then the set X, also contains the vector e, ; =[00...p; ... O]T.

Of elements g;;, (i, k =1,..., n) of the projection matrix G we form the vectors

gr =leu g - gml’ (k=1....n).

Assuming the vector e to be known we find the minimum value of functional

Tk =llae|®s ax =prgs —eo ©)

and its realizing value of p, of sensor error for each of n vectors p,g,. As a result we have the set n of
quantities

.
pr =50 (k=1...,n) (10)
el

and their corresponding values of J(k) (k=1,..., n) of the functional (9). The value of k& =k, for which

the condition /4= =arg minJ(k) holds true corresponds to number of required sensor; its error p; is

estimated by the expression (10).

We sum up the sequence of actions for realization of failure identification algorithm.

Preliminary (by the known matrix 4) one calculates the matrix ¥ with properties of (2) and nxn
projection matrix G.

The process of failure identification is performed as follows:

— by the output y of the measurer unit and (8) one forms the vector ey of minimum length;

— by formulae (10) one calculates the set of » quantities p; and their corresponding values of J (k)
of functional (9);

— the number & , for which the value of functional J(k) (or the length of vector q;) is minimum
corresponds to the number of sensor with the estimated error p,. When |pk | > N the failure of the 4-th
sensor is detected.
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The above method of parity space applied to algebraic relations (1) describing the measurement
process has been generalized in [8, 9] for the case of using redundant relations given by differential or
difference equations.

Let the dynamic system be described by the linear stationary discrete equations in the space of states

x(k +1) = Ax(k) + Bu(k),
y(k) = Cx(k),

(11)

where £ is the discrete time; x, u and y are the vectors of state, control and output of the system with the
dimensions n, p and g correspondingly; 4, B, C are the matrices of corresponding sizes.
We now determine the subspace of (u +1) g -dimensional vectors v by the relation

C
T| CA

P=<v:v . |=0¢. (12)
c4*
The space P is called the parity space of order p [8].

According to [5] each vector v from (12) at any time instant £ can be used for parity control
performed by the formulae

y(k—p) u(k —p)
r(k)=v' R I 5 , (13)
y(k) u(k)
0
CB 0 0

H=| CAB CB 0

cA" B ... ... CAB CB 0

The described approach allows one to single out the most reliable relations and thereby to create the
robust procedure of failures detecting and localizing.
The question on selecting the order p of parity space P has been discussed in [5, 9].

Identification of failures of angular rate sensors

Let the information subsystem of SC attitude control system contains the set of angular rate measurers
of four identical devices — the angular rate sensors. Unit vectors of measuring axes of equipment in
a related with SC system of coordinates Oxyz, whose origin O coincides with the object mass center is
written in the form n; ={a;, B;,v;} (i=x,y,2,r)

Under assumption that three of the above sensors operate in a design mode and the fourth is the
redundant one, then the real number of actively operating ARS equals three. According to the above
results such number of sensors is insufficient not only for localizing ARS failure but detecting the failure
occurrence as well. With four actively operating sensors one can only identify the fact of failure. In such
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situation to counteract the disturbances acting on SC due to possible single errors or ARS failures it is
necessary to apply additional data aimed at forming not less than five independent measurements of SC
angular rate vector. It could be the information from other sensors of information subsystem (for example,
magnetometer or Sun position sensor indirectly containing data on SC absolute angular rate) or some
other data on SC angular motion.

Combination of readings of three or four ARS with those of one of the above devices allows one
(under certain conditions) to solve the problem of detecting and identifying ARS failure. However, on
information processing step it imposes certain burden on SC computational complex.

We now make use of procedure of identifying failures based on parity space method; as additional
information we apply the value of SC angular rate vector from the previous measurement step. For
diagnosing and localizing the failure of one of actually operating ARS we form a measuring structure of
three ARS and two additional “virtual” devices. The measuring axes of “virtual” devices are to be
selected so that thereby obtained matrix 4 in relations (1) would satisfy the requirements on solvability of
the problem considered.

Let while diagnosing the failures of standard ARS of measuring subsystem (x-, y- and z-ARS) the
sensitivity axis of the first “virtual” sensor coincides with the measuring axis of redundant gyroscope
(m-ARS). Then in matrix 4 from the equality (1) which in the considered case has the structure of the form

oy Py Vx
oy By vy
A=|a, B, v | (14)
o Brovr
a B v

it is necessary to select the coordinates o, B, y of the unit vector n of the sensitivity axis of the second
“virtual” ARS so that none of three measuring axes of thereby formed “unit” of sensing elements would
not lie in the same plane.

If o,B,y are determined, then as the output y (the result of measuring the “unit” of ARS) we take
the vector

y=[v1.v2. v3. 75, v51",
(15)

T * T
Ya=0,0, 1, Yy5=0 O,
(®,_1 —is the SC angular rate vector from the previous measurement step). This data processing by the

algorithm of detection and identification of failures whose realization has been described above solves the
stated problem.

With failure of one of standard ARS and substitution of its readings by those of redundant gyroscope
the failure identification scheme in a new configuration of measurer unit undergoes minimum changes: as
the measuring axis of the first virtual sensor we take the axis of sensitivity of the failed gyroscope and the
output (15) changes. For example, if we eliminate the failed y-ARS with the unit vector of measuring axis
n, ={a,,B,,v,} the vectory is determined by the relation

;
y=D1.y2,v3, v4, y51",

* T
Y2 =00, 1.
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In the case of four actually operating ARS as the output of measurer “unit” we take the vector
*T
y=[v, y2, 3, 4, 5]
The requirements to be satisfied by the elements o, B,y of matrix 4 in expression (14) are

formulated by the results presented in [10]. According to [10], the problem of failures detection and
identification is solvable if any matrices 4,, (p,q=1...,5 p#q) obtained from 4 by simultaneous

crossing out the rows with numbers p and ¢ are not degenerated.
It is worth noting, that for stable identification of failures the determinants of matrices ¥, are to be

taken the largest by module. It is attained by variation of the parameters a, 3, y from the set O whose
structure is defined by the structure of matrices 4, .

The substitution of angular rate vector o by its estimate ®,_; for further application in formation
of readings of the 4-th “virtual” ARS with the unit vector of measuring axis n; is followed by occurrence
of systematic error e; on output of this “ARS” with the estimate

e =[nj (©,1-0)]|. (16)

Hence, the threshold N should be consistent with a priori known level of measurements noises and the
estimate (16) in order not to miss the sensor failure or not to admit the malfunction of failure
identification algorithm.

Simulation of identification algorithm of angular rate sensors failures

We specify the value of matrix 4 determined by formula (14). We assume, that the measuring axes of
standard ARS are parallel to axes of related system of coordinates Oxyz and are equally directed, the unit
vector n, of the measuring axis of a redundant device is determined by the relation

n, =[—1/\/§ ~1/4/3 —1/\/§]T. In this case the requirement for solvability of problem of failures
identification is reduced to the coordinates o, 3, y of unit vector n of virtual gyroscope measuring axis
having to belong to the set

O={o,B,y:a=0,p=0,y=0, 0B azy,B=y a’+p2+y> =1 (17)

Operability of proposed identification algorithm of failures in the angular rate sensor unit was
investigated using fragments of recording angular rates of micro satellite type SC rotation in the mode of
orbital attitude. Stabilization of SC motion was implemented with accuracy of order 5° in attitude and not
worse than 0.01 °/5 — in angular rate. The stabilization process was imitated by mathematical simulation of

dynamics of controlled motion of SC moving along the orbit close to circular one (o ~ 0.0010731 s‘l).

Periodically in reading of one of actually operating ARS there was introduced a replacement constant
in quantity (sensor failure).

Failures identification was carried out with a cycle of 1s for the following values of parameters
involved in the algorithm of failures detection and localization:

1 0 0

0 1 0

0 0 1,
~1/43  —1/43 -1/43

—-0.21132 -0.57735 0.78868

A=
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_10.40825 0,40825 0.40825 0.70711 0
B [0.14943 0.40825 -0.55768 0 0.70711}
0.18900 0.22767 0.08333 0.28868 0.10566
0.22767 0.33333 -0.06100 0.28868 0.28868
G =|0.08333 -0.06100 0.47767 0.28868 —0.39434 |.
0.28868 0.28868  0.28868 0.5 0
0.10566 0.28868 —0.39434 0 0.5

The threshold N was assumed to equal 0.0015°/%. There were performed some series of failures
testing: one of them foresaw the failures identification of standard gyroscopes of information subsystem;
in another series one of the standard gyroscopes was substituted by the redundant (-ARS); consideration
was given to different time intervals of SC motion. In different variants of failure simulation a reading of
one of gyroscopes was supplemented with equal in quantity but different in sign displacements in 0.002°/s.

Typical results of simulation are presented in Table 1. In columns referring to different configurations
of unit of actual ARS for five measuring channels there are the estimates p; (°/5) of reading displacement
of the corresponding sensor and the norm | q; | (1/s) of vectors q; (see formulae (9), (10)). Minimum

values of |/q; | and their corresponding displacements of ARS readings are given in medium type. The
result of operation of failures identification algorithm is presented in the last row of column.

Table 1
Parameters Sets of sensors
x-, y-, z-ARS y-, z-, r-ARS x-, z-, -ARS x-, y-, -ARS
0.842:107° 0.249-107* 0.146:107° 0.847-107°
0.430-107 0.255.10 " 0.610-10"° 0.154.10"*
lax| 0.189-10°* 0.133-107° 0.142.207 0210107
0.138.10~* 021410~ 0.384.10° 0.406-107°
0.133.107* 0.140.10°* 0.147.10°* 0.257.10"*
0.0023 ~0.0008 ~0.0020 0.0032
0.0019 0.0001 ~0.0014 0.0021
P ~0.0003 ~0.0021 ~0.0005 0.0012
0.0011 ~0.0011 ~0.0012 0.0021
0.0011 0.0017 ~0.0003 0.0001
Displacement 0.0019 ~0.0021 ~0.0020 0.002L
y-ARS failure z-ARS failure x-ARS failure r-ARS failure

The analogous results hold while testing failures in a unit of four simultaneously operating angular
rate sensors.

Analysis of simulation results suggests the ability of the proposed procedure to identify and localize
single failures in a unit of angular rate sensors by decreasing the number of actual devices to three.
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Identification of failures of Sun position sensor

Let the Sun position sensor (Sun sensor) be related with the right orthogonal system of coordinates
xgygzg With the origin in the center of projecting the optical system and the axis y¢ coinciding with the

optical axis of Sun sensor. The axes of system of coordinates xgygzg are assumed to coincide in direction
with the corresponding axes of the system of coordinates Oxyz related with SC.

Equations of Sun motion on the sensor image plane can be obtained by circular permutation of
corresponding coordinates and indices in evolution equations of point object described in [11] for the case
when the optical axis of the system is directed along the axis zg. These equations are of the form

2
)'c:ixzmx —zo —F{l+x—jmz,
F 7 F2
(18)

2
. z 1
z =F[1+FJC\)X +)C(Dy —FXZ(DZ,

where x and z are the coordinates of Sun center on the plane xgzg of coordinate system xgygzg; F is

the focal distance of optical system; o,, ®,, . are the projections of vector of SC absolute angular

rate on the axis of related system of coordinates.
The SC motion is assumed to occur on a circular orbit in a mode close to mode of three-axis attitude

in the orbital coordinate system. In this case the system of equations (18) is simplified and can be
presented in the form of relations

Xx=-wgz-Fo,, z=0gx+Fo, (19)

(oq is the angular rate of SC orbital motion).

