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The potential of the dispersion analysis technique is discussed in application to interplanetary scintillations
observed from two sites (UTR-2 and URAN-2 radio telescopes). By combining analyses of the frequency
dependences shown by velocities of cross-spectral harmonics of the scintillations and of their power spectra,
it proves possible to recover the basic parameters of the interplanetary plasma along the line of sight. In the
framework of a layered model of the medium, layer thicknesses, densities and velocities can be estimated,
as well as the power index of the spatial spectrum and inner scale of the turbulence.

KEY WORDS: decameter wavelengths, radio telescope, scintillations, dispersion analysis, heliosphere

1. INTRODUCTION

Studying the solar wind is among the principal tasks of
the low frequency radio astronomy and Project LOFAR
in particular [1]. Observations of scintillations of cos-
mic radio sources suggest a powerful tool for investi-
gating the interplanetary medium [2]. The observations

held in the meter band and at shorter wavelengths have
provided many new data on the structure and dyna-
mics of the interplanetary plasma in the inner helio-
sphere [3-5]. Decameter wavelength experiments were
not as intense, while it is just the HF band which per-
mits studying the outer heliosphere at great separa-
tions from the Sun [6, 7]. The outer heliosphere used to
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be investigated from space vehicles, however recently
there have been only few long range space missions.

The difficulties encountered by decameter wave
observers arise from the high level of electromagnetic
interference, mainly from broadcasting radios, and iono-
spheric distortions of the received radio signal. The
effect of these negative influences can be greatly re-
duced through the use of advanced broad-band radio
receivers and digital spectrum analyzers (DSP). Recor-
ding the signal in a broad band (over 14 MHz) should
allow suppressing the interference in the course of sig-
nal processing and separate the interplanetary scintil-
lations from the ionospherically induced. Tell-tales
of separation of the two kinds of scintillations are their
different spectrum widths and different correlation
lengths in the frequency domain [8]. The effective value
of the frequency band used for the data processing
shall be greater than 10 MHz, which enables a high
sensitivity of the measurements and allows increasing
the number of observable radio sources with different
heliocentric coordinates.

Application of the scintillation technique first was
based on the analysis of power spectra of the sources
as observed with one radio telescope. Certain model
representations of the medium structure allowed esti-
mating parameters of both the “slow” and the “fast”
solar wind. Further progress in the field was associa-
ted with the use of dispersion and tomographic analy-
sis techniques, i.e. methods involving simultaneous
observations at spatially separated sites. The tomo-
graphic analysis permits a fairly full reconstruction of
the shape and dynamics of transient formations, before
all of CMEs – coronal mass ejections [9]. The tech-
nique is least dependent on the model adopted for the
medium, however it requires considerable numbers
of the sounding radio sources. The latter requirement
is hard to meet at decameter wavelengths because of
the high level of the galactic background in the band,
limiting the sensitivity of observations, and hence the
number of accessible radio sources.

We will discuss below the potential of dispersion
analysis [10] for decameter-wavelength interplanetary
scintillations observed simultaneously from two sites.
A combined analysis of their dispersive phase velocity
and power spectra permits an improved determination
of basic parameters of the interplanetary plasma along
the line of sight. Making use of a layered medium model,
one may be able to evaluate layer thicknesses and mass
densities, as well as the drift velocity, power index of the
spatial spectrum and inner scale of the turbulence.

2. SPECIAL FEATURES OF DISPERSION
ANALYSIS AT DECAMETER WAVELENGTHS

Interplanetary scintillations are observable at decame-
ter wavelengths for elongations greater than 80 ,°  thus
offering an opportunity to study the solar wind of the
outer heliosphere at great separations from the Sun.
In case the wind involves more than one plasma flow
with different parameters, an analysis of power spectra
alone of the scintillations may not always allow a cor-
rect choice of the the line of sight model of the medium.
The model may be improved through application of the
dispersion analysis of the phase velocity associated
with the scintillations. The technique is based on stu-
dying the frequency dependence of velocities of cross-
spectrum harmonics of the scintillations as recorded
by two spaced antennas.

Let the “scintillation function” 
1,2 ( )I tΔ  be expan-

ded in a Fourier integral,

1,2 1,2( ) ( )exp( )d ,I t P i tΔ = Ω − Ω Ω∫
1,2 1,2( ) ( ) exp( )d1

2P I t i t tΩ = Δ Ω =π ∫
1,2 1,2( ) exp ( ) ,P i⎡ ⎤= Ω ϕ Ω⎣ ⎦

where 2 .fΩ = π
The cross-correlation function of the scintillations,

( , ),B r τ  is

1 2( , ) (0, ) ( , ) ( ) exp( )d ,B r I t I r t W iτ = Δ Δ + τ = Ω − ωτ Ω∫

while its cross-spectrum

( )1 2 1 2( ) ( ) ( ) exp ( ) ( ) .W P P iΩ = Ω Ω ϕ Ω − ϕ Ω⎡ ⎤⎣ ⎦ (1)

It can be shown [10] that the velocity ( )V Ω of cross-
spectrum harmonics (Eq. (1)) may be expressed as

( ) ,
( )
rV ΩΩ =

Δϕ Ω
(2)

where 1 2( ) ( ) ( ),Δϕ Ω = ϕ Ω − ϕ Ω  and r is the separation
between the two receive antennas (baseline length
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of the interferometer). It follows from this equation
that for obtaining the dispersion law ( ),V Ω  knowledge
of the frequency dependence of the phase shift be-
tween the observation sites would be necessary,

1 Im ( )( ) .
Re ( )

tan W
W

− ΩΔϕ Ω =
Ω

(3)

At the frequencies corresponding to the decameter
waveband, the wave scattering plasma volume is rather
extended (along the line of sight), with the denser part
of it lying close to the observer. For this reason the
most suitable mathematics is the Feynman trajectory
integration technique which was used in paper [11]
to derive the cross-spectrum of scintillations, viz.

( )
4

12 2
2 2 1 20

d( , ) d 1 cos
∞

⊥ ⊥ ⊥
ω ζ ⎡ ⎤≈ π κ κ − κ ζ ×⎣ ⎦ω ζ∫ ∫p

A

L
W r f L k

c

( )2
1 22 2 2 2

( ,0) 1 2exp .
2 ( )( ) 4

⊥
⊥

⊥⊥ ⊥

⎡ ⎤Φ κ π× − κ ζθ +⎢ ⎥ζ⎣ ⎦⎡ ⎤κ ζ − π⎣ ⎦

N frL i
VV f

(4)

Here Ω ;2πf =  { , }κ x y⊥ = κ κ  is the 2-D wave vector;

( )1 ;z Lζ = −  
0

sin( ) ,VV
R R⊥

εζ =  with 2 2 2
0R R L⎡= + ζ −⎣

1 2
02 cos ,R L ⎤ζ ε⎦  0 1R =  a.u.; ε  is the elongation; L the

plasma layer thickness; θ  the angular size of the sour-
ce; pω  the plasma frequency, and 2 ( ).A f V⊥= π ζ
The spatial spectrum ( ,0)N ⊥Φ κ  of electron den-
sity irregularities has been assumed to follow the po-
wer law

2 2 2 3
0 0( ,0) ( )exp( ) ,n n

N N l L − −
⊥ ⊥ ⊥Φ κ ∝ σ ζ −κ κ

where 2 ( )Nσ ζ  is the dispersion of relative fluctuations
in the electron density along the ray; 0l  and 0L  the
inner and outer turbulence scales, respectively, and n
the power-law index of the electron inhomogeneity
spectrum.

At higher frequencies and/or small elongations the
scattering volume can be regarded as a thin layer. Shown
in Fig. 1 is the dispersion law calculated after Eqs. (2)

to (4) for a 0.75 m wavelength and a spherically sym-
metric solar wind with a speed of 450 km/s. The source
elongation was 20°  and the angular size 0 1. .′′  As can
be seen from the Figure, the frequency dependence

( )V V f=  is only slightly pronounced, owing to the
small thickness of the interplanetary plasma layer
to effectively scatter the radio frequency signal.
Another reason is that the model adopted for the solar
wind was a single velocity one.

At decameter wavelengths and elongations greater
than 80°  the effective thickness of the layer contribu-
ting to scintillations may be as high as 9 a.u. The slope
of the dispersion dependence ( )V f  is determined
by the scatter of velocities, parameters of the turbu-
lence and different widths of the solar wind flows.
Fig. 2 presents dispersion dependences ( )=V V f  cal-
culated within the above described wind model for ob-
servation wavelengths of 3, 6 and 12 m (curves 1, 2
and 3, respectively), appropriate elongations (45°,
60°,  and 90 ),°  and source sizes of 0 2′′. ,  0 5′′. ,  and
1 5′′. .  The slope and span of the dispersion curves can
be seen to increase as the wavelength moves toward
decameter values. The reasons are the increased thick-
ness of the scintillation contributing plasma layer and
the variation of the wind speed projection ( )⊥ ζV  along
the line of sight. The higher the slope of the dispersion
curve, the better is the accuracy of medium parameter
recovery through matching the measured and the theo-
retical ( )=V V f  dependences.

FIG. 1: The frequency dependence of the phase velocity
of scintillations at the wavelength of 0.75 m (the elonga-
tion is 20ε = °  and the source size 0 1 )′′θ = .
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FIG. 2: Dispersion dependences shown by scintilla-
tions for a variety of elongations and wavelengths:
curve 1 is for 45ε = °,  m,λ = 3  and 0 2 ;. ′′θ =  curve 2
for 60ε = °,  6 m,λ =  and 0.5 ;′′θ =  curve 3 for 90ε = °,

12λ =  m and 1.5′′θ =

FIG. 3: Power spectra of scintillations computed for
a spherically symmetric model of the solar wind (curve 1,
with 90ε = °  and 500=V  km/s) and a dual-flow model
(curve 2, velocities 1 350=V  km/s and 2 500=V  km/s)

FIG. 4: Dispersion dependences of the phase velocity
of scintillations computed for a spherically symmetric
model of the solar wind (curve 1) and a dual-flow model
(curve 2). Parameters of the medium have been the same
as in Fig. 3.

The model of the solar wind may be essentially
improved as a result of joint analysis of the scintil-
lation spectrum and the dispersion dependence.
Figs. 3 and 4 show these functions as calculated
for a 12 m wavelength and a baseline of 153 km
in length. Curves 1 correspond to a spherically sym-
metric solar wind, while curves 2 to a dual-flow mo-
del with different wind velocities within the flows.
As can be seen, the two scintillation spectra are near-
ly coincident, whereas the dispersion curves show
a marked difference.

The examples given provide evidence that the
dispersion analysis technique may allow determi-
ning parameters of the medium in solar wind flows
characterized by different velocities in the outer he-
liosphere.

3. OBSERVATIONS WITH THE URAN-2
INTERFEROMETER

The URAN-2 interferometer of the National Acade-
my of Sciences of Ukraine (baseline length 153 km)
involves array antennas of the radio telescopes
UTR-2 (near Hrakovo township in the Kharkiv Re-
gion) and URAN-2 proper (village of Stepanivka

in the Poltava Region), both operating in the fre-
quency range 9 to 32 MHz [12, 13]. The effective
collecting areas are 150,000 m2 and 28,000 m2, respec-
tively, with beam widths 0 5°.  and 3 5°.  at 25 MHz.
The signal detectors used for the observations were
a triple-channel, broadband radiometer at the UTR-2
observatory (total band of analysis equal to 3 MHz
[8]) and a 16-channel super-broad band correlation
radiometer at the URAN-2 (total band width of
12 MHz, [14]). In spite of the smaller effective area
of the URAN-2 array, the fluctuation sensitivity of
the two radio telescopes proved commensurable,
owing to the greater band width of the radiometer
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FIG. 5: An example of synchronized records of interpla-
netary scintillations

Fig. 6. Scintillation spectra (a) and dispersion depen-
dences (b) for the radio source 3С144, as obtained in
October, 2006 (the dots represent measured data, while
the solid curves are computed results). The recovered
solar wind parameters are 3.0=n  and 230=V  km/s
(the model of a spherically symmetric wind)

at the site. Fig. 5 presents a sample of synchronized
records of interplanetary scintillations from the source
3С196 (flux density about 300 f.u.). The time constant
of recording was 0.1 sec.

Figs. 6 and 7 are examples of recovered solar wind
parameters along the line of sight, relating to two days
in the October of 2006. In the first case the source
observed was 3C144 lying within the ecliptic plane.
Ten days later it was the 3C196 whose heliospheric
latitude is about 30°.  In example one the structure of
the medium along the line of sight (i.e. within the eclip-
tic plane) can be well represented by a spherically
symmetric model of a slow solar wind. In the case of
the “high latitude” source we have used a three-layer
model involving high speed wind flows. This is in
agreement with generally accepted concepts of velo-
city distributions in the solar equatorial region and at
higher heliolatitudes, characteristic of the minimum ac-
tivity periods [8]. Fig. 8 is a schematic of the solar
wind structure along the line of sight toward 3С196.

CONCLUSIONS

As has been shown, application of the dispersion ana-
lysis technique permits recovering parameters of both
fast and slow solar wind flows from the data of scin-
tillation observations at decameter wavelengths. The
theoretical estimates and the measurements performed
demonstrate applicability of the method to two- and
three-component velocity models of the line-of-sight

outer heliosphere. The UTR-2 radio telescope of
Ukraine currently remains an instrument with the lar-
gest effective collecting area (150,000 m2), enabling
one to consistently observe about a dozen of scintil-
lating sources overnight. Unfortunately, it does not
provide for a spatial resolution which would be suffi-
ciently high for mapping. Implementation of the Giant,
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FIG. 7: Scintillation spectra (a) and dispersion depen-
dences (b) for the radio source 3С196, as obtained in
October, 2006 (the dots represent measured data, while
the solid curves are computed results). The recovered
solar wind parameters are: 1 3.8;n =  1 550=V  km/s;

0 300=l  km, and 0 1=L  a.u. (wind flow 1); 2 3.7;=n
2 730=V  km/s; 0 100=l  km, and 0 2=L  a.u. (wind

flow 2), and 3 3.9=n  and 3 500=V  km/s (wind flow three)

FIG. 8: The solar wind structure along the line of sight
toward 3С196

one order of magnitude and greatly improving the reso-
lution of maps of the outer heliosphere.
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First results are reported concerning fast drifting type III-like radio bursts observed at 10 to 30 MHz. More
than 1000 cases have been analyzed of the bursts recorded in 2002 to 2004. The frequency drift rates shown by
the “fast” variety were several times higher than those of “standard” decameter wavelength type III bursts,
while durations were mostly 1 to 2 s. The “fast” bursts were observable, for the most part, on those days when
the active region stayed close to the central solar meridian. The explanation suggested for the high rate of the
frequency drift of decameter wavelength type III-like bursts takes into account both the group velocity of
electromagnetic waves and the speed of radiating electrons.

KEY WORDS: burst, decameter wavelengths, frequency drift, polarization, polarimeter, spectrometer

1. INTRODUCTION

Fast drifting type III bursts were first detected in 1959
by Young et al. [1] who observed the emissions at 500 to
950 MHz. They reported frequency drift rates greater than
2000 MHz/s, occasionally even tending to infinity. Along
with negative drift rates (from higher to lower frequen-
cies), bursts with a positive drift through the frequency
domain were also observed. Characteristic durations of
the bursts were 0.2 to 0.3 s and radiation flux densities

45 10⋅  Jy to 810  Jy 26 2(1 Jy, or 1 f.u. 10 W/m Hz).−= ⋅

The writers also noted [1] that “faster” bursts were
characterized by shorter durations.

Kundu et al. [2] established that fast drifting type
III-like bursts normally occupy the range of 400 to
800 MHz, while being occasionally observed in a wider
range, from 200 MHz up to 950 MHz. According
to papers [1, 2], the bursts of this variety are often en-
countered as groups of 3 to 10 events. Some of them
may change the sense of the drift rate after drifting
initially from the lower to higher frequencies.

Elgaroy [3] has given a detailed analysis to 402
fast drifting type III bursts which he observed at 310
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to 340 MHz. Оf the total number of 402 bursts, 50 %
and 17 % were characterized, respectively, by negative
and positive drift rates in the frequency domain.
The remaining 33 % of the bursts showed “infinite”
(i.e. greater than 500 MHz/s) rates of the frequency
drift. The mean value of duration of the fast drifting
type III bursts happened to be 0.26 s, or one fourth
of the duration of “standard” type III bursts observ-
able at these frequencies (i.e. 1.1 s). Elgaroy also noted
that fast type III-like bursts occurred in groups and
estimated the average separation between the bursts
as 1.1 s. He studied the dependences of the burst du-
ration and drift rate of the fast bursts upon the posi-
tion on the solar disk of their associated active region.
As it occurred, the duration increases as the active
region moves away from the central meridian. At the
same time, the number of bursts with an “infinite” posi-
tive drift rate in frequency decreases. These findings
have led Elgaroy to the conclusion that an essential
factor to influence the formation of fast type III radio
bursts is the impact of propagational effects of the
radiation traveling through the solar corona.

Gopal Rao [4] studied the polarization of type III
bursts of various durations at somewhat lower frequen-
cies. He found out that the bursts of the shortest dura-
tion (1 or 2 s) were characterized by a high degree
of polarization (up to 70 %). While drift rates were not
determined in paper [4], Zaitsev and Levin [5] classi-
fied the bursts reported there as type III events, jud-
ging by their short duration.

In 1984 Zaitsev and Levin [5] made an attempt
of detecting fast type III bursts at decameter wave-
lengths (frequencies of 16 and 25 MHz) when analy-
zing the storm event of 6-7 June, 1977. They concluded
that the durations and drift rates of such bursts (if they
existed at all) should not be very different from the
figures typical of standard type III bursts.

As for possible interpretations of the high drift
rates of type III-like bursts, they are, in fact, just two.
One of the models [1, 3] is based on the theory of
common type III bursts and ascribes the high rate
of drift of the “fast” bursts to structural irregularities
in the lower corona, possessing large gradients of mass
density. The appearance of bursts with a positive drift
owes to the sunward motion of electron beams “res-
ponsible” for the bursts. Ledenev [6] suggested re-
cently that a positive drift in frequency could be ex-
plained by reduced group delays of the signal when
the source of radiation moves toward lower plasma

densities. Also, he noted that the group delay of sig-
nals arriving from different levels in the corona can
be correctly estimated only through account of the
fairly high speeds of the electrons responsible for type
III bursts.

Zaitsev and Levin [5] suggested a different model
where all type III bursts (both fast drifting and stan-
dard) are associated with the same electron beam,
however one characterized by a spectrum of electron
velocities. The standard bursts are generated by the
bulk of the beam electrons, while the fast bursts get
excited by the fastest particles from the leading edge
of the beam. The fast electrons move at roughly twice
the speed of the bulk of particles, hence it can be
expected that the drift rates characteristic of the fast
and standard bursts would be also different by a fac-
tor about two. The writers [5] associated the effect of
fast drifting type III bursts with excitation of cyclo-
tron waves. Whereas excitation rates of such waves
are dictated by the magnetic field strength, favorable
conditions for the generation of fast type III bursts
shall be expected (after Zaitsev and Levin) in the lower
corona. In other words, this variety of bursts should
be preferably observable at higher frequencies, which
assertion was fully confirmed by the observational
results of the time.

This paper presents results of first observations
of the fast drifting type III bursts at decameter wave-
length (i.e. frequencies of 10 to 30 MHz). They demon-
strate characteristics similar to the properties of higher
frequency type III bursts. We have also noted that the
appearance frequency of such bursts is strongly de-
pendent on the location of the active region on the
solar disk. In our opinion, this speaks in favor of the
decisive role played in the formation of such bursts
by propagation effects. Finally, the paper suggests
a possible explanation to the phenomenon of fast drif-
ting type III bursts, based on the account of speeds
of the radiation sources and group velocities of the
waves they emit, as these contribute jointly to drift
rate values of the bursts.

2. OBSERVATIONS

The fast type III bursts that are discussed in the paper
were observed with the UTR-2 radio telescope in 2002–
2004. The observations were performed with three sec-
tors of the array antenna (total area of 30,000 m2), which
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produced a 1 13°× °  reception pattern of the telescope.
In 2002 the signals were recorded with a digital spec-
tral polarimeter (DSP) [7] which provided for a high
resolution, both in the frequency and time domain (12
KHz and 20 to 100 ms, respectively), within the 18 to
30 MHz band. Besides, the observations of 2002
to 2004 were done with a 60-channel spectrometer
providing nearly a 10 ms time domain resolution and
a 300 KHz frequency resolution through the frequency
band of 10 to 30 MHz.

The drift rates of standard type III bursts observed
at decameter wavelengths (frequencies 10 to 30 MHz)
normally are 2 to 4 MHz/s, with 4 to 10 s burst dura-
tions [8,9]. Yet during type III storms the present
authors were sometimes able to record “faster” bursts
whose drift rates were greatly in excess of these
values. The burst durations often were shorter than
for standard type III bursts. The present paper is dedi-
cated to the said fast-drifting bursts of type III (or,
according to the nomenclature accepted in the English-
language literature, type III-like bursts [3]). They will
be analyzed, based on the selection of 1100 plus bursts
recorded during five storms of 2002 to 2004 (see the
Table). The total observation time was 120 hr. All the
fast drifting type III bursts were characterized by a neg-
ative frequency drift (an example is given in Fig. 1, a).
Unlike the “standard” type III bursts (whose time “pro-
file” is characterized by rapid growth and a relatively
slow decay), all the fast bursts demonstrated a practi-
cally symmetric profile (see Fig. 1, b)

At decameter wavelengths we were able to also
observe fast drifting type III bursts characterized by
a fine structure in the frequency domain (see Fig. 2, a).
They will be named fast type IIIb-like bursts, since
their frequency structure is similar to such of (stan-
dard) type IIIb bursts. Higher frequency observations
of such bursts (i.e. at meter or decimeter wavelengths)
have not been reported until now.