Assuming the angular rates o, and @, to be constant on the step 4 of time quantization of the system
of equations (19) we put down these equations in the form (11)

x(k +1) = Ax(k) + Bu(k),
y(k) = Cx(k),

where the following notations are introduced:

_|e —s _ _F _ _ | x(k) _|o. (k)
A—L ) } B—{bij}—m—o(A—E), C=E, x(k)—L(k)] u(k)—L)Z(k)] (20)

c=C0Smgh, s=Sinwgh (i, j=1 2)

(E is the unit matrix).
We now introduce the space of parity P of order 1 (u=1) — the space of four dimensional vectors

v=[vy,.., V4]T. Taking into consideration the relation (12) and structure of matrices 4 and C from (20)
we define this space by the expression
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10
0 1
P={viv' =0;.
c —S
S C
After simple transformations we put it down in the form
P={v:ivg=—cv +svy, vy =—5V —CVo}. (21)

As it was already mentioned, each vector v of the set (21) at any time instant & can be applied to
parity control performed by formula (13). Since in the considered case the matrix

3

(O is zero (2x 2)-matrix), then (k) from (13) is determined by equality

T y(k-1) o _
=y { V&) HBu(kJ}‘

=vx(k =1 +voz(k —1) +v3[x(k) — b0, (k1) = bypo, (K —1)]+
+vylz(k) = b0, (k —1) = by, (k —1)]. (22)

It is easy to show that in the absence of noises and operable Sun sensor r(k) in (22) vanishes. With
measurements on noise background or with failure occurred on optical system (i.e., x(k) = x, (k) + Ax(k),
z(k) = z. (k) + Az(k), where «x,(k), z.(k) are accurate values of the corresponding coordinates;
Ax(k), Az(k) are the measurements errors), then expression (22) for parity control takes the form

r(k) = vgAx(k) + vy Az(k). (23)

From the set (21) we select two vectors v = {v,.(l)}, v® = {vl.(z)} (i= 1,_4) satisfying the condition

vél)vf) - V§2)vgl) =0 (or vl(l)v£2) - vl(z)vgl) # 0, that is equivalent). Then the system of equations

r® k) = vP Ax(k) + vP Az (k),

(24)
@ (k) = v Ax(k) + v Az (k)
is solvable with respect to Ax(k), Az(k). Fulfillment, for example, of condition
min (| Ax(k)[, | Az(k) ) > N, (25)

in which Ny is a priori given admissible level of devise error suggests the failure of Sun sensor. Otherwise,

the optical system is in state of operability. There could be another different from (25) condition stating the
sensor failure.

39



Thus, on the next step of analyzing Sun sensor operability one needs to form and solve the system of
equations (24). For this purpose it is necessary to apply the information on coordinates x and z of Sun
position on the plane of images of optical system as well as data on projections of vector of SC absolute
angular rate on the axis of related system of coordinates referring to the previous and current steps of

measurements. Further, for each vector v® and v(? of the set (21) we calculate their corresponding

values +® and »® (formula (22)).
The operation of identification algorithm of sensor failure will be estimated by characterizing the
direction at Sun in the coordinate system xgygzg by the angles & and m. Counting the angle & of the

positive direction of the axis yg, the connection of these angles with the unit vector

-
F
S =[s, sy sz]T:{i — i} , q:Vx2+F2+22

9 9 4

of the mentioned direction is determined by the relations

s, =—sin&cosm, s, =c0s&cosm, s, =sinm.

y

We select the following values of vectors v and v@:
v® =[l1ls-c —(s+c)]T, v® =[133s-c —(s+3c)]T.

In mathematical simulation the use was made of fragments of recording of vectors S and ® with the
step 4 =1 s referring to SC motion in mode of triaxial orbital attitude on the 500 seconds’ time interval.
One can make judgment about the features of operation of failure identification algorithm by data (their
dimensionality being degree) presented in Table 2. For each of measuring channels of Sun position there
are assigned two columns. The first contains the accurate values of displacements A and An in Sun

sensor readings introduced for investigating identification algorithm operability; the second contains the
estimates A% and An of these displacements quantities calculated by identification algorithm. The error
was estimated every second of SC motion on the above time interval.

Table 2

Variant x-channel z-channel

number A A&, An AR
1 0 0.012 0 0.054
2 1.1 1.114 0 0.059
3 0 0.013 -0.8 -0.843
4 -1.0 -0.988 15 1.554
5 0.8 0.813 -1.2 -1.143

The goal of the simulation first variant is to estimate the level of systematic errors of algorithm
which are accounted for by approximating the solution of the system of equations (18) describing the Sun
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motion on the plane xgzg by solution (11), (20) of equations (19) while stabilizing the mode of SC

triaxial orbital attitude. The next variants present typical values of displacements estimates A% and An
for different combinations of qualities and signs of “accurate” displacements. Table 2 contains the worst
(the largest by module) values of errors Aé and An on the 500 seconds’ time interval.

As the analysis of simulation results implies, on the used fragment of recordings of vectors S and ®
the systematic error of identification algorithm of Sun sensor failures does not exceed 4 ang.min.
Approximately with the same error the angles & and n are estimated in other variants of simulation. With

the threshold N =1 degree and condition (25) in simulation variants 2, 4, 5 the algorithm diagnoses Sun
sensor failure.
The measurements x and z imitated while simulation did not contain random noises. Their presence

naturally increases the values of errors A& and Am . However, this source of errors is nor related directly

to the identification algorithm since it characterizes the uncertainty degree of initial information applied
in the identification algorithm. A priori information on the level of random noises is taken into account
when assigning the quantity of threshold V.

Conclusion

If the fail-safe unit of ARS contains five sensors (five measuring channels), then a single failure in
one of them is identified by the above algorithm. These results in a failed device being eliminated from
the measuring system of SC angular rate (or with the known model of failure, for example, a permanent
displacement this information can be applied to determining the next failures [6]). In this paper with the
unknown model of failure the readings of failed ARS are substituted by “virtual” measurements formed
by data on a vector of angular rate ® from the previous measurement step and so on. Therewith there are
preserved five measuring channels and identification algorithm of failures of actually operating sensors.
The identification procedure terminates on detecting the failure of one of three remaining ARS.

Although the presence of systematic errors of the form (16) narrows the possibilities of the proposed
identification procedure of sensing elements failures, the above technique of arranging “virtual”
measurements allows one on a single algorithmic base to expand substantially the possibilities of internal
reservation when constructing fail-safe measuring systems extending the failure identification procedure
to the case of three simultaneously operating sensors.

When solving the identification problem of Sun sensor failures of importance were the equations
(18) of Sun motion on the image plane of optical system and their discrete approximation in the form of
relations (19), (20). As simulation results imply, the thereby constructed algorithm of failures localization
effectively solves the stated problem.
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In the present article we obtained sufficient conditions of absolute interval stability of nonlinear
control systems, described by differential-difference equations of neutral type with one deviation of argument.
The Lyapunov-Krasovskiy method of functionals is under investigation. Such kind of problems appear
because of necessity of providing global asymptotic stability of zero solution of control systems of special
(“sector”) type [1-3]. Initially we consider systems, described by differential equations. Then,
investigations were done for discrete and differential-difference equations [4-6]. As a rule, parameters
of systems are exactly unknown. They take on their values from certain in advance given intervals.
Therefore, the direction of investigation of robust or interval stability appeared [7]. Survey of investigations
of problems of absolute stability is contained in publications [8, 9].

1. Absolute interval stability

Let us consider a system of indirect control, which is described by differential-difference equations
of neutral type

%[x(t) —Dx(t—1)]=(A+AA) x(t) + (B + AB) x(t — 7) + bf (c(t)), O

st)=cTx(t)-pf(s(t), p>0, x(t)eR", s(t)eR: t=0,

with constant quadratic matrixes A, B, D e R™" and vectors b, ¢ € R". The solution of a system implies
a pair of piecewise-continuously-differentiable functions (x(t), o(t)) with initial conditions x(t) = ¢(t),

X)) =o(t), o) =0 (t), &(t)=0¢.(t), which identically hold the system (1). Matrix |D| satisfies
“stability conditions”, i.e., |D| <1, is fulfilled, and constant quadratic matrixes AA AB can take on their
values from certain in advance fixed intervals

AA={Aaij}, AB ={Abij}, |Aaij |£O(ij, |AbIJ |SBijv i, j :i,_n. (2)

The systems of such type got the name of interval indirect regulating systems. The nonlinear function
f (o) lies in the given sector, i.e., holds the conditions

kio? < f(0)o <kpo? Ky >k >0. ©)
Let us introduce the following denotations:
0 1/2 0 1/2
| Al = max (ATAFZ, [x(0)] = {zlx? (t)} Xl . ={ | e€<‘5>|x(s>|2ds} ,
S= -1
[AA]=maxqan. 48] =max{as]:

Amax () Amin () are extremal eigenvalues of the corresponding symmetric positively-defined matrixes.
Let us consider initially a system without interval perturbations

d = —
S IX(O = DX(t=0)] = Ax() + Bx(t =) +bf (5(1) @
5(t) = ¢ x(t) — pf (o (t)).
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Definition 1. The system (4) is called absolutely stable, if its zero solution x(t) =0, o(t)=0 is
globally asymptotically stable under arbitrary function f (o), satisfying the conditions (3).

Definition 2. The system (4) is called absolutely interval stable, if the system (1) is absolutely stable
for arbitrary matrixes AA, AB, satisfying the conditions (2).

On investigation of absolute stability of systems of neutral type the Lyapunov—Krasovskiy functional
of the following form [4, 5] is used sufficiently frequently

V[x(t), o(t)] = (x(t) — Dx(t— 17))T H (x(t) - Dx(t — 1)) +

t o(t)
+v [ xT(s)Hx(s)ds+B | f(o)do, v>0, B>0. (5)
t—t 0
The first quadratic form makes it possible to compute easily total derivative of the functional in virtue of
the system, however it is possible to obtain conditions of absolute stability only in integral metric.
In the present article we investigate absolute interval stability, i.e., stability of zero solution of the
system (1) under perturbations (2). Here one uses the functional with exponential multiplier

V[x(t), o(t)] = (x(t) - Dx(t — ‘c))T H (x(t) - Dx(t—1)) +

t o(t)
+ [exT(s)Gx(s)ds +p [ f(o)do, ¢>0, (6)
t—t 0
and two positively-defined matrixes G, H. Exponentional multiplier makes it possible to obtain not only
stability conditions, but also compute estimates of convergence of solutions of the system (1).
Preliminarily we obtain conditions of absolute system stability without interval perturbations (4). Let
us denote

mHi=| ™)
"|ID™H DTHD]|’
—-ATH-HA-G —HB+DTHA —[Hb+%Bﬁ
$,[G,H,B,c]=| -B"H+ATHD B'THD+D'HB+e <G  D'Hb |. (8)
T
—{Hb+%ﬁﬂ bTHD Bp

Theorem 1. Let positively-defined matrixes G, H and parameters >0, ¢>0 exist such, that the
matrix S;1[G, H, B, c] is also positively-defined. Then the system (4) is absolutely stable in metric

[x®l, . [o®]-
Proof. Taking into account constraints (3), superimposed on the function f(c), we obtain that for
the Lyapunov—Krasovskiy functional (6) the following bilateral inequalities take place

min @) [XOZ, +Bloo? © VI, o] <

< MIHDIHOF + 5t~ DT+ A @ XOIE  + o0 ©)
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If we compute total derivative of the functional (6) in virtue of the system of non-interval perturbations
(4) we obtain the following:

%V[x(t), 5(t)] = [AX(t) + Bx(t — 7) + bf (5(t))] T H (x(t) — Dx(t — 7)) +

1 (X(t) - DX(t — 7)) TH[AX(t) + Bx(t — 7) + bf (o(t))] +

+XT (1) Gx(t)—e 5" (t—1)GX(t—1) +

t
+Bf (o) [c" x(t) - pf (o()] - [ e )T (s)Gx(s) ds.

t—t

Using the vector-matrix form we rewrite the obtained expression:

%V[x(t), s®]=—(x" (), x" (t-1), f(o(1)))x

—ATH-HA-G —HB+DTHA —{Hb+%[3c} X(t)
x| -B"TH+ATHD B'THD+D'HB+e™S'G D' Hb xX(t-1) |-

1 T
_[ngsc} bTHD Bp | f(ott)

t
-c J'e‘g(t‘s)xT(s) Gx(s) ds.

t-t

If the matrix S{[G, H, B, ¢] is positively-defined, then

%V[X(t), (] < ~Amin (S1[G, H, B, DX +

t
+xt -1 +] £ 6®)]*) ~ ¢ [ )% (5) Gx(s) .

t—t

Thus we have the system of inequalities
min @) [XOIZ, + 2 Blao? © VI, o] =

< o MTHDI O +X(E = DT+ Ry @)X +5 Boo 0,
SVIXO. 0] ~Ain (116, H, B, DX +

+ %= 9)[*1= nin B) X = min (S1[G, H, B, D k{5 ).