When performing statistical analysis, we referred
to some events as type III-like fast bursts if they
showed frequency drift rates higher than 4 MHz/s and
were recordable nearly through the observational range.
It could be said for virtually all the fast-drifting bursts
observed that their drift rates remained constant along
the t-f trace. The highest drift rate recorded to date
belongs to the burst event observed 18 August, 2002
(see Fig. 2, b). The value was close to 40 MHz/s. “Infi-
nite” drift rates (i.e. greater than 100 MHz/s) were not
reported, nor were bursts with a reverse sense of the

drift through a frequency band comparable with the
total range of observation (10 to 30 MHz). Meanwhile,
in a few cases bursts with a positive drift sense (from
lower to higher frequencies) were recorded within the
range of 4 to 5 MHz. These were not regarded as fast
type III-like bursts. Drift rate histograms are very much
alike for the bursts of all burst storms (a histogram for

TABLE: The appearance frequencies of fast-drifting type
III-like bursts as observed during five burst storms
of 2002 to 2004. The bold-face entries refer to the dates
when the active region crossed the central meridian
on the solar disk

13.07 0.02 5 hr 36 min 7
14.07 0.03 4 hr 57 min 8
15.07 0.04 4 hr 48 min 10
16.07 0.06 3 hr 47 min 13
17.07 0.00 3 hr 40 min 1

26.07 0.07 5 hr 28 min 24
27.07 0.09 6 hr 17 min 33
28.07 0.46 6 hr 14 min 171
29.07 0.02 5 hr 37 min 6
30.07 0.06 2 hr 52 min 10

16.08 0.04 7 hr 00 min 16
17.08 0.12 3 hr 26 min 24
18.08 0.06 7 hr 30 min 28
19.08 0.08 1 hr 18 min 6

01.07 0.00 7 hr 30 min 2
03.07 0.09 2 hr 56 min 16
04.07 0.40 6 hr 20 min 153
05.07 0.28 4 hr 39 min 77
06.07 0.03 6 hr 31 min 11

17.06 0.07 5 hr 04 min 20
18.06 0.20 6 hr 05 min 71
19.06 0.45 5 hr 44 min 156
20.06 0.33 6 hr 03 min 121
21.06 0.40 5 hr 20 min 131
22.06 0.19 5 hr 32 min 62

Year  Date,
month

  Number
 of bursts
per minute

  Duration of
observations,
      hr/min

  Number
of bursts

2002

2002

2002

2003

2004
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the storm of 26 to 30 July, 2002 is shown in Fig. 3, a).
As can be seen from the histograms, drift rates of the
fast bursts can be as high as 20 MHz/s, which is 5
to 10 times greater than the rates typical of “standard”
type III events.

It follows from Fig. 3, b that the major part of the
fast drifting bursts observed in the series were of dura-
tions between 1 and 2 seconds, or 4 to 5 times shorter
than the standard type III bursts at decameter wave-
lengths. A similar value for the duration ratio of higher
frequency type III and fast type III bursts was noted
earlier in paper [3]. As for the flux densities of the bursts
under study, they are generally lower than the values
reported for high frequency analogs (see Fig. 3, c). Also,
it will be noted that flux density distributions are rather
different for different burst storms, unlike the drift rate

or duration distributions. To our belief, this might
be related to the size of the active solar regions asso-
ciated with the decameter wavelength emissions.
Whereas the drift rate and duration of the bursts ap-
pear to be determined by parameters of the corona which
are not as strongly influenced by the active regions,
since the generation areas are greatly separated from
the photosphere.

We have analyzed the appearance frequency of
type III-like bursts in dependence on the location of
the relevant active area on the solar disk. The observa-
tions belonged to various time intervals, therefore
a unified parameter for the analysis was the appear-
ance frequency of fast drifting bursts on a given day.
This was defined as a ratio of the number of fast bursts
recorded to the total observational time for the day.

FIG. 1: (a) A fast-drifting type III-like burst (at
10:44:30 UT) observed against the background of stan-
dard type III events; and (b) the temporal “profile”
of that burst

FIG. 2: (а) A fast-drifting type IIIb-like burst
(at 06:49:42 UT) observed against the background
of “standard” type III and type IIIb events; and (b)
a type III-like burst (at 06:15:04 UT) with the highest
drift rate observed (40 MHz/s)
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As it occurred, the fraction of fast type III-like bursts
observed over the storm duration showed a marked
correlation with the position of the active region
on the solar disk. In the case of the July, 2002 storm (26
to 30 July), the appearance frequency reached its maxi-
mum on July 28, when the active region stayed close
to the central meridian (see Fig. 4). The appearance
frequency of bursts on that day was almost ten times
higher than on adjacent dates. The situation was simi-

lar with other burst storms (e.g., 13 to 17 July, 2002 and
1 to 3 July, 2003) when just one active region was close
to the central meridian. In the case of two active re-
gions following one another (like, for example, during
the storms of 16-19 August, 2002 or 17-22 June, 2004)
the distribution function of the burst appearance fre-
quency showed two maxima corresponding to their dates
of crossing the central meridian (see the Table). This
property of fast type III-like bursts is similar to the
behavior demonstrated by the high frequency type III
bursts described in paper [3], however it is better pro-
nounced at decameter wavelengths. Thus, our obser-

FIG. 3: Drift rate (a), duration (b) and flux density (c)
histograms of the fast-drifting type III-like bursts be-
longing to the storm of 26-30 July

FIG. 4: (а) Appearance frequencies of fast type III-like
bursts for various days of the storm of 26-30 July, 2002,
and (b): position of the active region on the solar disk
on 28 July, 2002
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vational data seem to confirm the relation noted in [3]
between burst characteristics and propagation effects
of the radio emissions in the solar corona. In our view,
the propagation effects just might be responsible for
the appearance of fast drifting type III bursts. Procee-
ding from the dependence of their appearance frequen-
cy on the date of observation (Fig. 4, a) one can obtain
an “upper estimate” for the width of the bursts’ radia-
tion pattern, namely about 10 degrees. Our attempts
of revealing smallest-scale temporal structures (shorter
than of day’s duration, on the date of maximum appea-
rance frequency of the fast-drifting bursts) have not
been successful.

3. DISCUSSION

Prior to our observations, it was generally accep-
ted that fast type III-like bursts were a phenomenon
characteristic mainly of frequencies above 200 MHz.
The many records obtained at decameter wavelengths
suggest a somewhat new look at the events and the
underlying physics. As a matter of fact, most of the
models suggested earlier for interpreting high frequen-
cy type III bursts of the fast variety face difficulties
when applied to lower frequency events. In the case
of a model which ascribes the bursts to high gra-
dients of density in the corona [1, 3] the existence
of suitable coronal inhomogeneities seems doubtful.
Indeed, formations with a mass density tens of times
lower than in the ambient coronal plasma can hardly
be expected at altitudes comparable to one solar ra-
dius. The required size of such areas should also be
comparable to the solar radius, since the bursts under
discussion demonstrate a stable high drift rate over
the range from 30 to about 10 MHz. Moreover, fast
drifting type III-like bursts are observed simultaneously
with standard type III events (see Figs. 1 and 2), which
latter are generated by electrons moving through
the middle corona. Finally, the essential regularity
which we have established, namely that the burst ap-
pearance frequency is dependent upon position on
the solar disk, can in no way support any model hin-
ging on the assumption of deep inhomogeneities
in the corona.

As can be seen in Fig. 3, a, the histogram of fre-
quency drift rates of fast bursts decreases monotoni-
cally in the range of 6 to 10 MHz/s where the Zait-
sev–Levin model [5] predicts an enhanced number

of fast drifting bursts. Besides, it follows from our
observations that the drift rate of fast type III-like
bursts may exceed the standard rates typical of ordi-
nary type III events by a greater factor than 10. Sub-
stituting these figures into the model [5] one would
estimate the velocity of the electron beam generating
the type III radio bursts as a value exceeding the speed
of light. Indeed, the common equation for the frequen-
cy drift rate, d d ,f t  is

d d d ,
d d d

≈ s
f f n v
t n r

(1)

where sv  is the velocity of the burst generating elec-
trons; n the number density of the plasma at the
generation point of the electromagnetic wave;
d d 2pef n f n= −  if the emission occurs at the funda-
mental harmonic, hence at the plasma frequency,

,= pef f  2( 4 ,= πpef e n m  and e and m are, respec-
tively, the electron charge and mass). In the case of
standard type III bursts a 2 to 4 MHz/s drift rate
corresponds, according to Eq. (1), to an electron
beam velocity 0.3 ,≈ c  where c is the speed of light.
Accordingly, the electron velocity corresponding to
drift rates of 20 to 30 MHz/s should be much higher
than the speed of light. For all the reasons listed
in this Section we are in need of looking for new
hypotheses to explain the phenomenon of fast type
III-like bursts.

The derivation procedure of Eq. (1) suggests that
the motion velocity of the radiating source is lower
than the velocity of the electromagnetic wave emit-
ted. This is true far away from the point of beam in-
jection, however may not be so near that point. Now
we intend deriving an equation for the drift rate of a
burst with account of the group velocity grv  of the
electromagnetic waves emitted, as well as of the veloci-
ty sv  of the radiating source moving at angle α  relative
the Sun – Earth line (see Fig. 5). The difference of times
for frequencies 1f  and 2f  to arrive to the observer is

2

1

12 12
2 1

d ( cos ),Δ = − = + ≈ − α∫
R

gr sR
s gr s gr

r rrt t t v v
v v v v

(2)

where 12r  is the separation between generation levels
for the two frequencies; 1R  and 2R  are the distances
from the generation points to the observer, and 1t  and
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2t  the moments of arrival of the two waves. (When
deriving Eq. (2), it has been taken into account that

12 1 2, .)r R R  If the frequencies 1f  and 2f  are close
enough, the drift rate can be written as

2 1

2 1

d d d .
d d d cos

−≈ ≈
− − α

s gr

gr s

v vf ff f n
t t t n r v v

(3)

As can be seen, the drift rate can assume high va-
lues and even change its sign, provided that the group
velocity is close to the speed of the electrons. Hence,
there is no need in assuming a sunward direction of
the source motion to explain positive values of the
drift rate (it should be noted that Ledenev [6] ar-
rived to the same conclusion). Evidently, the effect
is particularly bright with small values of the angle

,α  i.е. when the beam electrons move practically
toward the observer. For the fast drifting bursts to
appear at greater values of ,α  ever higher electron
speeds are required. With ≈grv c  and sv c  Eq. (3)
goes over to Eq. (1). Eq. (3) has been derived on the
assumption that the emitted wave is characterized
by strictly fixed magnitudes of the frequency and
wavenumber, and the radiating source is a point-size
object. In actual fact, the waves generated by the
electron beam occupy a frequency band of certain
width, and the radiating area is rather large in size
(the effective cross section for the decameter wave-
band is comparable with the solar disk). A consis-
tent account of these features would be possible only
if the problem were analyzed numerically, which is
beyond the scope of this paper. Here we intended
just to call one’s attention to the feasibility of inter-

preting fast type III-like bursts without assumptions on
large scale coronal inhomogeneities with high gra-
dients of mass density.

4. CONCLUSIONS

The fast type III-like bursts that we have observed
at frequencies of 10 to 30 MHz are characterized
by frequency drift rates as high as 40 MHz/s. This
is greater than the drift rate of “standard” type III
bursts by more than a factor of 10. The durations of
the fast type III-like bursts are, for the most part, 1
or 2 seconds, which is 4 to 5 times shorter than the
duration of ordinary bursts. This feature was also
noted by Elgaroy [3] with respect to higher frequen-
cy (meter- and decimeter-wavelength) fast drifting
type III bursts. The fast decameter wavelength bursts
are not as intense as the ordinary type III bursts.
Analysis of the appearance frequency of fast type
III-like bursts in dependence on the location of
active areas on the solar disk has revealed that
the greater number of such bursts are observed on
the dates when an active area crosses the central
solar meridian. A similar regularity, while somewhat
less pronounced, was reported in paper [3] with re-
gard to high frequency type III-like bursts. In our
view, this property can be exclusively associated with
wave propagation effects on the way to the obser-
ver. When estimating the drift rate of a burst, it is
important to make account not of the group velocity
alone of the electromagnetic wave radiated (like it is
commonly done) but of the velocity of the genera-
ting electrons as well. If these values happen to be
roughly equal in magnitude, the drift rate may in-
crease in the positive direction or change sign. Thus,
there is no need any more to assume a sunward-
directed motion of the source for interpreting posi-
tive values of the drift rate.
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Induced scattering of radio emission off the ultrarelativistic particles in a superstrong magnetic field is considered.
The problem of radio beam scattering into the background radiation is solved. In the magnetosphere of a pulsar, this
process can be efficient, and the scattered radiation concentrates close to the external magnetic field direction.
Because of rotational aberration, the scattered component precedes the main pulse in the pulse profile and can be
identified with the precursor component of a pulsar. In the framework of our model, the observed polarization,
spectral and fluctuation properties of the precursor emission as well as its connection to the main pulse are explained.
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1. INTRODUCTION

The radio profiles of some pulsars contain a precursor
being a peculiar component preceding the main pulse
by ten-twenty degrees [1-4]. The main distinctive fea-
ture of precursors is almost complete linear polariza-
tion of their radiation (as a rule, the main pulse is mar-
kedly depolarized because of simultaneous presence
of the two orthogonally polarized modes of emission).
The spectra of the precursor and the main pulse differ
as well [3-5]. However the individual pulse observa-
tions strongly testify to the physical connection bet-
ween the two components. The observational manifesta-
tions of this connection are very diversiform. In the
pulsar B1822-09, the precursor is present only in strong
pulses [3, 6, 7]. In the pulsar J1326-6700, on the con-
trary, the precursor is visible only in the cases when
the main pulse intensity is below the detection level

[8]. In the Vela pulsar, the stronger the precursor, the
larger is its separation from the main pulse [4].

The unusual polarization, spectral and fluctuation
properties of a precursor call for theoretical explana-
tion, however the nature of this component has not
been discussed in the available literature. Recently, the
geometrical model of the profile of the pulsar B1822-09
has been suggested [9] which implies that the emission
of the precursor and the main pulse is generated at
different altitudes in the pulsar magnetosphere. The
precursor location in the pulse profile can really be ex-
plained by the component formation in the outer mag-
netosphere, at the altitudes much higher than the emis-
sion altitude of the main pulse. However, with the as-
sumption of an independent generation of the two com-
ponents, it is difficult to interpret the observed correla-
tion of their intensities.

In this paper, the physical mechanism of the precur-
sor formation is suggested, which allows to explain the
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peculiarities of this component and also its connection
to the main pulse. The precursor is considered as a
consequence of the induced scattering of the main pulse
emission off the particles of the electron-positron plas-
ma in the magnetosphere of a pulsar. Below, the in-
duced scattering of the directed emission of a pulsar
into the background in the approximation of a super-
strong magnetic field is investigated in detail and solved.
It is shown that at pulsar conditions this process can
be so efficient that the scattered component may be-
come comparable with the main pulse.

2. PROBLEM STATEMENT

The pulsar magnetosphere is filled with an ultrarelativistic
electron-positron plasma which streams along the open
magnetic field lines and leaves the magnetosphere as the
pulsar wind. The pulsar radio emission originates deep
in the tube of the open magnetic lines and, consequently,
on its way in the magnetosphere it propagates through
the plasma flow. As the brightness temperatures of the
pulsar radio emission are extremely high, 25 3010 10BT = ÷
one can expect the induced scattering of the emission
off the pulsar plasma particles being significant.

The external magnetic field may affect the scattering
process, changing the scattering cross-section and the
recoil. The general form of the scattering cross-section
in the magnetic field is found in [10, 11]. In [11], the
magnetic field influence is shown to become strong if
the electron gyrofrequency exceeds the frequency of the
incident radiation in the rest frame of the scattering par-
ticles, (1 cos )G eB mc ′ω ≡ ω ≡ ωγ −β θ   (where β is
the particle velocity in units of the speed of light,

( ) 1 221
−

γ ≡ −β  is the Lorentz-factor, θ  is the angle be-
tween the wavevector of the radiation and the particle
velocity). Deep in the magnetosphere, e.g. close to the
radio emission region, this condition is well satisfied,
and the induced scattering should be treated in the ap-
proximation of a strong magnetic field [12]. As the mag-
netic field strength of a pulsar decreases with distance
from the neutron star, 3,B r−∝  in the outer magneto-
sphere the radio waves pass through the cyclotron reso-
nance, .G′ω = ω  The induced scattering in the pulsar
wind occurs in the non-magnetic regime [13]. Note that
in the resonance region itself the radio waves suffer res-
onance absorption rather than scattering [12, 14-17].

The induced scattering in the superstrong mag-
netic field is fist considered in [13], where it is shown

to be efficient in the pulsar magnetosphere. Later
on this process was involved into the explanation
of a number of peculiarities of the observed radio emis-
sion of pulsars [18-20]. As is known, the rate of in-
duced scattering depends on the number of photons
in the final state and also on the recoil determined
by the difference in orientations of the incident and
scattered photons. Therefore, the problem of induced
scattering in the pulsar magnetospheres can be for-
mulated in different ways, depending on the final state
of the scattered radiation considered.

As the pulsar radio emission is concentrated into a
narrow beam, in case of the induced scattering inside
the beam the recoil is small, whereas the photon occu-
pation numbers in the final state are large. This process
can lead to a substantial redistribution of radiation in-
side the beam and accounts for the observed microstruc-
ture of the radio pulses [19]. The scattering of the beam
photons over a larger angle may be much more efficient.
It will be noted that in the rest frame of the scattering
particles the photon frequency is almost unchanged in
scattering. Therefore, in the laboratory frame, the pho-
ton frequencies and orientations in the initial and final
states are related as 1 1 2 2(1 cos ) (1 cos ).ω γ −β θ = ω γ −β θ
The induced scattering between the photon states
with substantially different frequencies and orientations
may lead to the efficient energy transfer from the low
to the high frequency and, because of the decreasing
spectrum of the pulsar, cause giant pulses of radio emis-
sion [20].

The induced scattering of the beam photons in the
direction toward maximum scattering probability is also
of interest. This process requires the presence of the
background radiation out of the beam. Such radiation
may arise, e.g. as a result of the spontaneous scatte-
ring of the beam photons. Although the intensity of
the background radiation is very small, it can stimulate
sufficiently strong induced scattering. Then the beam
photons are scattered predominantly in a certain direc-
tion, and the intensity in this state may become com-
parable with the initial intensity of the beam. On a quali-
tative level, the induced scattering of the directed ra-
dio emission of pulsars into the background one was
first considered in [18]. The estimates carried out have
shown that this process may markedly affect the ob-
served radio emission, especially at low frequencies and
account for the low-frequency turnovers in pulsar spect-
ra. The problem of induced scattering of the directed
radio emission of a pulsar into the background is trea-
ted analytically, the growth rate and orientation of the
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scattered component examined, and the scattered com-
ponent identified with the precursor.

3. INTENSITY TRANSFER IN SCATTERING

The kinetic equation describing the induced scattering
of radiation off the particles of the electron-positron
plasma in a superstrong magnetic field has the form
[13, 18]

2 2 2
1

6 3 3 2
1

( ) sin sin( ) e er n n kn k
r mc

θ θ∂ = ×
∂ γ η η β∫

( ) ( )2 22
1 1 1 11 1 1

2 3 2
11 1

6 ( )( ) k n kk n k
k

⎧ η − η η η −η∂⎪× + ×⎨ ∂η γ γη⎪⎩

1
12

1
1 d ,

2

⎫⎡ ⎤η+η ⎪× − Ω⎬⎢ ⎥
γ ηη ⎪⎣ ⎦⎭

(1)

where ( )n k  and 1 1( )n k  are the photon occupation num-
bers in the initial and final states with the total num-
ber of the photons participating in scattering in the ele-
mentary spatial volume being 

33( )d (2 )N n k k≡ π =∫
3 3

1 1 1( )d (2 ) ;n k k π∫  the photon trajectory is assumed
to be a straight-line and is described by the coordinate r,

er  is the classical electron radius, en  is the number den-
sity of the scattering particles, θ  and 1θ  are the inclina-
tions of the initial and final wavevectors to the magnetic
field, 1 cosη ≡ −β θ  and 1 11 cos ,η ≡ −β θ  1dΩ  is the
elementary solid angle in the space of the final photon
states. In equation (1), the wavevector coordinates
before and after scattering are related by the equation

1 1,k kη = η (2)

which implies the equality of the photon frequencies
in the rest frame of the scattering particles. In the
problem of scattering in the pulsar magnetosphere the
incident radiation is the transverse electromagnetic
waves polarized either in the plane of the wavevector
and the ambient magnetic field (the ordinary polariza-
tion) or perpendicularly to this plane (the extraordi-
nary polarization). It will be noted that in the kinetic
equation (1) the occupation numbers n and 1n  refer
to the states with the ordinary polarization. In the

approximation of a superstrong magnetic field, the scat-
tering involving the photons of the extraordinary po-
larization is negligible, since the perturbed motion of
a particle (in the incident wave field) across the exter-
nal magnetic field is suppressed.

The pulsar radio emission is characterized by a strong
forward directivity: in each point of the pulsar emission
cone it is concentrated into a narrow beam of the ope-
ning angle 1 ,≤ γ  whereas the width of the emission
cone itself is typically much larger. Far from the emission
region the waves propagate quasitransversely with re-
spect to the ambient magnetic field (1 1,bγ θ  where

bθ  is the wavevector inclination to the magnetic field).
Therefore one can neglect the beam width, and in each
point of the scattering region the incident radiation can
be represented by a single wavevector ( , , ).b b b bk k= θ ϕ
In case of an effective induced scattering, the orienta-
tions of the scattered photons ( , )bg bgθ ϕ  are chiefly close
to the direction ( )max max, ,bg bgθ ϕ  which corresponds to the
maximum scattering probability at a fixed .bk  Note that
in the approximation of a superstrong magnetic field
the induced scattering process is characterized by the
azimuthal symmetry.

To find the value of max
bgθ  let us turn to the investi-

gation of the kinetic equation (1). At first, let us consider
the evolution of the occupation numbers of the beam,
so that ( )n k  refers to the beam photons, whereas 1 1( )n k
to the background photons. Given that 11 γ θ < θ  the
second term in the curly brackets is 2 2

1θ γ  times greater
than the first one and scales 4

1 .−∝ θ  Therefore one can
expect that the whole integrand peaks at max 1 .bgθ ≈ γ
Let us analyze more in detail the variation of the occu-
pation numbers at 1bgθ < γ  numerically. Fig. 1 shows
the rate of change of the background (Fig. 1, a) and the
beam (Fig. 1, b) versus .bgθ  Each plot shows both terms
in the integrand of the kinetic equation and their sum.
The beam is assumed to propagate in a given direction

bθ  and have the power-law spectrum, ( ) ,b bn k k−μ∝
where μ  is the spectral index, while the background
radiation has the uniform angular distribution and the
same spectrum. To obtain the kinetic equation descri-
bing the change of the background occupation numbers
in Eq. (1) it is taken that ( )n k  corresponds to the back-
ground photons, whereas 1 1( )n k  to the beam photons.