As it follows from the Krasovskiy theorem [10, p. 145], the system is absolutely stable in the metric

[x®].. o]
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Further we obtain conditions of absolutely interval stability of the system (4). Let write preliminarily
the following auxiliary result.

Lemma. For arbitrary matrixes Ly, L, of the vectors x(t), x(t—t) and the scalar & the following
inequality takes place:

XT(t) L] Lyx(t—1) + xT (t—1) LY Lyx(t) <
<e2xT (1) L-lrle(t)+§i2xT(t—r) L} Lox(t—1). (10)

Proof. If we open evident expression for arbitrary matrixes Ly, L, of the vectors x(t), x(t—t) and
the scalar &, we obtain the following:

.
[gl_lx(t) —é Lyx(t— r)} [gl_lx(t) —% Lox(t— ‘c)} —e2T ) LT Lyx) +

+i2xT(t ) LY Lox(t —1) = X T (t) LY Lox(t —1) = x| (t —1) LY Lyx(t) > 0.
g

We obtain from this
xT(t) L] Lyx(t—7)+xT (t—1) LY Lyx(t) <

<e2xT (1) L] Lyx(t) +i2xT(t — 1) LY Loyx(t—1),
i.e., the inequality (10). :
Let us denote
AATH +HAA HAB-AATHD 6
S,[G,H]=|ABTH -DTHAA —ABTHD-DTHAB 6|,
or or 0
where 0 is zero vector.

Theorem 2. Let positively-defined matrixes G, H and parameters >0, ¢>0 exist, for which the
matrix $¢[G, H, B, ¢] be positively-defined, and for the given 0 < & <1 the following inequalities hold:

2
||AA||< EXmin (S1[G, H, B, ¢]) ELmax (H) _ (1_(22) _ EXmax (H)
|HD| |HD| |HD|
(11)

2
|48 < Zemin(S1[C. H..) ( g[HD| j a2y 8lHOL |
Mmax (H) Manax (H) Mmax (H)

Then the system (4) is absolutely interval stable in metric ||x(t)]_ o |o(t)]-

Proof. Let us compute total derivative of the Lyapunov—Krasovskiy functional (6) in virtue of the
interval system (1)

%V[x(t), S(®)] = [(A+ AA) X(t) + (B + AB) X(t — 1) + bf (5(t)]T H (x(t) — Dx(t — 1)) +
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+ (x(t) — Dx(t - r))T HI(A+ AA) x(t) + (B + AB) x(t — 1) + bf (c(t))] +

+XT () GX(t) —e ST (t — 1) Gx(t — 1) +

t
+Bf (a®)[cTx(t) - pf (a(t))] - [ e <"xT (5) Gx(s) ds.

t—t

Using the vector-matrix form of notation we rewrite the given expression in the form
%V[xm, o] =—(x" (1), x" (t—7), f(6(1))S1[G, H, B, c]x
x (<), x T (t=1), Fe®) + (@), x" (t=1), f(o(t)x

x$,[G, HI(x (1), x" (t—1), f(e®)" —¢ } e <(=)xT (5) Gx(s) ds.
Let us expose the second quadratic form A
(@), xT (t=7), F(o(t)S2IG, HIXT (), x" (t—1), f(o(®)" =
=xT(O[AATH + HAAIX(t) + X" (t—1)[ABTH — DTHAA] x(t) +
+X T (t)[HAB — AATHD]x(t — 1) + X" (t —1)[~ABTHD — DT HAB] x(t — 7).

We consider every of addends separately. Using results of Lemma we obtain the following.
1. For the first addend

XTOIAATH + HAATX(t) < 22 gy (H)| AA[[x®) %
2. For the second and third one
xT(t—1)[ABTH — DTHAA]X(t) + X" (t)[HAB — AATHD] x(t — 1) =

={xT(t—=1) ABTHXT (t) + x " (t) HABX(t — 1)} -

—{x" (t—1) DTHAAX() + X (t) AATHDX(t — 1)} <

< {ijT(t — 1) ABT ABX(t - 7) +&i2xT(t) HHx(t)}+
1

+ {;nga — 1) D THHDX(t - 1) +éi2xT (t) AATAAx(t)} <
2

S%mmw?lAAlz}IX(ﬂlz +{e2|aB|” + 3| HD Y x(t )2
1 2

3. For the fourth one

xT (t-t)[~ABTHD — D THAB] x(t - ) < 2| HD|| AB||x(t - 7)|*.
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If we substitute the written expressions into estimate for total derivative, we obtain

%V[x(t), s()] <

s—{xmm (S1[G, H, B, <]) - zxmax(H>|AA|+§izx%nax<H)+§i2|AA|2H|x(t>|2 -
1 2

~{hmin (1[G, H, B, cI) ~[2|HB||AB| + £2|AB|® + £3|HD | I}|x(t - )|* -

t
—Jemin (1[G, H, B, <) kf'o? (1) ¢ [ 675X  (s) Gx(s) .

t—t

The condition of negative definiteness of total derivative is realization of the following relations:

0,01 = %min (SLIG, H, B, q])—zxmax(H)|AA|—é%x%nax(H)—§i2|AA|2 >0,
1 2

02[1= %min (511G, H, B, c]) - 2|HD||AB| - £2|AB|” — £3|HD|* > .
Let us assume

2 Knex (H) 2 _Emn GG H B 2y

L GG H B IHD

Then these inequalities will have the form
021 = L~ &%) hpyin (S1[G, H, B, <]) -

|HD|?
&% min (S1[G, H, B, <)

0201 =@~ &%) hpin (S1[G, H, B, c]) -

— 2 max (H)| AA| - |aA]® > 0,

2
T —. G

|AB|2 >0.
E M min (51[G, H, B, ¢])

If we solve the first inequality with respect to |AA|, we obtain that for 0 <& <1 and

2
|AA| < EXmin (S1[G, H, B, ¢]) EXmax (H) n (1_E,~2) _ EAmax (H)
|HD| |HD| |HD|

the function 04[] is positive. Similar for the second inequality the function 6,[-] will be positive for

2
48] < i (11 H. B ] \/[ gHD| J ca-ey -5l
xmax(H) xmax(H) kmaX(H)
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So, on realization of the conditions (11) 64[-]>0 and 6,[-] > 0 will be fulfilled and
d 2 2
o/ X®, o] < ~61[1[x(®)|" ~62[1[x(t - 7)|" -
. 2 2 ) 2
= Amin (S1[G, H, B, c]) ki o (t) — A min (G)"X(t)"m.
According to [10, p. 145] the system (1) will be absolutely interval stable.

2. Estimates of convergence of solutions of interval systems

In previous theorems we obtained conditions of absolute stability. At the same time for solving
practical problems more important is not only the fact of stability, but computation of estimates of
solution convergence. For obtaining estimates of convergence for solutions of interval system with delay
we shall use again the Lyapunov—Krasovskiy functional (6).

Let us denote

_ 2max(M[H]) _ max (G) _ Bk
(Pll(G, H) - ;min (G) P12 (G) - Xm?n (G) ’ (P13(G) 27"min (G), (12)
_ imex (M[H]) 2 (@) _ky
@1 (H) = Bk, » 022(G) = By 923 K

The following statement takes place.
Theorem 3. Let positively-defined matrixes G, H and scalars B >0, ¢>0 exist, for which the

matrix $¢[G, H, B, ¢] is positively-defined and conditions (11) are fulfilled. Then for the pair of solutions
(x(t), o(t)) of the interval system of neutral type (1) the following estimates of convergence take place:

||X(t)||w <[Vo11(G, H)|X(0)| + yp11 (G, H)|x(-7)| +
+1/912(G)] x(0) ||T’g +4/013(G)]exp {— %X[']t},

(13)
o] <oz @)X+ Joa@[x(0)|+
o2 @O, +fozslerw |- St
where
1o ] 6l 0201 2hmin(S1[G, H, B, D kf
"”‘m'”{xmax(M[HD’ o MIHD B } @

Proof. For obtaining the convergence conditions (13), (14) we use the Lyapunov-Krasovskiy
functional of (6) type. As it was shown on proof of Theorem 2, it holds bilateral estimates

t
[ e7t=9xT (5)Gx(s) ds+%[3klcz(t) SVIX(), 501 < max (MIHD [XO + A max MIHD | x(t - 1)[* +

t—1

t
+ [ e )T (s)Gx(s) ds +%ﬁk202(t); (15)

t-t
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%V[xa), o(®)] < 03[ x@®)[* - 8[| xt - ) -

t
—min ($4[G, H, B, D kf'o? (1) — ¢ [ e s"9xT (5)Gx(s) . (16)

t-t

Let us write the right-hand part of the inequality (15) as
~Xmax MIHD[XO)] ~ A max (MIHD[x(t = 1)]* -
t
— [e7s9xT () Gx(s) ds — % Bk,o2 (t) < —V[X(t), s(t)]. (17)
t—1

We consider the following cases.
1. Let us write the inequality (17) as
1

2
~XOF <y

t—t

t
x {—V[x(t), (O] + A ax (M[HT)| x(t - ‘c)|2 + [e7st9xT (5)Gx(s) ds + % Bk,c2 (t)}

If we substitute the obtained expression into (16), we have

04[]

2
P LCRL O GO RUARHECS i

SVIX(O, o)<

_{Kmin(sl[G,H,B:G])klz— il iﬁkz}"zm—

Amax (M[H]) 2

) e[ (s T Gx(s)d
ey R A e

t—1
If parameters of the system and the functional are such that
0,[-1Bk 04[-
0,01= 011120, Amin (S4[G, H, B ) kZ ——alIBke o0 Gl .4
2hmax (M[H]) Amax (M[HT)
then
61[]

%V[x(t), s(t)]<— VIX(t), o()].

Amax (M[H])
If we solve the obtained inequality, we have
VIx(t), o(t)] <V[x(0), c(0)]exp {— el—[]}t t>0
Amax (M[H])
2. Let us write the inequality (17) as

1

2
AT
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t
x {—V[x(t), ()] + A max (M [H])Ix(t)|2 + [e7)xT(s)Gx(s)ds +%[3k262(t)}

t—t

If we substitute the obtained expression into (16), we obtain

05[]

2
mv[x(t)l o(O]-{61[1- 8, [THx(V)|" -

SVIX(O), o] < -
021 1

2
xmax(M[H])EBkz}" ®-

—{xmin (S1[G, H, B, gl kf —

t
_ {g _ 92—[]} | e~ s(=9)x T (5)Gx(s) ds.

hemax (MIHD) 7
If parameters of the system and the functional are such that
02 [1Bk 05[]
01[1-05[120, Xpmin(S1[G, H, B, g])k2 ——tt >0, ¢c-——=———2>0,
i Y D (MIH]) Amax (M[H])
then
05[]

%V[x(t), s(t)] < - VIX(t), o(®)].

Amax (M[H])

Solving the obtained inequality we get

VIx(t), o(t)] £V[x(0), o(0)]exp {— %}t t>0

3. Let us write the inequality (17) as

t
- [ e S(=9)% T (5)Gx(s) ds < —V[x(t), o(t)] +
t—-t

2 2 1
+ A max (MIHD [X®)|” + % nax (M[HD [ x(t = 7)| +§Bk262(t)
and again substitute into (16). We obtain

%V[X(t)- o(1)] < ~<V[x(t), 5O {0111~ Amax MIHDHXO[* -

~{0201- hmax (MIH D} x(t )| - {Kmin (S1[G, H, B, ) k{ _%Qﬁkl}cz(t)-

If the following relation will hold

01[]-SAmax (M[H]) 20, 65[]=chmax(M[H]) 20,

1
Amin (S1[G, H, B, g])—;qﬁkl 20,
then

SVIX(), 0] < ~<V[XW), o)
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If we integrate this inequality, we get
VIx(t), o(t)] <V[x(0), o(0)]exp{—ct}.