The growth rate of the background occupation num-
bers bgn r∂ ∂  is maximal at max 4 ,bg bgθ = θ ≈ γ  with the
width of the maximum being 1≈ γ  and the second term
of the kinetic equation making the dominant contribu-
tion (see Fig. 1, a). In our treatment 1 γ  is a small



Radio Physics and Radio Astronomy

22 Petrova

parameter, thus one can neglect the width of the maxi-
mum and take that 1 .bgθ ≈ γ  In the kinetic equation
for the beam photons, the integrand peaks at some-
what less values of bgθ  (see Fig. 1, b). However the
rate of change of the beam occupation numbers bn r∂ ∂
is in fact determined not only by the scattering proba-

bility but also by the background occupation numbers,
thus the beam photons are most efficiently scattered
in the direction max

bgθ  where the background occupa-
tion numbers can grow significantly. As can be seen
from Fig. 1, b, at max

bg bgθ = θ  the second term under
the integral in the kinetic equation is also larger than
the first one. Therefore, the first terms of the both ki-
netic equations can be neglected.

Thus, let us consider the induced scattering between
the two photon states with 1 ,θ γ  max

1 1bgθ = θ ≈ γ
and the frequencies related, in accordance with Eq. (2),
by 2 2

1 1 .ω = ωη η ≈ ωθ γ ω  It will be noted that
the pulsar emission cone is much wider than the direc-
tion diagram in each point, so that the transverse size
of the scattering region is much larger than the cross-
section of the photon beam. Then, although in the prob-
lem considered the latter is negligible, the transverse
size of the scattering region is still large enough not
to impose substantial restrictions on the evolution
of the photon occupation numbers. It is convenient
to introduce the intensities 3 2 2( ) 2

a
i n k cν = ω π and

3 2 2
1 1( ) 2 ,

b
i n k cν = ω π  where 2 ,aν = ω π  1 2bν = ω π
and the angular distributions are described by the
δ -functions. Performing integration over the so-
lid angle, let us proceed to the spectral intensities

, , ,d .
a b a b a bI iν ν≡ Ω∫  Intensity variation of the beam and

the background in the course of induced scattering
is approximately described by the following set of equa-
tions (see also [20]):

d
,

d
a

a b

I
aI I

r
ν

ν ν= −

(3)

d
,

d
b

a b

I
aI I

r
ν

ν ν=

where

2

2 5 4
24 .e e

a

n ra
m

≈
ν γ θ

(4)

Taking notice that const,
a b

I I Iν ν+ ≡ =  from
Eq. (3) we obtain the following equation for the func-
tion :

a b
u I Iν ν≡

FIG. 1: The rate of change of the photon occupation
numbers of the background (a) and the beam (b) versus
orientation of the background photons; 0.1,bθ =  5,μ =

100.γ =  The first terms of the kinetic equations are
shown by dashed lines, the second ones by dotted lines
and their sum by solid lines. In each plot, the curves are
normalized to the maximum modulo of the ordinate of the
corresponding total curve
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d ,
d
u Iau
r
= −

thus

(0) exp( )u u Iar= −

and the set of equations (3) is solved as

(0) (0)

(0) (0)

exp( )
 ,

1 exp( )
a b

a

a b

I I I Iar
I

I I Iar
ν ν

ν
ν ν

⎡ ⎤ −⎣ ⎦=
⎡ ⎤+ −⎣ ⎦

(5)

(0) (0)
 ,

1 exp( )b

a b

II
I I Iarν
ν ν

=
⎡ ⎤+ −⎣ ⎦

where (0)
a

Iν  and (0)
b

Iν  are the initial intensities
of the beam and the background, respectively. Thus,
in the approximation considered the total intensity of
the two beams remains constant. For the exact solution
this relation is violated, since the total number of the
photons participating in scattering is conserved, while
the energy of emission is partially transferred to the
scattering particles. Our result means that the intensity
redistribution between the beams holds much more ra-
pidly than the variation of the total intensity I, and
hereafter we are interested only in this process. As can
be seen from Eqs. (3) and (5), the photon frequency
increases, ,b aν ν  and they are directed almost along
the external magnetic field and the velocity of the scat-
tering particles, 1 1 .θ ≈ γ  This differs substantially from
the case of induced scattering in the absence of mag-
netic field, in which case the kinetic equation contains
only the term analogous to the first term in equation
(1), the photons are scattered mainly in the direction
antiparallel to the particle velocity and their frequen-
cies are decreasing monotonically.

As can be seen from Eq. (5), the efficien-
cy of induced scattering is characterized by the quan-
tity ,IarΓ ≡  whereas the extent of intensity trans-
fer from the beam to the background by the quantity

(0) (0) exp( ).
b a

I Iν ν
⎡ ⎤ξ ≡ Γ⎣ ⎦  At 1ξ  the intensities of

the beam and the background are (0)
a a

I Iν ν≈  and
(0) exp( ),

b b
I Iν ν≈ Γ  respectively. At 1ξ ≈  the quantity

b
Iν  becomes comparable with (0)

a
Iν  and its growth

reaches the stage  of saturation. At 1ξ  the intensi-
ties take the form (0)

b a
I Iν ν≈  and (0) .

a a
I Iν ν≈ ξ  Since

the background intensity is very low initially,
(0) (0)log 10,

b a
I Iν ν ≈ −  to provide 1ξ ≈  it is necessary

that 10,nΓ = ×  where n is the quantity of order unity.
In this case a substantial part of the beam intensity
is transferred to the background.

4. NUMERICAL ESTIMATE
OF THE SCATTERING EFFICIENCY

Let us estimate the efficiency of induced
scattering in a pulsar magnetosphere. Since

(0) (0) (0) ,
a b a

I I I Iν ν ν= + ≈  then (0) ,
a

I arνΓ ≈  where a is gi-
ven by equation (4). The radio emission spectrum
of a pulsar typically has a power-law form,

0

(0)

0
.

a
I I

−α

νν
⎛ ⎞ν= ⎜ ⎟ν⎝ ⎠

(6)

Here α  is the spectral index and the spectral intensity
at frequencies 0 100ν ≈  MHz is related to the pulsar
radio luminosity L as

0
0

,LI
Sν =

ν
(7)

where 2 2 4S r w= π  is the sectional area of the pulsar
emission cone at the distance r from the neutron star
and w is the pulsar beam width in the angular measure.
It is convenient to normalize the scattering particles num-
ber density to the Goldreich–Julian number density:

,e
Bn

Pce
κ= (8)

where κ is the multiplicity factor of the plasma and P
is the pulsar period. The pulsar magnetic field is as-
sumed to have a dipole structure, hence 3.en B r−∝ ∝
Using equations (6)-(8), one can estimate the scatte-
ring efficiency:
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12

1 1 2 2 4
28 2 2 8 1 2 8ˆ10 ( ) ,P L B w r− − − −α − −

∗ −Γ = κ γ ν θ γ (9)

where B∗  is the magnetic field strength at the neutron
star surface, the stellar radius is taken to be 610  cm
and all the quantities entering Eq. (9) are normalized
to their characteristic values: 28 1

28 10 erg s ,L L −= ⋅

12

12 2 2 8
2 2 810 G, 10 , 10 , 10 Hz,aB B∗ ∗= κ = κ γ = γ ν = ν

ˆ 0.4,w w=  1 0.1,−θ = θ  and 8
8 10 cm.r r=  One can

see that the scattering efficiency may run up to a few
tens, thus the intensity transfer from the beam to the
background can indeed be efficient.

5. ORIENTATION OF THE SCATTERED
COMPONENT

To determine the location of the scattered component
on the radio pulse profile let us first determine the site
of the scattering region in the pulsar magnetosphere.
According to Eq. (9), the explicit dependence of the
scattering efficiency on altitude above the neutron star
is sufficiently strong, 4.r−Γ ∝  However the implicit
dependence on r appears still stronger. Since rθ∝
(see below), then 2 2 2 .a b r−ν = ν θ γ ∝  Indeed, the back-
ground emission of a given frequency bν  is fed by the
emission of different frequencies aν  which satisfy the
condition 2 2 2( )b a rν = ν θ γ  at different altitudes. The
larger the altitude, the lower is the frequency ,aν  the
larger the intensity of the incident radiation (see equa-
tion (6)) and the stronger the scattering. Taking into
account these considerations, we have 2 4.r α−Γ ∝  For
the pulsars with precursors 2,α >  thus the scattering
efficiency increases with distance from the neutron star.
Note also that the original spectra of radio pulsars may
be steeper than those observed, since the induced scat-
tering is stronger at low frequencies (see equation (9))
and, consequently, may lead to flattening the observed
spectrum.

Thus, the induced scattering is most efficient near
the upper boundary of the scattering region, at dis-
tances of order of the cyclotron resonance radius .cr
This quantity is determined from the condition

22 2a Gπν γθ = ω  and equals

12

1 5 1 5 3 5
2 80.4 ( ) ,c

L

r B P
r

− −
∗= γ ν (10)

where Lr c≡ Ω  is the light cylinder radius, Ω  is the
angular velocity of the neutron star rotation, and it
is taken that 2 Lr rθ =  (see below). As can be seen
from estimate (10), the region of cyclotron resonance
typically lies in the outer magnetosphere of a pulsar,
at distances of order of the light cylinder radius.

Now let us turn to analyzing the location of the scat-
tered component on the pulse profile. Since the scattering
region lies well above the radio emission one, the ob-
served geometry of the rays is mainly determined by the
effect of magnetosphere rotation. For the sake of simpli-
city we dwell on the case when the pulsar magnetic axis
is perpendicular to its rotation axis. Let a ray directed
approximately along the magnetic axis be emitted at the
start time at point O (see Fig. 2). For the time t r c=  the
ray comes to the point of scattering S, whereas the mag-
netic axis turns by the angle .Lr c r rΩ =  The polar an-
gle of the ray with respect to the instantaneous orienta-
tion of the magnetic axis is ,Lr rχ =  and under the as-
sumption of the dipolar structure of the magnetic field the
angle between the unit vector of the magnetic field
strength b  and the magnetic axis equals 3 2.χ  In the
corotating frame of the neutron star the wavevector of
the scattered radiation is almost co-directed with ,b  while
in the observer’s frame it is shifted by the angle Lr r
in the direction of rotation due to rotational aberration.

FIG. 2: Scattering geometry in the magnetosphere
of a pulsar; MPk  and Prk  are the wavevectors of the
main pulse and precursor emission, respectively
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In total, the difference of longitudes of the main pulse and
the scattered component equals

.
2MP Pr

L

r
r

λ −λ = (11)

Note that the magnetosphere rotation leads
to deformation of the dipolar magnetic field, howe-
ver the change of orientation of a field line in
a fixed point of the field line tube is the effect
of the second order in Lr r  and in our conside-
ration it can be neglected. Furthermore, as can be seen
from Fig. 2, the precursor emission passes
a somewhat larger distance to the observer than the
main pulse emission, ( )1 cos 2 ,Lr r r rΔ = −⎡ ⎤⎣ ⎦  however
this effect changes the difference of longitudes by the
quantity ( )3L Lr r r r∝  and is also neglected here.