4. Let us write the inequality (17) as

—s2() SB%{ VIX(), SO+ Xmax (MIHD [ XO + & max (MIHT) [ x(t = 1) +
2

t
+ J' e~ T (5) Gx(s) ds +%Bk202(t)}

t-1

and substitute into (16). We obtain

2
SVIxQ), o] < - Zmin LB DKy 1y, o)
Pk

. 2
_{91[,]_ 2hmin (S1[G, H, B, c]) ki }|X(t)|2 _

Bk

2
_{92[,]_ 2 0.1 K }|X(t_r)|2 ]

2] t
. 2hmin (S1[G, H, B, s ki [ e7s)xT (5)Gx(s) ds.
Pk t

-7

If the following relation realizes

_ 2emin(SuG H B DK L g 11 Zhmin (G H B DK
Pk ’ Pk ’

2
c— 2hmin (510G, H, B, c]) ki >0,
Pk

0,[]

then

2hmin (S1[G, H, B, D) k{ VX(t),

d
EV [x(t), o()] < - 5K,

o(t)].

If we integrate this inequality we obtain

2
VX(t), o(t)] <V[x(0), G(O)]exp{— 22 min ($4[G, H, B, cD ki t}

Pk
If we unite the obtained inequalities, we have

VIx(t), ()] <V[x(0), o(0)lexp{-x[1t}, (18)
where

x[-]= min 04[] 0[] 2 min ($4[G, H, B, ¢) k12 '
Amax (MIH]) " % max (M[H])’ Bk,
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We use again bilateral inequality of the functional V[x(t), o(t)] and the dependency (18). We write

%omin (G)||><(t)||ig +%k102(t) <V[X(), 5(t)] <V[X(0), 5(0)Je M1t <
S{}‘-max(M[H])|X(O)|2 + hemax (MIHD) x(=2)|* +

1 s
+kmaX(G)||x(0)||ig +Ek202(0)}e A1t

From this

)\‘max M[H kmax M[H
KO, < {ﬁlanz LoD e
max(G) [1t
MOl 5 i ”}e !

Using denotations ¢11(G, H), ¢12(G), 913(G), we obtain the following estimates of convergence:

IO, . <ou (G, HXO)|+yors G, H) x(-0)] +
o G)XO), . ++ors (G)]exp{—%x[-]t}-

We write similar

10.

o) < oz (XO) oo XD] + Y22 GO +ozalexp {—%x[]t}-
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Introduction

In real problems in the mathematical description of the system there is some uncertainty. In the modern
control theory parametric methods of describing the uncertainty in the form of interval or affine families of
polynomials (regular disturbances of the dynamics), for which, on the basis of the principle of exclusion of
zero and the Kharitonov theorem, the robust stability criteria are derived [1], are widely used.

Meanwhile, there are other approaches to describing the uncertainty. Often, the uncertainty in the
description of the system can be characterized by singular perturbations [2, 3], i.e., small parameter A
before the derivatives in the Cauchy normal form. Such perturbations in the form of ballast dynamics are
a mandatory element of any practical implementation of any control. It has long been known and widely
used in real design [4, 5]. Thus, the normal work area of the industrial controller is characterized by the
value of the time constant of the ballast link, raising the dimension of a closed system.

Description of the robust properties of the system in the approach, based on singular perturbations,
rests on Klimushev—Krasovskiy theorem [6], which discrete analog is used for discrete systems [7]. It is
obvious another advantage of the proposed approach: it is known [8] that the result of the Kharitonov
theorem type does not hold in the discrete case. Therefore, currently there are no effective means of
analysis and synthesis of robust discrete control systems on the basis of the interval method of describing
the uncertainty.

The Klimushev—Krasovskiy theorem actually confirms the existence of asymptotically stable family

of the systems, parameterized by the values A from the interval {A:0<2X <A}. For various A let us
denote A ={A:0<A<A}. The finite value A, =supA is critical in the sense that for sufficiently small
€>0 for A=A, +¢ the system becomes unstable (for unlimited A one accepts A, = ). Thus, A, can
be considered, on the one hand, as a measure of stability to singular perturbations, and on the other — as
a characteristic of the nonroughness or nonstiffness [2, 3]. It is natural to call value 3, =1/A,, inverse to
it, the stiffness. It characterizes the structural nonroughness of the system. So, the task is to determine the
critical value of the parameter of the singular perturbations A, and the stiffness value 3, , corresponding
to it.

It is clear that for nonlinear systems, generally, it is practically impossible to determine the exact
value A,. The existing results can be found in [9]. But for linear stationary systems the problem of

determining the critical value A, is completely solvable and there are different approaches to its solution.
Those ones, which enable to get the exact value, will be called. In [10] the critical value A, was determined

on the basis of constructing the amplitude phase frequency response function (APFRF) of some matrix
function M (jw). Later this result was obtained by other investigators on the basis of the Mdbius

transformation (LFT-conversion) [11, 12]. The APFRF method is graphical and not analytical; in addition,
the complexity of its implementation depends on the dimension of the “fast” component of the state.
Another approach, to which this work is devoted, is based on the D-partitioning method of the
characteristic polynomial of a closed system by the parameter of singular perturbations A. The existing
results for continuous systems give the exact value of stiffness in the case when the characteristic
equation is given explicitly when the dimension of the “fast” component Kk is not larger than two [2, 3].
For other cases, they are an asymptotic approximation of the desired values. For discrete systems,
a similar result for K =1 was obtained in [13], and for k =2 the stiffness estimate is defined only for the
particular case, which will be discussed below. In this paper, the results for determining the exact value of
stiffness for continuous and discrete systems with the explicitly given characteristic equation, the
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dimension of the “fast” component being k <3, are obtained, and also the graphical method for finding

the stiffness for arbitrary k is developed. The main advantage of the D-partitioning method therewith
consists in the possibility of obtaining an analytical result.

1. The problem formulation of D-partitioning by the parameter of singular perturbations

Let us consider the continuous linear singularly perturbed system

%(t) = AX(t) + Bu(t),
B |
A:(AA(;?I AA(;jlj’ B:(B xo‘l} v
10 11 1

where X = (Xg, XlT)T, xeR", Xg € R" X € “.Rk, n=m+k; A is (nxn)-matrix; B is (nxr)-matrix; A
is a positive small parameter (hereinafter T means transposition).
Under the assumption of the controllability of the pair (A, B), the problem of choice of control as

a linear form by the state u(t) =Gx(t)is equivalent to definition of the polynomial coefficients in the
characteristic equation of system (1)

Pok()=s" va .\ 95Ty va 95s™ 4 gkMm(s) =0, )

where 9=1/%, M(5)=aps" +amn_;s™ | +...+a;5+ay.
The Klimushev—Krasovskiy theorem implies [6] that if the “fast” subsystem with the characteristic
polynomial F(s)= sk + am +k715k71 +...+ 84S + apy satisfies the Gurvits criterion, the dynamics of the

“slow” variables is approximated by the degenerate system, obtained from (1) for A =0 with the
“external” characteristic polynomial S(s)=M(s)/ay, [2]. Thus, if the polynomials F(s) and S(s) are

stable, then there is such A, >0, that VA:0 <A <A, the polynomial Py, (S) is stable.
In the discrete case we consider a linear singularly perturbed system of the form [7]

X(k +1) = AX(k) + Bu(k),
A A B 3
A= A A2 g [ B 3
Ay Ay, 1B,
Under the assumption of the controllability of the pair (A, B), the problem of choice of control as

a linear form by the state u(k)=Gx(k) is equivalent to definition of the polynomial coefficients of the

characteristic equation of system (3)
Pk (2) = 2™* +ap 2™ T e, 2™ kM () =0, 4

where M (2) =apnz™ +ag 2™ +...+a,2+a,.

In such problem formulation, from [7] it follows that due to the stability of the “external” polynomial
S(z)=1z™ (the roots of the polynomial lie within a circle of unit radius), the stability of the “fast”
polynomial F(z)=M/(z)/a,, implies the existence of such A, >0, that VA :0 <A <A, the polynomial
Pm+k (2) is stable [7]. The problem again is reduced to finding the critical value of the parameter of

singular perturbations A,.
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2. Assessment of the second-order stiffness

2.1. The continuous case. When the dimension of the “fast” component of the state is k=2,

characteristic equation (2) becomes
Pna(s)=s"2+a, 9s™! +92M(s)=0. 5)
In [2, 3], the stiffness 3, (the lower index shows the order of evaluation) is calculated by the

D-partitioning method by the nonlinear parameter 9, i.e., first, the equation (5) is solved relative to 9,
and then to the resulting expression the D-partitioning method was applied. As a result for 9, in [2, 3],

one has:
92=L= max Lm(@_)’ m=2v,
Li  ©Np(®)=0 8y Ry (@)
1 Ry (® ©)
9 =—= max L((Dl, m=2v+1,
M @Ny(@)=0 8V (©)
where

Ng = (-)YRy(®)ap 0™ -Va (@),
Ny =(=D)"Vy(®)ap, 6" - R (®),

Ry (@) and V,(®) are real and imaginary parts of the polynomial M ( jo), respectively.
First, note that this estimate 3, can be simplified. Let us express the last relation Vi, (0)/ Ry () :

Vin(®@)/ R (@) = (=1)* a1 Vg (), m=2v,
Ry (@) / Vi (@) = (=1)V a2, /Ry (@), m=2v+1.
Substituting the obtained relations in (8), one obtains more simple relations for estimating 95 :

(_1)V+1 am+16m+1

922 , m=2v,

max i
@:Ng()=0 Vi, (o)
1\ —m-+l
9, = max (DLE(D, m=2v+l1.
@:Ny (®)=0 Ry (o)
Let us consider now the problem of finding 9, by the D-partitioning method in the plane of two real
parameters {&;,&,}: & =M, &y = A2. To do this, let us reduce characteristic equation (7) to the form
P2 (8) = E2P(5) + £1Q(8) + M (5) = 0, where P(s) =5, Q(5) = amyys™"".

Furthermore, in accordance with the D-partitioning technique [14], introducing the substitution
S= jo in the transformed characteristic equation, one obtains the system, containing two equations:

RePpio(jo, &1,&2)=0 and ImPy ., (jo, &, Ey)=0. From their solution one obtains the expressions

for the parameters &; = &;(®), &, =&, (0):

_1 V+1V _1 VR
()= =T meay,
Am41 @ ® o
(=D"Rp (@) (=1)"Vp (@)
él(“’):Tanﬂ’ @2(®)=mm—$, m=2v+1,
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where Ry, (®) =ReM (jo), Vi, (®)=ImM (jo). Relationships (7) have a singularity at the point ® =0,
the singular line

&2 =0. ®

corresponds to this frequency value. Expressions (7), (8) define in the plane {&;,&,} the stability region

boundary D. In Figure 1, this region is highlighted by thick lines. The critical parameter value of singular

perturbations is defined as follows: A, = min&;(®), where Q is a set of the frequencies ®j, which
we

satisfy the condition
Ef (@) =Ex(@). ©)

Condition (9) follows from the adopted notations, it corresponds to the points of intersection of the

curve of the D-partitioning with the parabola &12 (®) in the parameter plane {&;, &,} (see Figure 1).

E2(m) A

€2=0 2 £1(@)

Figure 1

Substituting (7) in condition (9), we write the final expression, defining the set of frequencies Q:
Q={0:Ng(®)=0}, m=2v, Q={o: Ny (0)=0}, m=2v+1.
Finally, for assessing the stiffness of the second order we obtain

-1 v+l —m+l
9, =1/, ED qma® 7 o
Vi (@)

| (10)
1 —m+
9, =1/ Ay = max ()Lﬂw, m=2v+l1,

@:Ny (®)=0 R (o)

which coincides with the results of [2, 3].
2.2. The discrete case. Let us write the characteristic equation (4) for k =2

P2 =22 +a,, az™ ! +32M(2) =0.