According to Eq. (11), the distance from the precur-
sor to the main pulse on the pulse profile
is proportional to the scattering region altitude. The
maximum difference of the component longitudes,

30 ,Δλ ≈ °  is reached at .Lr r≈

6. DISCUSSION OF THE RESULTS

In our treatment, it is shown that in the pulsar mag-
netosphere the induced scattering of radio emission
into the background in the approximation of a super-
strong magnetic field can be efficient. Then a substan-
tial part of the radio beam energy can be transferred to
the scattered component. The wavevectors of the scat-
tered radiation are directed approximately along the ex-
ternal magnetic field, and, as a result of rotational aber-
ration in the scattering region, the scattered compo-
nent appears on the pulsar profile somewhat earlier than
the main pulse. It is of interest to compare the physical
properties of the scattered radiation with the observed
features of the precursors.

In the approximation of a superstrong magnetic field,
only the photons of the ordinary polarization are in-
volved in scattering. Correspondingly, the scattered com-
ponent should be characterized by a high degree of
linear polarization. This is indeed a distinctive feature of
the precursor emission. Since the position angle of
linear polarization is determined by the magnetic field
orientation in the region of radio emission formation and
the main pulse and the precursor originate at different

altitudes in the magnetosphere, the values of the posi-
tion angle in these components may differ markedly. Such
a difference is observed, e.g. in the pulsar B1822-09 [3].
Moreover, if the main pulse is dominated by the emis-
sion of the extraordinary polarization, then the position
angle of the precursor should show an extra shift by
90 ,°  as is really the case in the Vela pulsar [4].

The precursors are known to be met in the pulsars
with relatively strong magnetic fields at the neutron
star surface (see, e.g. [3]). As can be seen from equa-
tion (9), the efficiency of induced scattering is propor-
tional to ,B∗  thus a marked growth of the scattered
component can indeed be expected in pulsars with
strong magnetic field. Furthermore, our estimate of Γ
shows that the precursor presence should be charac-
teristic of the short-period pulsars with high enough
radio luminosities.

The efficiency of induced scattering, which deter-
mines the scattered component growth, may strongly
vary from pulse to pulse because of fluctuations of
both the intensity of incident radiation and the para-
meters of the scattering particles. If the main pulse emis-
sion is dominated by the waves of the ordinary pola-
rization and the scattering is very strong ( 1),ξ  this
emission may be almost completely transferred to the scat-
tered component. Probably, this is the case in the pulsar
J1326-6700, when occasionally the main pulse inten-
sity drops below the detection level and a strong pre-
cursor arises on the profile [8]. In the pulsar B1822-09,
on the contrary, the precursor is visible only in strong
pulses [3, 6, 7]. In case of moderately strong scatte-
ring, 1,ξ ≈  the intensity of the scattered component
grows exponentially, ( )(0) (0)exp ,

b b a
I I I arν ν ν≈  whereas

the beam intensity is almost unaltered, (0) ,
a a

I Iν ν≈
so that with the fluctuations of (0)

a
Iν  the intensities 

b
Iν

and 
a

Iν  are correlated. In the individual pulses of the
Vela pulsar, stronger precursors exhibit larger separa-
tions from the main pulse [4]. Larger separations be-
tween the components imply larger altitudes of the scat-
tering region, .rΔλ ∝  In this case, the beam angle
of incidence is also larger, ,b rθ ∝  and at a fixed fre-
quency the precursor is formed due to scattering of the
lower-frequency radiation, 2 2( ) ,a b rν = ν θ γ  which is
much more intensive.

As estimate (9) can show, the efficiency of induced
scattering strongly increases with the frequency decrease,
so that the precursor spectrum should be steeper than
that of the main pulse. The precursor of the Crab pulsar
really has a very steep spectrum, 5α ≥  [3]. The flat spec-
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trum of the pulsar B1822-09 [3] can be explained by scat-
tering the main pulse emission beyond the low-frequency
turnover, which starts at frequencies 100≈  MHz, where-
as in the Crab pulsar the power-law segment of the spec-
trum extends down to the frequencies 10≈  MHz.

7. CONCLUSIONS

The induced scattering of radio emission off the parti-
cles of the ultrarelativistic electron-positron plasma in
the approximation of a superstrong magnetic field is con-
sidered. Scattering a narrow beam into the background
in the open field line tube of a pulsar is considered. The
scattered radiation is found to be concentrated in the
direction close to the velocity vector of the scattering
particles, its frequency being well above that of the inci-
dent radiation, 2 2 .b a aν ≈ ν θ γ ν  In scattering, the in-
tensity of the scattered component may grow substan-
tially, the total intensity of the beam and the background
being approximately conserved. In the limiting case of
extremely strong scattering (0)( ) ( )

b ab aI Iν νν ≈ ν  and, on
condition of the decreasing spectrum of the pulsar radio
emission, (0) ( ) ,

a
I −α
ν ν ∝ ν  the intensity of the scattered

component, ( ),
b bIν ν  may exceed the beam initial inten-

sity at the same frequency, (0) ( ).
a bIν ν

The region of an efficient induced scattering at a
superstrong magnetic field lies in the outer magneto-
sphere of a pulsar, at distances comparable with the cy-
clotron resonance radius. As a result of rotational aber-
ration, the scattered component precedes the main pulse
by 10 20÷ °  in pulse longitude and can be identified
with the pulsar precursor. The suggested mechanism of
the precursor formation based on the induced scattering
of the main pulse emission explains the physical con-
nection of the two components as well as a number of
the observed features of the precursor emission, in par-
ticular, high linear polarization of this component.
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The theory of induced scattering off the ultrarelativistic particles in a moderately strong magnetic field
is developed. The kinetic equations obtained are applied to the problem of induced scattering of pulsar radiation
out of the narrow beam. It is shown that the scattered radiation concentrates predominantly in the direction
antiparallel to the velocity of the scattering particles. Based on this process, we first suggest a physical
mechanism of the interpulse component of a pulsar. Our model explains the observed spectral and polarization
peculiarities of the interpulse emission as well as its connection to the main pulse.
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1. INTRODUCTION

Some pulsars have an interpulse, or a component
located approximately half way between the main pul-
ses. This component is met in the short-period pulsars,
with periods 0.6≤  s [1], and it is especially abundant
in the millisecond pulsars: among the known pulsars,
the interpulses are present in 2 % of the normal pulsars
and in 40 % of the millisecond ones [2]. In many cases,
the interpulse intensity is only a few per cent of that
of the main pulse. The spectral and polarization pro-
perties of the interpulse emission are also distinct. As
a rule, the interpulse spectrum is steeper than that of
the main pulse, so that the interpulse component
is most pronounced at low frequencies [3-5]. The inter-
pule emission is characterized by a high degree of
linear polarization, with the position angle being almost
unaltered across the component [6].

The interpulse intensity can be modulated at diffe-
rent timescales. Similarly to the main pulses, the inter-

pulses may exhibit a number of fluctuation phenomena,
such as the microstructure [7, 8], the subpulse modula-
tion [9], the pulse-to-pulse intensity fluctuations [10],
the emission mode switching [11-13] and giant pulses
[14-17]. Recently it has been discovered that the sub-
pulse modulation in the interpulse of the pulsar B1702-19
is characterized by the same quasi-periodicity as does
the modulation in the trailing part of the main pulse,
the variations of the modulation in the two compo-
nents being identical [9]. This clearly testifies to the
physical connection between the main pulse and the
interpulse.

In the literature, several geometrical models of the
interpulse formation are considered. It is usually taken
that the interpulses come from the pulsars, in which
the magnetic axis is almost perpendicular to the rota-
tion axis, so that the observer catches the emission
from the both magnetic poles of the neutron star [18].
However, in this two-pole model it is difficult to explain
the connection of the component emission. It was also
suggested to identify the main pulse and the interpulse
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with a pair of widely spaced conal components [1].
In this case, the unusually wide emission cone can
be attributed either to the location of the radio emis-
sion region at high altitudes in the magnetosphere
or to the small inclination of the magnetic axis to the
pulsar rotation axis. In these single-pole models, howe-
ver, a substantial distinction of the component intensi-
ties remains unclear. This difficulty was partially over-
come in another version of the single-pole model [19],
where the pulsar radio beam was assumed to present
two co-axial hollow cones, the outer and inner ones,
with the axes along the magnetic axis, the latter being
almost aligned with the pulsar rotation axis. Then the
main pulse and interpulse were identified with the outer
and inner conal components. This model explains the
geometry of the pulsar B0826-34 rather well, however,
it does not bear generality.

Recently, the bi-directional model was proposed [20]
in order to explain the profile of the pulsar B1822-09.
The main pulse and interpulse are suggested to ori-
ginate above one pole, but at different altitudes, with
the interpulse emission being directed backward,
to the neutron star, whereas the main pulse emission
forward, as usual. For the two components to be
visible to the observer, the pulsar magnetic axis should
be almost perpendicular to the rotation axis. The me-
chanism of the emission directed to the neutron
star was not discussed. Furthermore, the assumpiton
of independent generation of the main pulse and
interpulse in widely separated regions contradicts
the observed anticorrelation of the component inten-
sities [11-13].

In this paper, the physical mechanism of the inter-
pulse formation is first suggested. In contrast to the
preceding geometrical models, it explains the spectral
and polarization peculiarities of the interpulse emis-
sion and also its connection to the main pulse emis-
sion. In [21], we have considered the formation of
another component outside of the main pulse of a
pulsar – the precursor – based on the induced scat-
tering of ther main pulse emission into the back-
ground. It was shown that in the approximation of a
superstrong magnetic field the scattered component
is almost aligned with the field and because of rota-
tional aberration in the scattering region appears on
the pulse profile ahead of the main pulse. Here, we
extend the theory of magnetic induced scattering to
the case of a moderately strong magnetic field and,
making use of the kinetic equations obtained, solve

the problem of the induced scattering out of a narrow
beam. It is shown that in the case considered the main
pulse emission is mainly scattered backward – in the
direction antiparallel to the velocity of the scattering
particles – and forms the component separated from
the main pulse approximately twice as nearer as the
pulsar period.

2. PROBLEM STATEMENT

The pulsar magnetosphere is filled with the ultrarela-
tivistic electron-positron plasma, which streams along
the open magnetic field lines. As the radio emission
is generated deep in the open field line tube, it should
propagate through the plasma flow. The brightness tem-
peratures of the pulsar radio emission are very high,
so that the induced scattering off the plasma particles
may be efficient.

The external magnetic field affects the scatte-
ring process given that the frequency of radiation in
the rest frame of the scattering particles is much lower
than the electron gyrofrequency, (1 cos )′ω ≡ ωγ −β θ

( )G eB mcω ≡  (here ′ω  and ω  are the frequencies
of the incident radiation in the particle rest frame and
the laboratory frame, respectively, β  is the particle
velocity in units of the speed of light, ( ) 1 221

−
γ ≡ −β

is their Lorentz-factor, θ  is the angle between the
wavevector of the incident radiation and the magnetic
field, B is the magnetic field strength). The region of
cyclotron resonance of radio frequencies, ,′ω = ωG
usually lies in the outer magnetosphere of a pulsar,
at distances of order of the light cylinder radius, and
at lower altitudes in the open field line tube the mag-
netic field influence on scattering is significant.