By analogy with the continuous case, we will reduce this characteristic equation to the form suitable
for application of the method of D-partitioning by two parameters:

Pni2(2) = £2P(2)+£,Q(2)+ M(2) = 0. an
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Here P(2)=2™2 Q(z)=ay 2™ & =9=1/1, &, =92 =1/2%. Substituting z=e1® in (11), we
find expressions for the parameters in the form &; =&;(®), &, =&, (0):

ay Sin20+...+ay sin(Mm+2)®
g1 (@)=~ 0 :

Ay SIN O

(12)

Ay sino+...+apsin(m+1) o

Er(w) =

sin®
At frequencies ®=0 and o=m relationships (12) have singularities, so for these frequencies singular
lines are constructed:
E2Rp (@) +& Ry (@) + Ry (@) =0, 0=0,T,

. . : (13)
Rm(®)=ReM(€!®), Ry(0) =ReP(e!?), Ry(®)=ReQ(e’?).

Expressions (12), (13) define the boundaries of the stability domain of the characteristic polynomial

Pmn+2(2) in the plane {&;, &,}. The critical value of stiffness is equal to 3, =max§&;(®), where Q is
weQ)

a set of the frequencies ®j, which satisfy condition (9).
Condition (9), as well as in the continuous case, can be interpreted as a set of points of intersection

of the D-partitioning curve with the parabola (2]2 (o) (Figure 2). Substituting (12) into (9), one will have
for the set Q

Q= {E:aﬁw sin® (&, sin® +...+ ag sin(Mm+1) ®) — (& sin 2o +... + ay sin(m + 2)6)2 =0}. (14)

Note, that if the parabola é% (o) intersects the D -partitioning curve in the points of intersection with
the singular lines (as shown in Figure 3), i.e., @ =0 or ®, =mn are roots of (14), then the critical value
of stiffness can not be determined from (12), because at these frequency values the expression for &; (‘®;)

has singularities. In such cases, the critical value of stiffness will be determined as 3, = max El (@),
0e{0, T}

where &;(®) is a solution of the following equations:
&Ry (@) +EiRq(®) + Ry (@) =0, 5=0,. (15)
Taking into account (12), (14), (15), to assess the stiffness of the second order we will write finally:

—ay sin2o —...— 3y sin(M+2)®

9, = max —— , 0#0,m,
0eQ Apy] SIN O
_ — —— (16)
5 —Rq(m)i\/Rq(m)—4Rp((D) Ry, (@)
» =max — , ©=0,m,
e 2Rp(('0)

set Q is defined by (14).
Relationships (16) uniquely determine the assessment of the second-order stiffness for discrete
systems, in contrast to [13], where the cases ® =0, © have nor been considered. Note that when ® =0

and (or) ® =m, for estimating (16) the analytical representation for arbitrary dimension of the “slow”
component can be obtained.
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£10)
E2Rp (1) +ERq (M) + Ry (1) =0/ E2Rp(0)+E;Rg(0)+ Ry (0)=0
Figure 2
Ex(0) 4

£1(0)

E2Rp (M) +E1Rq (1) + Ry () 7 &2Rp (0)+&1Rq (0) + Ry (0) =0

Figure 3

3. Assessment of the third order stiffness

3.1. The continuous case. Let us consider the characteristic equation (2) of the singularly perturbed
system (1) for k =3:

Pri3(8) =" +an,,95™ 2 +a,,,9%™ !+ 93M(s) = 0. (17)
Let us reduce this equation to the form

P 3(S) = €281 L(8) +&,P(8) +£,Q(s) + M (5) =0,

where L(S)= Sm+3, P(s)=an +2sm+2, and the rest of the notations correspond to the ones, taken carlier.

Using the D-partitioning technique, one obtains the following expressions for the parameters &; and &,:

&1(w) = Vin (@) a2 &y (@)= —(_1)V R (@) for m=2v;
1= Ry ( NG m+1 > 22V m+2 v
m(@o+ (D" A p8n 0 Am2® (18)
g ((D) _ B Rm ((D) am+2 E_, ((D) _ (_l)vvm ((0) fOr m= 2V + 1
1= vV, ( vt mel > 220 m+2 a ’
m(@o+ (=) ap28m0 Amyp®
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Also, there is a singular line &, =0, which together with (18), defines the boundaries of the stability
domain of characteristic polynomial (17) in the plane {&;, &,}. As before, the critical parameter value of

singular perturbations is defined as A, = min&;(®), where Q is a set of the frequencies ®j, which
0eQ)

satisfy condition (9). In the notations R, (®) and V,(®), this condition is as follows:
NR(®) =Ry (@) am 20" + NV (0) 8oy ®' - +
+ (DM V(@) B +Vi (@) amiam e ), m=2v, (19)
Ny (@) =V (@) am 20" +2R5 (@) ayiam 0" +
+ (DRI (@) @2 + Ry (@) a2, a2,®°M2), m=2v+1. (20)
Taking into account that A, = Lnig &1 (), for estimating the third order stiffness, we obtain
o

— — +1 —m+1
Rp(@)©+(-D"" ay,28m,®

93 = max , m=2v,
©:Ng (0)=0 Vi (®)am,2
Vo () o+ (=1 v+1a a —m+l1
9= max - m(®)®+( )_ m+2m+1 @D  m=2v+l,
o:Ny (0)=0 R (®)am,

where Ng(®) and Ny () are determined by formulas (19), (20).
3.2. The discrete case. The case k =3 reduces characteristic equation (4) to the form

Pris(2) =23 4 an, 2™ +an, 222" +23M(2) = 0. 1)

By analogy with the continuous case, let us represent (21) in the form suitable for application of the
D-partitioning method

Pni3(2) =£1&,L(2) + E;,P(2) +£,Q(2) + M (2) = 0.

Here L(z) = Zm+3, P(z) =ay +2Zm+2, and the remaining notations, correspond to the ones, taken earlier.
The significant difference of the discrete case from the continuous one lies in the fact that the D-partitioning

equations, obtained by substituting z =e jw, depend both on &; and &,, and this dependence is nonlinear.
Let us write them:

Re Pry3(81°) = £18,R) (0) +&2Rp (@) + &Ry (@) + Ry () =0,
Im Py, 3(61°) = €18,V (0) + £,V (@) + & Vg (@) +Vpy (@) = 0.

Solving the last equation for &; and &,, one gets

—b(w) i\/ b(w)? - 4a(m)c(w)
2a(w)

€1 (@)Rg(®) — Ry (w)

Rp(©)+& (@R (0)

£ ()=

>

(22)

Er(0) =
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where
a(®) = -8y sin ®, b(®) =—-am 18y Sin o,

C(®) = —amsp (g sin(M+2)o+...+ay, sin 2m).
For @ =0, © from (21) one obtains the equations of the singular curves:

€182R1(0) + &R (0) + &R (0) + Ry (0) =0,
§1E2R1 (M) + EaRp (M) + &Ry (1) + Ry (m) = 0.

(23)

Together with (22) they determine the stability domain of polynomial (21) in space {&;, &,}. The desired
for us critical parameter value of singular perturbations is determined by the point of intersection of the
parabola &12(6) with the boundary of the stability domain in the space {&;,&,}. Then the estimate of

the third order stiffness will be determined by the expression

) +/b(@®)? - 4a(®) c(®)

©eQ 2a(®) ’ @4

where the set Q is found from condition (9).

4. Estimates of the higher orders stiffness

It is clear that with increasing the order of the estimate, the process of its finding is complicated, and
obtaining an analytical representation for the stiffness becomes more and more difficult, but this does not
exclude the possibility of its numerical determination. Let us show a graphical method for determining
the stiffness for continuous systems with arbitrary “fast” and “slow” components of a state.

Let us consider characteristic equation (2), in which we will denote &; =i, &, = A2, Introducing
the substitution S = jo, depending on k and m, we will get one of the following systems:

o for k=2u+1, m=2v

Re Py (Jo) = (1) HeR o™ T 1+ (1) ap,28,0™ + Ry (o),

Im sm+k (jo)=(-Dn¥™* §1§5‘®m+k +..+ (DY am+1§1(”m+1 +Vi (0);

o for k=2u+1, m=2v+1

Re P (jo) = (DY el o™X 4 (1) a6 0™ + Ry (@),
Im Py (jo) = (DY ER 0™ T 1 (1) e 28,0™2 +Vy (0);

o for k=2u, m=2v (25)

Re Py (Jo) = (1) HER0™® 4+ (-1) M ap,08,0™ + Ry (),

Im Py (joo) = (DY P g e80™ K 1 (-1 ag & 0™ + Vi (0);
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o for k=2u, m=2v+1

Re Py (jo) = ()Y e eho™* 4+ (1) ap, & 0™ + Ry (o),

Im Py (jo) = (1) eb o™ (1) ap,8,0™ 1V (0).

The distinctive feature of equations (25) is that, regardless of k and m, one of the equations depends
on &; and &,, moreover on &; linearly, and another — only on &, and this dependence is nonlinear.
Based on this, let us express the parameter &; in terms of &,, and the parameter £, we find through
solving the power equation. Thus, obtaining the expressions for the parameters &;(w) and &, (w), one
can construct the D-partitioning curve. Then the parameter critical value of the singular perturbations will
be determined by intersection of the D-partitioning curve with the parabola &12 (®). Below the examples,

showing the efficiency of this approach, are given.
Note. Further efforts to develop the D-partitioning method for determining the stiffness of stationary

systems can be aimed at simplification of the obtained algorithms. In this direction, probably, new
developments can be obtained by using the recent results on the D-partitioning method for polynomial
families of a special form [15, 16].

5. Examples of definition of stiffness

5.1. The continuous case. Suppose, that the system has the two-dimensional “slow” and a two-
dimensional “fast” components of the state, with the following characteristic polynomial of the system:

Py(s)=s* +4.259s5° + 9%(3.455% +3.87s +1.4).

The estimation of stiffness is 3, = max 1.099% 2 In this case Q= {-0.8,0.8}, then $, =0.704. The roots

e

r; of the characteristic equation for § =38, are: r; , =+0.80j, r; =—0.425, ry =—2.614. The system is

on the border of stability.
Let us consider a system with k =2, m = 4. The characteristic equation has the form

Ps(5)=5° +9.19s% + 92(30.4s* +47.05> +38.4s2 +16.05 +2.4)=0.

—5
The stiffness 9 =max 0)3 , Q={1.3,-1.3}, one obtains 3, =0.429. The roots r;:
0eQ | —5.131w” +1.750

r,,=-044+033i r;=-1.33i, r;=1.33i, rs=-0.30, r, =-2.73. The system is on the border of

stability.
Let us consider a system for k =3, m =2. The characteristic equation has the form

Ps(s)=5s> +8.19s* +6.39%s> + 93(38.09s% +7.75 +19.5) = 0.

®(2.38-4.6502)+6.30°
7.7®
r,=+1.5j, r34=-0.08+0.82], rs =-6.30. The system is on the border of stability.

el

The stiffness 9= max( J, Q={1.5,-1.5}, one gets 9, =0.789. Roots r;:
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Let us analyze the systems of a high order. Let k=8, m=2. Let us write the characteristic

polynomial as:

Po(s)=5'" +12.8295% +75.06 9%5® +265.929%s7 + 604.49 9456 +
+859.597s° +726.89%* +344.597s% + 9%(85.04 52 +10.035+0.43).

It is clear, that it is difficult to determine numerically the set Q of frequencies, for which the
D-partitioning hodograph intersects with the parabola é’;]z (®). But it is not necessary, the parameter
critical value of the singular perturbations can be determined graphically (Figure 4: solid line —
D-partitioning hodograph; dotted line —parabola élz (®)).

10

2.305/

e
.

S /—\..\

[ T T3

Figure 4

The graphic way showed that A, =2.305, therefore, the stiffness 9g =0.433. The roots rj:
r o =-000033+0,12], r;=-0.0622, ry 5=-0.38+027], rg7; =-0.59+1,1j, rgg=-0.97+0.099],
ro =—1.58. The roots r; , practically lie on the imaginary axis, then A, =2.305 can be considered as a

measure of the “roughness” of the system.
5.2. The discrete case. Let for the system k = 2,m =2 one has the characteristic polynomial

P,(z)=2% +1.0.5482° +22(0.382% - 0.1972 — 0.023).

In this case Q={-2.1,2.1}, then 9§, = max

‘e
The roots I; of the polynomial P,(z) for A =1/35 =1.31 are such that |r1,2 | =1, |ri |< L, i=3, 4. The
system is on the border of stability.
Let us consider the system for k =2, m =8, its characteristic equation has the form

(—az sin2®—a; s.mio)—ao s1n4a)j. One gets 9, =0.763.
azsin®

Po(2)=2""-1.8522° + 22(0.762% +0.227 - 0.662° +
+1.0342° +1.034z% —0.482% +0.0562% — 0.0025z — 0.001) = 0.

~Rq(0) £ /Ry (0) — 4R, (0)Ry (0)
2R, (0)

polynomial Pjy(z) for A=1/35=1.002 are such that |r1 |:0.999,
such stiffness value the system is on the stability boundary.

In this case, Q={0}, then 9, =

=0.998. The roots r; of the

ri| <1, i=2,10. Obviously, for
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Let us consider the system for kK =3, m =2 and the characteristic polynomial

Ps(z)=2° —0.483hz* —0.0581%22° + 1 (0.0562% — 0.0025z — 0.001) =0.

The stiffness 9, =0.789. The roots r; of the polynomial Ps(z) for A=1/83 =2.381 are such that
| Mo | =0.997, | r | =0.112, | r4| =0.74, | rs | =0.17. The system is on the border of stability.

Conclusion

For linear stationary systems on the basis of the method of singular perturbations the criteria of the

robustness and stability factors are constructed. The nonroughness property is determined by the system

stiffness. The results both for continuous and discrete linear systems are obtained.

10.

11.

12.

13.

14.
15.

16.

References

Polyak B.T., Shcherbakov P.S., Robust stability and control [in Russian], Nauka, Moscow, 2002.
Dubovik S.A., The synthesis of nonroughness control systems based on singular perturbed concepts,
Trudy V Mezhdunarodnoy konferentsii, “System Identification and Control Problems” SICPRQ'06,
Moscow, 30 January — 2 February 2006, IPU imeni V.A. Trapeznikova, RAN, 2006, 2323-2333.
Dubovik S.A., The robustness property and stability factors of linear systems, Problemy upravleniya
i informatiki, 2007, No. 6, 26-32.

Klyuev A.S., Lebedev A.T., Klyuev S.A., Tovarnov A.G., Adjustment of automation and automatic
control systems: A reference manual, Ed, by A.S. Klyuev [in Russian], Energoatomizdat, Moscow, 1989.
Ayazyan G.K., Design of automated systems with typical control algorithms: Tutorial [in Russian],
Izdatelstvo Ufimskogo neftyanogo instituta, Ufa, 1989.

Klimushev A.IL., Krasovskiy N.N., Uniform asymptotic stability of systems of differential equations
with small parameter at the derivatives, PMM, 1961, 25, No. 4, 680—694.

Bouyekhf R., A. El-Moudni A., On analysis of discrete singularly perturbed non-linear systems:
application to the study of stability properties, J. of Franklin Institute, 1997, 334, No. 2, 199-212.
Kuntsevich V.M., Control under uncertainty: Guaranteed results in problems of control and
identification [in Russian], Naukova dumka, Kiev, 2006.

Kokotovic P. V., Khalil H.K., O'Reilly J., Singular perturbation methods in control: analysis and
design, Academ. Press, Orlando, 1986.

Feng W., Characterization and computation for the bound & in linear time-invariant singularly
perturbed systems, Systems and Contr. Letters, 1988, 11, 195-202.

Chen S.J., Lin J.L., Maximal stability bounds of singularly perturbed systems, J. of the Franklin
Institute, 1999, 336, No. 8,1209—1218.

Chen S.J., Lin J.L., Maximal stability bounds of discrete-time singularly perturbed systems, Control
and Cybernetics, 2004, 1, 95-108.

Kabanov A.A., Dubovik S.A., Evaluation of the robustness of continuous and discrete systems based
on singular perturbations, Materialy IV Mezhdunarodnoy konferentsii po problemam upravleniya,
Moscow, 26-30 January 2009 [in Russian], [IPU imeni V.A. Trapeznikova, RAN, 2009, 583-590.
Neimark Yu.l., Dynamical systems and controlled processes [in Russian], Nauka, Moscow, 1978.
Polyak B.T., Gryazina E.N., New aspects of D-partitioning, Trudy IX Mezhdunarodnoy Chetayevskoy
konferentsii “Analytical Mechanics, Stability and Motion Control” [in Russian], Irkutsk, June 12-16,
2007, 2007, 1, 141-158.

Polyak B.T., Gryazina E.N., Tremba A.A., The current state of the D-partitioning method,
Avtomatika i telemekhanika, 2008, No. 11, 3-40.

66



Journal of Automation and Information Sciences, 42(6), 2010

On Construction of Finite-Dimensional
Mathematical Model of Convection-Diffusion
Process with Usage of the Petrov—-Galerkin Method

N.N. Salnikov?', S.V. Siryk?, I.A. Tereshchenko?

lCandidate of technical sciences, senior researcher of Institute of Space Research of National
Academy of Sciences of Ukraine and National Space Agency of Ukraine, Kiev.

%Student of National Technical University of Ukraine “Kiev Polytechnic Institute”, Kiev.

3Student of National Technical University of Ukraine “Kiev Polytechnic Institute”, Kiev.

ABSTRACT

We proposed technique of construction of piecewise-polynomial weighting
functions for the Petrov—Galerkin method in two-dimensional domain. The
form of these functions is defined by finite number of variable parameters,
connected with grid edges. We consider several variants of selection of these
parameters depending on the modulus and direction of the vector of advection
rate. The method of construction of finite-dimensional model of nonstationary
process of convection-diffusion for arbitrary domain in the form of system of
ordinary differential equations was proposed. Accuracy of the obtained
model is ascertained by comparison of numerical and analytical solutions of
a testing problem.

Key words: construction of piecewise-polynomial weighting functions, Petrov—Galerkin method,
two-dimensional domain, finite number of variable parameters, construction of finite-dimensional model,
nonstationary process, convection-diffusion, arbitrary domain, ordinary differential equations, accuracy,
comparison of numerical and analytical solutions.

ISSN 1064-2315
© 2010 by Begell House Inc.

67



Introduction

Recently methods of cybernetics find growing application in physics. This is connected both with
necessity of solving problems of control of complex physical systems [1-4] and treatment and processing
of measurement data, namely, refinement of mathematical models, restoration of global form of physical
fields by local measurements, solution of prediction problems. The necessary component part of these
problems is construction or selection of mathematical model, which describes sufficiently accurately
behavior of the investigated system.

For physical systems, described by equations in partial derivatives, one uses as models integral
representations of their solutions [5, 6], which are obtained by means of the Green functions and
fundamental solutions [7, 8], as well as finite-dimensional approximations of initial equations in the form
of ordinary differential equations [9-11]. Every of these approaches has its own advantages and
disadvantages, and efficiency of their application is defined finally by definite problem. In particular, on
investigation of physical processes in domains of complex shape the usage of the Green functions is
difficult, since construction of the Green function in this case represents independent rather complicated
problem [12]. Usage of fundamental solutions removes this restriction, however, it is possible to find
these solutions easily only for equations with constant coefficients [7, 8, 13]. The approach, which uses
finite-dimensional approximations in the form of ordinary differential equations (ODE), is the most
universal. Moreover, in this case for solving problems of control and estimation we succeeded in using
standard procedures of optimal control and observation [14, 15].

Finite-dimensional models of systems with distributed parameters can be obtained by certain method
of numerical solution of equations in partial derivatives [16-27]. At the same time pure mechanical usage
of threes methods for obtaining mathematical model in the form of ODE is impossible, since they are
developed namely for numerical solution of and have mostly algorithmic character.

One of the most popular methods of numerical solution of differential and integral equations now is
the Galerkin method [20-24]. It was suggested at the beginning of XX century by professor of the Marine
Academy 1.G. Bubnov for solving problems of theory of elasticity. Then, method was enhanced by
professor of the Petersburg Polytechnic Institute B.G. Galerkin, and it was generalized for solving
arbitrary problems of mathematical physics. New and numerous areas of application of the Galerkin
method appeared after suggestion [20] to use as basis function the functions of simple form with finite
support [7]. Here the Galerkin method got the name of the finite element method (FEM). It is used
successfully for solving problems of elasticity, diffusion and heat conductivity, as well as in hydrodynamics
for computation of potential flows [20, 22, 24]. Wide usage of FEM is connected with automation of the
process of construction of conservative difference schemes [20, 25] on realization of calculations for
domains of complex shape, and with potential of computational process effective paralleling.

On solving practically significant problems of convection-diffusion with prevalent convection
numerical solutions, obtained by the Galerkin method are, as a rule, instable or oscillatory for stable
analytical solution [20, 21, 26]. They belong to singular problems of mathematical physics problems
(small coefficient at the higher derivative) and their solution, including numerical one, represents
considerable complexities [27]. There are many modifications of the Galerkin method now [20, 27],
which make it possible to overcome this insufficiency. One of the most effective is the Galerkin—-Petrov
method, which is distinguished by special selection of weighting functions, not coinciding with basis
functions [20, 27-35]. For a one-dimensional stationary problem of convection diffusion were found
weighting functions such, that their numerical and analytical solutions coincide at mesh points [28].

In the present article we suggest the method for construction of weighting functions of the Galerkin-
Petrov method [20, 21] for nonstationary problems of convection and diffusion. By means of these
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functions we obtained finite-dimensional model of the process of convection—diffusion, which is
applicable for arbitrary simply connected two-dimensional domain. Accuracy of the model was shown on
comparison of numerical solution with analytical one for certain problem of heat conductivity with
convective addend, which is characterized by great value of the Peclet number.

1. Problem statement

Let us consider peculiarities of numerical solution of problems of convection-diffusion by the
example of one-dimensional propagation of heat in medium, which moves relative to immovable
reference frame with constant velocity v. This process is described by the following equation

oT aT  a°T
v =L, T=T(, x), xe[0, L], te[0,t], 1
= ™ Kaxz (t,x), xe[0, L], te[0, 1] M

where T =T (t, X) is the temperature of medium at the point with coordinate x at time instant t, « is the

coefficient of temperature conductivity.
The Galerkin method makes it possible to obtain approximate weak solution [9, 36] of this equation.
Here solution is searched as

R n
T(t, %) = 2 a; (N; (). )
i=0
Here N;(x) are known the so-called basis functions. Relations for determination of unknown coefficients
of decomposition a;(t) in (2) are obtained in the following way. Let us substitute the expression for
f(t,x) into the equation (1), multiply the obtained equality by the function Nj(x) (] =1,n-1), which
is accepted in this case to be called as weighting function, and integrate the obtained equality over spatial
variable x on the interval [0, L]. As the result we obtain the system of ODE for determination of the
coefficients a;(t). Initial conditions for the equation (1) define initial conditions for this system, while
boundary conditions enter its right-hand part [9, 20-24]. For numerical solution it is necessary to integrate
the obtained system of ODE.

We can take the simplest piecewise-linear functions as the functions N;(x). They are determined in
the following way. Let us select on the interval [0, L] points x;, i =0, n, such, that Xj < Xj4q, Moreover,
Xg =0 and x, =L. One supposes that these points set grid on the interval [0, L], therefore they are
called nodes. We take continuous positive function N;(x), different from zero only on the interval
[Xi_1, Xj411, linear on the intervals [x;_4, x;j] and [x;, X;.1] and equal to 1 at the point x;. On usage of
such functions, which differ from zero only on small element [X;_;, Xj;1] of the domain of solution, the

Galerkin method is usually called the finite element method.
Solving the equation (1) by means of the described procedure under the absence of convective

addend, v =0, does not cause complexities.