In the literature, two regimes of the spontaneous
magnetic scattering are considered: the longitudinal and
transverse ones [22, 23]. The longitudinal scattering
occurs in a superstrong magnetic field, in which case
the velocity of the perturbed motion of the particle
in the field of the incident wave is aligned with the
field line of the external field. The transverse scattering
regime corresponds to moderately strong magnetic
fields, when the perturbed motion of the particle is a
drift in the crossed fields – in the electric field of the
incident wave and in the external magnetic field. If the
incident emission is inclined at an angle 1 1γ θ <  to
the magnetic field, the longitudinal scattering holds
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on condition that 1 ( ),′ω ω θγG  and the transverse
one on condition that 1 ( ) 1′θγ ω ωG  [23].

As a rule, at the conditions of the pulsar mag-
netosphere both regimes of the magnetic scattering
are realized. The induced scattering in the longitudi-
nal regime is considered in [21, 22, 24-26], and it is
shown that this process may have a number of im-
portant observational consequences. The transverse
induced scattering is discussed qualitatively in [22].
In our paper, the kinetic equation describing the
transverse induced scattering is derived and the prob-
lem of the induced scattering out of a narrow beam
is solved.

3. BASIC FORMALISM

Let the emission in the form of transverse electromag-
netic waves falls on the system of relativistic partic-
les. The induced scattering will be treated in the labo-
ratory frame. In a general form, the kinetic equation
for the induced scattering off the hot electrons in the
magnetic field is obtained in [22]. Following this work,
we shall repeat the derivation of the kinetic equation
in order to correct the error made by the authors. The
evolution of the occupation numbers in the course of
induced scattering in the magnetic field can be writ-
ten in the form

[ ]
3

1 13
d ( ) d d( ) ( ) ( )d ,

dt d(2 )
= + Δ −

π ∫
n k k Pf p p f p n k p

t
(1)

where ( )n k  and 1 1( )n k  are the photon occupation num-
bers in the initial and final states, 3 3( )d (2 )n k k π =∫

3 3
1 1 1( )d (2 )n k k Nπ ≡∫  is the total number of the pho-

tons involved in scattering, ( )f p  is the distribution
function of the scattering particles in momenta,

( )d ≡∫ ef p p n  is the number density of the scattering
particles, Δp  is the momentum increment in the ele-
mentary scattering act, d dP t  is the probability of
emitting a scattered photon by an electron in the unit
time. Here it is taken into account that in a strong mag-
netic field the transverse component of the momentum
is almost immediately lost because of synchrotron
re-emission, so that the particles perform one-dimen-
sional motion along the field line. Note that in equation
(21) from [22], which is analogous to our equation (1),

the distribution function in Lorentz-factors, ( )γN
stands instead of ( ),f p  which is incorrect. Indeed,
since ,≡ βγp mc  then ( ) ( )d d ( ) ,γ = γ = βN f p p mcf p
where β  is also an implicit function of p, i.e.

( ) ( ).β + Δ ≠ βp p p
In the scattering process, the longitudinal compo-

nent of the momentum is conserved:

1 1cos cos .Δ = θ − θp k k (2)

The probability of emitting the scattered photon is

3 3
4 1

13 2
1 11

d d d d( ) ,
d d (2 )
P k kn k c
t

⎛ ⎞σ η= η δ ω − ω⎜ ⎟Ω ηπ ω ⎝ ⎠
(3)

where 1 cos ,η ≡ −β θ  1 11 cos ,η ≡ −β θ  1d dσ Ω  is the
differential cross-section of scattering, 1dΩ  is the ele-
mentary solid angle in the space of the wavevectors
of the scattered photons and the argument of the
δ -function means equality of the frequencies of the
initial and final states in the rest frame of the scattering
particles, 1 1.ωγη = ω γη

In the kinetic equation (1), d d ,≡ ∂ ∂ + ∂ ∂t t c r
where r is the coordinate along the photon trajectory.
We assume the straight-line photon propagation and
consider the stationary case, omitting the explicit tem-
poral dependence of the quantities. Taking into account
that ( ) ( ) ,+ Δ − ≈ Δ ∂ ∂f p p f p p f p  and integrating
equation (1) by parts, we obtain

3

13
d d d .

d(2 )
∂ ∂ ⎛ ⎞= − Δ⎜ ⎟∂ ∂π ⎝ ⎠∫
n k Pc pn f p
r p t

(4)

Changing to the distribution function in Lorentz-fac-
tors, substituting equations (2) and (3) into (4) and
integrating over 1k  with the help of δ -function, we
find finally:

1 1 12
1

dd ( ) (cos cos ) d .
d

⎛ ⎞∂ β ω ∂ σ= γ γ θ − θ Ω⎜ ⎟∂ ∂γ Ω⎝ ⎠
∫ ∫

n F nn
r mc

(5)

Here ( )γF  is chosen to obey the normalization
( )d .γ γ =∫ eF n
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The kinetic equation (5) describes the photon
transfer in the course of induced scattering in a
strong magnetic field. As applied to pulsars, the scat-
tering far from the emission region is considered,
in which case the characteristic plasma frequency
is already much lower than the emission frequency,

24 .ω ω γ ≡ π γp en e m  Then the collective effects
can be neglected and the incident radiation appears
to be the transverse electromagnetic waves, whose
electric vector either lies in the same plane as the
wavevector and the external magnetic field (the ordi-
nary, or A-polarization) or is perpendicular to this plane
(the extraordinary, or B-polarization).

In the rest frame of the scattering particles, the
scattering cross-section in the magnetic field has the
form [27]

( )
2 2 2

2 2 2 1
1 22 21

cos cosd sin sin
d 1

′ ′θ θσ ′ ′= θ θ + ×
′Ω ′−ω ω

AA
e

e

G

rr

2
2 2

2cos sin
⎛ ⎞ω′ ′× Δφ + Δφ +⎜ ⎟⎜ ⎟′ω⎝ ⎠

G

2

1 12 22 sin sin cos cos cos ,
1

′ ′ ′ ′ ′+ θ θ θ θ Δφ
′−ω ω

e

G

r

( )
2 2 2

2 2
2 22 21

cosd sin cos ,
d 1

AB
e G

G

r ⎛ ⎞′θ ωσ ′ ′= Δφ + Δφ⎜ ⎟⎜ ⎟′Ω ′ω⎝ ⎠′−ω ω

(6)

( )
2 2 2

2 21
2 22 21

cosd sin cos ,
d 1

BA
e G

G

r ⎛ ⎞′θ ωσ ′ ′= Δφ + Δφ⎜ ⎟⎜ ⎟′Ω ′ω⎝ ⎠′−ω ω

( )
2 2

2 2
2 22 21

d cos sin .
d 1

BB
e G

G

r ⎛ ⎞ωσ ′ ′= Δφ + Δφ⎜ ⎟⎜ ⎟′Ω ′ω⎝ ⎠′−ω ω

Here the superscripts of σ  denote the polarization type
of the emission in the initial and final states, primes mark
the quantities in the particle rest frame, er  is the classi-
cal electron radius, ( , )′ ′θ φ  and 1 1( , )′ ′θ φ  are the sphe-
rical coordinates of the wavevectors ′k  and 1′k
in the system with the polar axis along the external

magnetic field, 1′ ′ω = ω  and 1.′ ′ ′Δφ ≡ φ − φ  In the super-
strong magnetic field, at ,ω → ∞G  only one of the
cross-sections (6) does not vanish:

2 2 2

1

d sin sin ,
d
σ ′ ′= θ θ

′Ω

AA

er

which describes scattering in the longitudinal regime.
Below we consider the induced scattering in somewhat
weaker magnetic fields for the frequencies much lower
than the resonance one, .′ω ωG

4. KINETIC EQUATIONS FAR OFF
THE RESONANCE

Far off the resonance, one can develop the cross-sec-
tions (6) into a series in 2 2′ω ωG  and examine the in-
duced scattering in a moderately strong magnetic field.
Retaining the terms 4 4 ,′∝ ω ωG  we obtain the follo-
wing expressions for the cross-sections:

2
2 2 2 2 2 2

1 12
1

d sin sin cos cos
d

′σ ω′ ′ ′ ′≈ θ θ + θ θ ×
′Ω ω

AA

e e
G

r r

( )
2

2 2
2sin 1 sin

⎡ ⎤′ω′ ′× Δφ + + Δφ −⎢ ⎥
ω⎢ ⎥⎣ ⎦G

2 2
2

12 21 sin 2 sin 2 cos ,
2

⎛ ⎞′ ′ω ω ′ ′ ′− + θ θ Δφ⎜ ⎟⎜ ⎟ω ω⎝ ⎠
e

G G
r

( )
2 2

2 2 2 2
2 2

1

d cos cos 1 cos ,
d

⎡ ⎤′ ′σ ω ω′ ′ ′≈ θ Δφ + + Δφ⎢ ⎥′Ω ω ω⎢ ⎥⎣ ⎦

AB

e
G G

r

(7)

( )
2 2

2 2 2 2
12 2

1

d cos cos 1 cos ,
d

⎡ ⎤′ ′σ ω ω′ ′ ′≈ θ Δφ + + Δφ⎢ ⎥′Ω ω ω⎢ ⎥⎣ ⎦

BA

e
G G

r

( )
2 2

2 2 2
2 2

1

d sin 1 sin .
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⎡ ⎤′ ′σ ω ω′ ′≈ Δφ + + Δφ⎢ ⎥′Ω ω ω⎢ ⎥⎣ ⎦
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G G
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By making use of the relativistic transformations



Volume 1, Number 1, 2010

31The Mechanism, II. The Interpulse

,′ω = ωγη  ,′Δφ = Δφ  1
1 2 2

1

dd ,Ω′Ω =
γ η

2

2
cos 1cos ,

1 cos
θ−β −ηγ′θ = =

−β θ βγ η
        

sinsin ,θ′θ =
γη

the cross-sections (7) can be expressed via the quan-
tities of the laboratory frame, substituted in (5)
and differentiated with respect to .γ  Using the trans-
formation ( ) 2 2

1 1 1d d d d ,′σ Ω = σ Ω γ η  one can see
that the cross-section expansion terms 2 2′∝ ω ωG

make the contribution ( )2 2 2 4
1∝ ω η ω ηG  in 1d d ,σ Ω

which does not depend on γ  explicitly, whereas
the implicit dependence via ( )η β  and 1( )η β  is very
weak: 3d d 1 ( ) 1 .β γ = βγ γ  The next terms of the
cross-section expansion, 4 4 2 2 ,′ ′∝ ω ω ω ωG G  intro-
duce the explicit dependence on γ  into 1d d ,σ Ω

( )4 4 2 4 6
1 ,∝ ω η γ ω ηG  and their derivatives with respect

to γ  may be significant. Thus, the derivatives of the
second and the first terms of the cross-section expan-
sions in the kinetic equation (5) differ by the factor

2 2 2′γ ω ωG  (without taking account of the geometrical
factors). This quantity may be both less and greater
than unity, therefore in general it is necessary to retain
both expansion terms in the cross-sections. Note that
the third expansion term, 6 6 ,′∝ ω ωG  (as well as all the
next following ones) shows the explicit dependence
on ;γ  its contribution to the kinetic equation differs
from that of the second term by the factor 2 2 1′ω ωG
and it can be neglected.