Let us consider peculiarities of numerical solution of this equation under the presence of convective
addend. Here we suppose that diffusion addend is absent, « =0. In this case the equation (1) takes the
form

oT oT

—+v—-=0. 3
ot OX @)
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The general solution of this equation is
T(t, x) = g(x—wt), (4)

where g(-) is arbitrary continuously-differentiable function [37]. Graph of solution for time instant
t+ At, as it follows from (4), is obtained by shifting the graph for time instant t by the value vAt along
the axis x. If we continuously observe this process in time, then we obtain that graph of the function
g(-) moves with the velocity v along the axis x. Graphs of solution of the equation (3), which

correspond to different time instants, are shown in Figure 1, arrow indicates direction of velocity. The
solution (4) is called the running wave [17, 37], and the equation (3) is called the transfer equation.

v

Xict X Xig1
Figure 1
Usage of the described above procedure and functions N;(x) for numerical solution of the equation

(3) under the condition that nodes on the interval [0, L] are selected as equidistant x;,; —X; = h, results
in the following equations for coefficients

aj1—aj

., j=1,n-1 5
o ] (%)

%(aj_l+4aj +aj+1):—V

The equations for boundary nodes are written taking into account boundary conditions and here we do not

adduce them. Solutions (5) are of oscillatory type and weakly decreasing [20, 26]. Correspondingly,

numerical solution of the equation (3) has oscillatory character [26] and higher error. Decreasing the step
h does not change the character of the solution, and, as it follows from (5), changes only time scale.

Usage of the finite difference method (FDM) with use of approximation of derivative by spatial

variable of O(hz) order for solving the equation (3) results in the following system of differential equations

7y T —Tig
' 2h 7

i=1n-1 (6)

where ﬂ(t) is approximate value of the exact solution T;(t) =T (t, ;) at the points X;. Roots of the

characteristic equation of the system (6) are pure imaginary, which corresponds to stability boundary of
this system. Numerical solution of the system (6) considerably deviates from solution of the equation (3),
and for some methods of integration diverges [26].

These negative results of application of numerical methods are connected with the absence of taking into
account the character of the solution (3), and, namely, in the considered case (positive velocity) as it follows
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from (4) variation of temperature at certain point X; depends on time only on the looked for function values
from the left of this point, as it is shown in Figure 1. This corresponds to physical nature of the considered
process, namely, variation of temperature is consequence of medium transfer with the velocity v.

For taking into account this property on application of FDM we approximate the derivative of spatial
variable in the equation (3) by the so-called right difference

aT(t,Xi) < Ti —Ti,]_ i :ﬁ, (7)
OX h

or by upstream difference. In this case the system of equations for determination of numerical solution of
the equation (3) takes the following form:

=i i=in ®)
h
Roots of the characteristic equation of this system are real and negative, and its solution for the
corresponding selection of dimension of grid step coincides with solution of the equation (3) with high
accuracy [26].
Similar result may be obtained on application of the Petrov—Galerkin method, which differs from the
Galerkin method by usage of weighting functions W; (x), which do not coincide with the basis ones N; (x).

Application of this method for numerical solution of the equation (3) results in the following equation:

T ON;
za.iNindX-FVJ‘Zﬁi—IWjdX:O. (9)
i—0 0i-0  OX

O T

Selection of the functions W;(x) makes it possible to integrate the expression, which contains derivative
OT /0x or ON;/0ox with greater weight from incoming flow within support of the weighting function.

In particular, for solving of the stationary equation (1) by the Petrov—Galerkin method it was
suggested [20, 28] to use the weighting functions

W; (x) = Nj (x) + aW;" (x), (10)

where the parameter o < [0,1], and the function W;"(x) on the interval [x;_s, X;,1] holds the following
conditions:
Wi (Xi1) =Wy (xi) =Wi" (Xj,1) =0,
X . Xi h (11)
oL [wi (g dx=— | Ni(x)dx:—E.

Xi Xi—1

fWi*(x)dx: jl Ni(x)dx:h i

Xi—1 Xi—1

Outside of the interval [x;_q, X;,1] the function W;"(x) is equal to zero identically. For o. =1 from (11) and

Xi Xit1
(10) we get j W;(x)dx = h, j W; (x) dx = 0. This means that mean value of the weighting function W; (x)
Xi1 Xi

is equal to 1 on interval [X;_4, X;], i.e., from the direction of incident flow, and is equal to 0 on [X;, Xj1]-
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We can make sure that the following piecewise-polynomial functions hold the condition (11)

"W((x; —x)/h),  xelXq, X,
"W (%) = 1 ="W ((Xjs1 —X)/h), X e[X;, Xiy], (12)

01 Xé& [Xl—l’ X|+1]’

where the function "W (L) =[(n+1)/(n —1)]%(1—%”‘1), n is degree of the polynomial (n>1). Graphs
of functions N;(x) and W;(x) for o =1 and for the values n=2; 5 and 100 are shown in Figure 2.

N; (x)

g

W (x)
Wi (x)

W (x)
0.4

W 0.2

1 -08-06-04-02"] 02 06 0871
_02 4
Figure 2

In [28] the functions ZWi* (x) were used and the following dependency was obtained
o =coth(Pe-h/2)-2/(Pe-h), (13)

for parameter o on the Peklet number Pe =v/«, for which in stationary case (6T /0t) =0) numerical

solution (1) coincides with the exact one at nodes.
We can easily make sure that weighting functions W;(x) of (10) type under the condition

W;" (x)="W;"(x) and o =1 converge for n—co by the norm | -|, [38] to the function equal to 1 on the
interval (Xj_;, Xj) and zero at all other points,

{1, x e (Xi_1, Xi 1,
Wi (x) =
0, x¢& (Xji_1, Xi].

If we substitute this expression in (9), we obtain the following equations for determination of the
expansion coefficients

aj—aj_l —_—

1, .
S@ja+a)=-v—=—"=, j=ln (14)

This equation practically coincides with the equation (8) and, as it was shown in [26], also makes it
possible to obtain numerical solution of the equation (3) with the required accuracy.
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Selection of weighting functions in the Petrov—Galerkin method, which provides the given (required)
accuracy of numerical solution, up to date represents unsolved in the general case problem.

Objective of the present article is to show the way of construction of continuous piecewise-
polynomial weighting functions, similar to (10), for the Petrov—Galerkin method in two-dimensional
domain, to construct by means of this method finite-dimensional model for nonstationary process of
convection-diffusion. We assume to verify accuracy of solutions, obtained by means of the constructed
model, by comparison with the known analytical solution.

2. Basis and weighting functions in two-dimensional case

We shall suppose that the considered domain Q < R? is simply connected, R? is two-dimensional
real Euclidean space. Components of the vectors x = (xq, x,) € Q, the numbers x; and x, are coordinates

of points of plane in certain Cartesian coordinate system. We assume that the domain Q may be
represented as finite union of triangular elements (triangles)

Q:UQj’ anintQ|:® Vk;tl, (15)
i
where intQ is the set of internal points of a triangular element Q. Only vertexes or completely edges

can be common for triangles. As the result all domain will be covered with grid, which consists of edges
and vertexes of triangles or nodes. Every vertex is characterized by its number and system of coordinates.
For specification of triangular element with the number j it is necessary to specify a set of numbers of its

vertexes | i

Let us consider piecewise-linear basis functions N;(X) = N;j(xq, Xo) [21-24]. Index i of the function
N;j(x) means that it is connected with the i-th node. The set of elements Q;, to which the i-th node

enters forms the polyhedron Q(i), shown in Figure 3 (the i-th node is denoted by point in the center).

U]
i Qj
(k)

Figure 3

Q(i)

Every basis function N;(x) is different from zero only inside this polyhedron, is equal to zero on its
boundary and to unit at i-th node, N;(xj) =1. On every triangular element the function N;(x) is linear, i.e.,

Ni(X)ZNi(Xl,Xz)Zaij+bin1+Cin2, XEQJ'. (16)

Here the numbers ajj, bj; and cj; are uniquely determined from the condition that the function N;(x) is
equal to unit at the i-th vertex of triangle Q; and to zero at two other ones. For such definition the

function N;(x) is continuous on the polyhedron Q(i), as well as in R2
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Let us state general requirements to the weighting function W;(x). It should be continuous on the
polyhedron of the basis function N;(x), equal to zero on its boundary and unit at the i-th node,
W; (xj) =1. Supplementary requirements consist in the fact, that by analogy with one-dimensional case
weighting functions W;(x) should have greater weight from the direction of incoming flow.

We assume that on every element Q ; of components of the polyhedron Q(i) the function W;(x) is
defined by polynomial of n dimensionality and, therefore, is continuous on € ;. For continuity of the
function W;(x) on the whole polyhedron Q(i) its continuity on edges of adjacent elements is necessary and

sufficient. Coordinates of points on the edge (i —k), which connects i- and k-th nodes, are determined by

the expression
x=xX(\)=A-A)X; +Ax,, Ael[0,1]. a7

If we substitute this equality into expression for the polynomial W; (x), we can make sure that on the edge
(i—k) this function is also polynomial of n degree, but of one variable A. For continuous function
W;(x) on the edge (i —k) it is necessary the polynomials of two adjacent elements on this edge coincide.
Let us demand that on every edge (i —k) the function W; (1) =W, (x(A)), which is considered as function
of the parameter 2, is defined by the expression:

sign Qi k

Wi (1) = Nj (L) + "W, ). (18)

Here o; | is adjusting numerical parameter, connected with the edge (i-k), oy €[-11],

sign a;

N;(X) = Nj(x(1)) =1-A. The function W,
by the following expressions:

(A) for different values of the number o is defined

Wit () =-"W@), "Wyt =-"w@-21), »e[0,1]. (19)

For o =-1, as it follows from (18), (19), the function W;(%) coincides with the function (10) on the
interval [Xj_g, Xj]. If o =+1, then the function W;(3) coincides with (10) on the interval [x;, Xj,1].
For o =0 we have W;(A) = N;(%). Thus, by means of selection of the parameter o;  we can set
different form of graph of the function W; (x) on every edge (i —k) of the element Q(i).

Let us consider construction of the function W;(x) for n=2. In this case the function W;(x) on the
set Q; is given by the polynomial

Wij (X) :Wij (Xl, Xz) = aij +bij X1 +Cij Xy + d” X1 X9 + f” X:|_2 + glj X%. (20)

Triangular element Q; contains the vertex with the number i, we denote two other vertexes as k and I.
According to requirements to the function W;(x) the values of W;; (x) on the edges (i—k) and (i—1I)
are defined by the expressions (18) and (19), and on the edge (k —1) they are zero. For determination of
six unknown coefficients of the function W;;(x) we specify its values in six nodes of the element Q;.
Besides nodes in vertexes of the triangular element € we select supplementary nodes in the middle of

its sides, for example, as it is shown by points in Figure 4. We shall denote by index i and k points in the
middle of side, which connects, for example, nodes i and k, i.e., we write X; = (X; + Xy )/2. As the

result we obtain the following six equalities:
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Wij (i) =1, Wij (X ) =Wi; (%) =Wij (X 1) =0,
(21)
Wij (Xi, Kk ) =0.5- 0.7504’ K Wij (Xi, | ) =05- 0.750Li’| .

On obtaining two last equalities we took into account that 2Wi‘(o.5) = 2Wi+ (0.5)=-"W(0.5)=-3-0.25=

=—0.75. Using the equalities (21) and the expression (22) for determination of the coefficients a, b,
c,d, f and g (indexes ij are omitted) we obtain the system of linear algebraic equations

2 2
1 Xt Xi2  XiXi2 Xz X2 |[a

2 2
1 X Xk2  XaXk2 Xk X2 ||b

2 .2
1 X0 X2 XpXi2 o Xjii X2 |[|¢C

o o o

(22)
1x X X 11X X2 1 X2 d
k, 11 ~k,012 2k, 117k,12 Ak, 11 Ak, 12

2 2
1 Xi k1 Xik2 XikiXik2 Xik1 Xik2 || | |05-0.750ik

2 2
1 X1 Xi2 XiXij2 X Xi2 J\9) \0.5-0.75a;

By means of parameters o and a;; we can change the form of graph of the function W;; (x): for

ajk, o >0 and make it convex, as it is shown in Figure 5, for o, o <0 we can do it concave
(Figure 6) or convex-concave for a;  -a; | <0 (Figure 7)
0]
@i,1

(i, k)

(k1)

K
Figure 4

Figure 5
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Figure 7

We write the equation (22) in the vector-matrix form
Xp:ho +(xi,khk +ai'|h|, (23)
where X is the matrix in the expression (22), the vectors p=(a, b, c, d, f, g)T, hg=(,0,0,0,0.5, O.5)T,
he =(0,0,0,0,-0.75,0), h, =(0,0,0,0,0,—0.75)T. We obtain from (23)
_ vl -1 -1
p—X ho +ai’kX hk +0Li‘|x h| (24)
or
P=Po+0 Pk +0 Py, (25)
where the vector pg = X ‘1h0 contains coefficients of the function Nj; (x), and the vectors py = X ‘1hk

and p; =X ‘1h| contain coefficients of certain polynomials W; ;(x) and W 1y;(x), correspondingly.
Therefore, the following equality for functions corresponds to the equality (25)

Wij (%) = Nij (%) + a1 Wi k) j (X) + o (Wi 1y j (%) (26)
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The polynomial W; iy ;(x) differs from zero on the edge (i—k) and is identically equal to zero on edges
(i-1) and (k1) of the element Q ;. On the element Q ;- adjacent to the element Q ; by the edge (i —k)
the functions W; i) (X) possess similar properties. Let us consider the function

Wik (), xeQj,

Wi ky (X) = {W(i,k)j’(x)’ xeQj, 0

defined on union of adjacent elements Q; UQ . The function W; \)(x) is continuous and is equal to
zero everywhere, except the set Q; UQj., in the middle of the edge (i—k), as it follows from

definition, its value is —0.75. We can define similar for all edges, which come from the node with the
number i.
As the result the weighting function W; (x) on the element Q(i) is representable as

Wi () = Ni () + > aj ( Wiy (%) (28)
keK;

Here K; is the set of vertex numbers, which are connected with the vertex i. In practice the number of
edges, coming from certain node i seldom exceeds the number 6. Every of the functions N;(x) and
Wi, k) (X) and, therefore, W;(x) is specified by its separate expression on every of elements Q ;, which

form the set Q(i).
3. Finite-dimensional model for two-dimensional nonstationary process of convection—diffusion

We write the heat transfer equation in the case of two spatial variables in the following way:

%+V-VT:KAT,T:T(LX), xeQ, telty,yy], (29)

where VT = (0T /0xq, 0T /0x,) is gradient of the temperature field T =T (t, x), AaZ/axf +82/6x§ is
the Laplace operator. In the equation (29) the field of velocities v(t, x) = (v1(t, X), v, (t, X)) is assumed to
be everywhere smooth in the domain Q, v-VT =v,0T /0%y +V,0T /0x, is scalar product of the vectors

v and VT . We assume that on the boundary of the domain Q one of standard boundary conditions are
stated [12]. At the place, where this is essential, it is necessary to suppose that the conditions of the 1-st
kind are stated.

We shall look for the approximate weak solution [9, 36] of this equation as

" n
T(t,%) =2 a; ()N; (x). (30)

i=1
Here N;(x) is piecewise-linear basis function corresponding to i-th grid node. Taking into account that

the vector of velocity may be solution of FEM hydrodynamic equations, we represent it also in the form
of decomposition by basis functions

v(t, X) = V(t, X) = ivi (tN; (), (31)
i=1

where the vector V;(t) = (v¢(t, Xj), Vo (t, X;)). According to formal procedure of the Petrov-Galerkin
method we substitute the expressions (30) into the equation (29), multiply the obtained equality by the
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weighting function W;(x), which is defined by (28), and integrate over the domain Q. Taking into
account the expression (31) we have

n n n 6N| n n aNI
[ NWdQa; + > > | [ = NW; dQ V1|ai+ZZ —LN|W; dQ Vo3 =
Q Q i=11=1 2

i=1 i1 lo ™

AW, W,
= j@—‘dg + j%—JdQ aj + f. (32)
i—1 (o 6)(1 6Xl 6X2 6X2

For obtaining this equation we used integration by parts from expressions, which contain the second
derivatives by spatial variables. Taking into account boundary conditions the value f; is connected [9, 21—
23].

Starting from denotations

i N, N; OW;
DY = [ Njw;dQ, D}, = Mi % 4q, DY, = Mi %% 4,
0 6X 8X 0 6X2 8X2
ON; oN (33)
T = [ iNwide, T, = [ SoENwida,
0 6Xl 0 6)(2
we rewrite the equation (32) as
n n ili n n li
ZD”a, +3 > T va + Y ZT'Jv2|a, = KZ[DIJ + D'J AETE: £l jedg, (34)
i=l1=1 i=11=1

where Jg is the set of numbers of internal nodes of partition grid. If we substitute (28) into expression for

the coefficients DIJ + D'ZJZ, we get

. OW; . OW
DIJ +D'212=I8N' JdQ+Ial\|' Ldo =
6X1 6X1 0 6x2 6x2
:j% N | D a-kaw“"" dQ+j—aN‘ Ny, S aiy Wik |y -
0 Xl 8x1 kEKJ- ) 8X1 0 6X2 8X2 kEKJ- ) 8X2
. ON; oW, W, :
SN N g N g z ok jaN TUR o, [ RiTU0 40| (55
6X1 6X1 6‘X2 aXZ 6x 5X1 aXZ 6x2

We connect the coefficients o j , k € K, by analogy with one-dimensional case with the value of the
vector of velocity V;(t) = v(t, x;) in the j-th node at time instant t, and namely, it is necessary to camber

every function upward from the side of incoming flow.
Let us consider several variants of heuristic selection of the parameters o j .

Variant 1:
aj,k = (X(PE)VJ AXkJ/("VJ " " Aij "), vk e Kj’ (36)

where Axj =X —Xj, | x]|=(x- x)Y/2 is norm of the vector x, the function o = au(Pe) is defined by (13).
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Variant 2:
ajk =o(Pe)sign(Vj-Axy), VkeKj. (37)

Variant 3;
ojk = a(Pe)F (V- Ax /(|Vj || M) Wk e Kj, (38)

where the function F:R' — R is defined by the expression

Bz, |Bz|<1,
F@)= {sign ®z), [Bz|>1. (39)

Here B is certain number, B> 0. For =0 we obtain the Galerkin method, where weighting functions
coincide with basis ones; for B =1 variant 3 transfers to variant 1, and for f = it transfer into variant 2.

The parameter B makes it possible to change quickly parameters of the equation (34).
It is possible to select the coefficients o j  in such a way that

Y o j%—aw“"‘) dg+j%—aw“"" do |=o0. (40)
keK; ) 0 8X1 aX]_ 0 8x2 6x2

In this case the sum of the right-hand part of the equations (34) coincides with expression, obtained by the
Galerkin method. Namely this takes place on application of the Petrov—Galerkin method in one-
dimensional case. Let us denote the number of elements of the set K ; by the symbol K and elements of

this set by ky,..., ki . Then the system of coefficients o, k € K;, can be considered as the vector

aj = (ajvkl""'ajka)Te RK. Here the condition (40) defines certain hyperplane in the space RK

which passes through the origin. Supplementary restrictions for the coefficients o
_1§aj,k <], kGKj, (41)

specify multidimensional cube in RK. Let us denote intersection of this cube with the hyperplane,
defined by the equality (40), by A ;. This set represents polyhedron in RK. For realization of (40) we
project the vector of coefficients o, calculated in accordance with one of the mentioned above variants,
on the set A j. Introduction of the condition (40) makes it possible to simplify additionally the system of
equations (34).

4. Accuracy of the model

Let us consider boundary value problem for the equation (29) in rectangular domain 0 < x; < L;,
i=1 2, for constant vector of velocity v = (vq, vz)T =const. The initial condition is specified in the
form T(0, x;, X,) =e™. Boundary conditions are prolongation by continuity of initial conditions on

boundary of the domain T(t,0, x5) =1, T(t, Ly, X5) = el T(t, X, 0)=T(t, x1, Ly) =™
We obtain analytical solution of the problem for its further comparison with numerical solution. If
we use substitute in the form

T(t, X, XZ) _ eat+bx1+cx2u(t’ Xg, XZ)! (42)
where

a=-(vZ+v3)/dx=—|v|*/4x, b=vi/2¢ c=v,/2x, (43)
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the equation (29) is reduced to the diffusion equation for the function u = u(t, x;, X,), which is solved by

the method of separation of variables [12]. Solving the initial boundary value problem for the equation
(29) with the stated above initial and boundary conditions is expresses as

0 0 H.: o X . TX
T(t, g, Xp) =200 s S (gt o utygin i P g j T2 4 o4 (44)
i1 jo Qij —a L Ly

i 2 . \2
Ly Ly
1+e|_1(1—b) (_1)|+1 1+e—L2C (_1) J+1
L21-b)? + %2 L3¢ +n?j?

where

Hj = 4n%ij (k- b)? +xc” +a)

Numerical solution of the considered problem is found by the classical Galerkin method
(aj x =0 Vi,k), and by the Petrov-Galerkin method, where parameters specifying the form of weighting

functions, were computed according to (36)—(38). Here we used the following numerical parameters of
the problem v; =v, =50, k=0.1, L; =1, L, =1. Itis seen, that for such ratio of the vector of velocity
v and the coefficient k the Peclet number is Pe ~ 700, i.e., in the considered problem the convection
processes dominate diffusion process. The result of numerical solving of the problem for y =0.5 by the
Galerkin method for uniform partition of the domain into 15x15 nodes is represented in Figure 8.

T

[X
0 0102 0304 0506 0708 09 1
Figure 8

In Figure 9 we show the graph of the solution, which is obtained by the Petrov—Galerkin method on
use of variant 1 for selection of parameters of weighting functions.

Better in comparison with previous case result was obtained on selection of parameters of weighting
functions according to variant 3 for = 1.5. The corresponding graph is shown in Figure 10.

Variant 2 of selection of parameters of the function turned out to be the most exact. Graph of
solution is shown in Figure 11.

Reduction of step value by spatial variable in all cases makes it possible to increase accuracy of
numerical solution.
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Figure 11
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Conclusion

In the present article we solved the problem of construction of finite-dimensional model of the process of
convection-diffusion in two-dimensional domain of arbitrary shape with usage of the Petrov—Galerkin method.
Here we suggested a way of construction of continuous piecewise-polynomial weighting function for the
Petrov—Galerkin finite element method, which represents generalization of one-dimensional weighting function
[20, 28] for two-dimensional case. Weighting function is specified for every node by means of independent
parameters, connected with grid segments, which contain the given node. Efficiency of selection of parameters
was determined by comparison of numerical solution with testing analytical one. All variants of selection
provided good qualitative coincidence and stability of mathematical model, obtained by means of the Petrov—
Galerkin method. The model, obtained by the Galerkin method turned out to be unstable. Usage of piecewise-
polynomial function W;(x) makes it possible to realize analytical integration on an element of expressions,

which contain product of the functions N;(x) and W;(x) and/or their derivatives, by known formulae [23].

This speeds up considerably determination of parameters of the system of differential equations (34)
in comparison with numerical integration of these expressions. This is of importance if parameters of the
equation (34), for example, vector of velocity, are nonstationary.

It is necessary to underline universality of the suggested method of construction of finite-
dimensional mathematical model of process of convection-diffusion for domains of complex shape and
potential of automation of the whole process of model obtaining.

It is possible to transfer the suggested technique of construction of weighting functions without any
complexities for three-dimensional case. Selection of values of parameters, which characterize the form
of the weighting function W;(x), optimal relative to accuracy of the obtained model, remains to be the
subject of further research. Usage of the suggested weighting functions for construction of finite-
dimensional approximations of other equations of mathematical physics, containing convective terms, is
of interest, in particular, for solving the Navier—Stocks equations, as well as for equations of magnetic
hydrodynamics.
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