In total, we obtain the following kinetic equations
for the case of scattering in a moderately strong mag-
netic field:

( )
2

1 2 3 4( ) ,∂ → = + + +
∂

AA AA AA AAenrn A A I I I I
r mc

( )
2

1 2( ) ,∂ → = +
∂
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r mc

(8)

( )
2

1 2( ) ,∂ → = +
∂

BA BAenrn B A I I
r mc

( )
2

1 2( ) ,∂ → = +
∂

BB BBenrn B B I I
r mc

where →i j  denotes the scattering from the state with
i-polarization into the state with j-polarization, with
, , ;=i j A B
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1 cos2μ ≡ −β θ  and 1 11 cos 2 .μ = −β θ

Let us start the analysis of the kinetic equations
from the case .→B B  The first term of the equation,

1 ,BBI  describes the monotonic shift of the photon
distribution toward lower frequencies. The analogous
evolution of the photon spectrum is characteristic of
scattering in the absence of the magnetic field as
well. The second term, 2 ,BBI  does not have an ana-
logue in the non-magnetic case and is responsible for
the photon redistribution between the states sa-
tisfying the condition 1 1.ωη = ω η  Its sign is determined
by the sign of the factor 1( ),η−η  so that the occupa-
tion numbers decrease on account of scattering into
the states with 1θ > θ  and increase due to the photons
coming from the states with 1 .θ < θ  One can find that

( )2 2 2 2 2 2
2 1 ,≈ ω γ η ω χ γBB BB

GI I  where 1min( , ).χ ≡ θ θ
As a rule, in the pulsar magnetosphere the angle
of incidence of radiation satisfies the condition
1 1,γ θ <  so that in the case of a moderately strong
magnetic field 2

BBI  makes the dominant contribution
to the evolution of the occupation numbers. Note that
( )2 1 2 1, 1>AB AB AB ABI I I I  at the same condition.

The kinetic equation for the case →A A  has a
more intricate form. The term 1

AAI  does not tend to
zero at ω → ∞G  and describes the longitudinal scat-
tering (for a detailed investigation of this case see [21]).
According to the estimates, ( )2 1 3 1,AA AA AA AAI I I I ≈

( ) ( )2 2 2 2 2 2 4 4 4 4 4 4
4 1and .AA AA

G GI Iχ γ ω γ η ω ≈ χ γ ω γ η ω

Thus, in a moderately strong field 4
AAI  dominates and,

similarly to the terms , ,
2 ,BB AB BAI  describes the trans-

verse scattering. Then the photons are transferred
to the states with 1 .θ > θ  It will be noted that in the
regime of longitudinal scattering the photons are, on
the contrary, transferred into the states with 1θ < θ  (cf.
the signs of 4

AAI  and the second term in 1 ).AAI

5. INDUCED TRANSVERSE SCATTERING
OUT OF A NARROW BEAM

In the case of transverse scattering one can retain only
the last terms of the kinetic equations (8) and write
them in the form

1( ) d d ,∂ → = γ Ω
∂ ∫ ∫ ijn i j F ag
r

(10)

where
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i, j denote the photon polarization in the initial and
final states and
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The kinetic equations (10) differ only by the factors
,ijg  which are usually of order unity. Note also the

symmetry of these factors with respect to the initial
and final states.

Let us consider the transverse induced scattering as
applied to the pulsar magnetosphere. The pulsar radio
emission is characterized by a strong directivity forward.
In each point of the pulsar emission cone the radiation
concentrates in a narrow beam with an opening angle

1 ,≈ γ  whereas the width of the cone itself is much lar-
ger, 1 .γw  In our problem, one can neglect the width
of the beam and describe it by a single wavevector .k
Then the difference in orientations of the wavevectors
of the beams forming the pulsar emission cone deter-
mines the finitude of the observed radio pulse width.
Note also that the transverse size of the scattering re-
gion, which is determined by the width of the pulsar
emission cone, is sufficiently large not to impose sub-
stantial restrictions on scattering efficiency.

The beam propagates at an angle 1 1γ θ <  to
the magnetic field, and the photons are scattered out of
the beam. In case of efficient scattering, the radiation
groups close to the direction max

1θ  corresponding to the
maximum scattering probability. In contrast to the case
of longitudinal scattering, where max

1 1θ ≈ γ  [21],

for the transverse scattering max
1θ ≈ π  (see Eq. (11))

and, correspondingly, 2
1 1 4 .ω = ωη η = ωθ < ω  Fol-

lowing [21], let us proceed from the occupation num-
bers to the spectral intensities , , ,d ,≡ Ω∫a b a b a bI i  where

( )3 2 2( ) 2 ,≡ ω πai n k c  and ( )3 2 2
1 1 1( ) 2 ,≡ ω πbi n k c

and write the set of equations describing the intensity
redistribution between the two states in the form
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= − ija
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(13)

where
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γ ν θ ν
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(14)

γ  is the characteristic Lorentz-factor of the scattering
particles distribution, (2 ),ν = ω π  ,′ν = νγη  and

(2 ).ν = ω πG G  The set of the form (13) is solved and
investigated in detail in [21]:

(0) (0)

(0) (0)

exp( )
 ,

1 exp( )

⎡ ⎤ −⎣ ⎦=
⎡ ⎤+ −⎣ ⎦

ij
a b

a ij
a b

I I I Iag r
I

I I Iag r

(0) (0)
 ,

1 exp( )
=

⎡ ⎤+ −⎣ ⎦
b ij

a b

II
I I Iag r

where (0) (0).≡ + ≡ +a b a bI I I I I  The background
intensity grows substantially on condition that

( )(0) (0) exp( ) 1,≡ Γ ≥ij
a bx I I  where Γ ≡ij ijIag r  is the

scattering efficiency. In the pulsar magnetosphere this
condition is typically satisfied at 20 30.Γ = ÷ij

It is interesting to compare the efficiencies of scat-
tering out of the beam in the longitudinal and trans-
verse regimes. As can be found from equation (9), for a
fixed value of 1θ  the ratio 2 2 4 4 4

4 1 1 .′≈ θ θ γ ν νAA AA
GI I

However it should be kept in mind that in the two re-
gimes the scattering probability peaks at substantially
different values of 1.θ  Comparing equation (14) with
equation (4) from [21], we find the ratio of the scatte-
ring efficiencies

2 4

4 ,
3

′Γ γ ν=
Γ ν

t

l G
(15)
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where the indices t and l refer to the transverse and
longitudinal scattering, respectively. One can see that
not too far from the resonance the transverse scatte-
ring is much more efficient than the longitudinal one,
bear in mind, however, that at higher altitudes in the
pulsar magnetosphere the number density of the scat-
tering particles and the intensity of the incident radia-
tion decrease. In pulsars, both processes can be suffi-
ciently efficient (the numerical estimate of Γl  is given
by equation (9) in [21]). Though note that if the condi-
tion ( )4 2 43 1′ν γ ν >G  is already fulfilled in the emission
region, the longitudinal scattering does not occur at all.

6. DISCUSSION

Our consideration has proved that the induced scattering
of the pulsar radio emission out of the beam in a mode-
rately strong magnetic field may lead to a substantial in-
tensity growth in the direction antiparallel to the velocity
of the scattering particles, max

1 .θ = π  Thus, the scattered
component is directed backward – to the neutron star, –
similarly to the bi-directional model [20]. In the case of
orthogonal rotator, when the pulsar magnetic axis is al-
most aligned with the rotation axis, the scattered compo-
nent should appear on the profile as an interpulse. Just as
in the model [20], the region of the intepulse formation
lies in the outer magnetosphere, but now its location is
strictly specified: the transverse scattering takes place at
the altitudes of order of the cyclotron resonance radius
and, certainly, only in a small part of the open field line
tube traversed by the pulsar radio beam.

Although the main pulse and interpulse originate at
different altitudes in the magnetosphere, within the frame-
work of our theory these components are physi-
cally connected, since the interpulse emission is the scat-
tered emission of the main pulse. Consequently, one can
expect that the intensity modulation of the main pulse is
preserved in the interpulse. Recent observations of the
subpulses in the pulsar B1702-19 [9] show indeed that
the subpulse structure of the interpulse is modulated
with the same periodicity as does the structure of the
main pulse, with the corresponding shift by half of the
pulsar period. Thus, our mechanism of the interpulse
formation has the observational support.

In accordance with the numerical estimates (see equa-
tion (15) above and equation (9) in [21]), the shorter
the pulsar period, the higher the radio luminosity and the
lower the frequency, the more efficient is scattering. All
these trends are confirmed by observations. Until the

growth of the scattered component reaches the stage
of saturation, the intensity dependence on scattering
efficiency is tremendous, so that the interpulse should
rapidly grow with the frequency decrease and can sud-
denly appear on the pulse profile. Some pulsars really
show interpulses only in the decameter range [3-5].

In those cases when the interpulse is observed over
a wide frequency range, the growth of the scattered com-
ponent should approach the stage of saturation. Then
the intensity changes with frequency not so dramatical-
ly, however the spectrum of the interpulse should still
be somewhat steeper than the main pulse spectrum,
which is in line with the observations. Note also that
at the saturation stage the scattering should markedly
change the main pulse intensity as well, especially
at lower frequencies, so that the main pulse spectrum
flattens.

It will be noted that the emission comes to the inter-
pulse from the higher frequencies, 2

1 4 .ν ≈ νθ < ν  With
the decreasing spectrum of the pulsar this implies that
the interpulse intensity should be much less than the
original intensity of the main pulse at the same fre-
quency. The intensities of the two profile components
may become comparable only if the main pulse is sub-
stantially suppressed by scattering.

The position angle of linear polarization of the scat-
tered radiation is determined by the orientation of the

1 ×k b -plane in the scattering region and in general dif-
fers from the position angle of the main pulse, which is
determined by the orientation of the ×k b -plane in the
emission region (here b  is the unit vector along the
magnetic field). In the outer magnetosphere, the radio
beam occupies only a small part of the open field line
tube, and, consequently, in the scattering region the
magnetic field is almost homogeneous. Corresponding-
ly, the position angle should be almost constant across
the whole interpulse, which is in line with observations.
Although both orthogonal polarization modes can grow
due to scattering, the scattering efficiency may differ
substantially, so that one of the modes will dominate
and lead to high polarization of the interpulse emission.

7. CONCLUSIONS

The induced scattering of a narrow beam into the back-
ground off the particles of the magnetized ultrarelati-
vistic electron-positron plasma of a pulsar is conside-
red. The presence of an external magnetic field affects
the scattering process on condition that ,′ω ωG  and
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in this case the character of scattering can be different.
In the superstrong magnetic field, 4 4 21 ,′ω ω γG  the
longitudinal scattering holds: the beam photons are
scattered predominantly into the state with max

1 1θ ≈ γ
and 2 2

1 ,ω ≈ ωθ γ ω  i.e. the scattered component
is almost aligned with the external magnetic field. In
a moderately strong field, 2 4 41 1,′γ ω ωG  the
transverse scattering takes place, with the photons
being scattered chiefly backward, antiparallel to the ve-
locity of the scattering particles, so that max

1θ ≈ π  and
2

1 4 .ω ≈ ωθ < ω  As the magnetic field strength de-
creases with distance from the neutron star, both scat-
tering regimes are typically realized in the open field
line tube. Then two scattered components may form,
which are identified with the precursor and the inter-
pulse of the pulsar, respectively.

In this paper, the kinetic equations for the case of
transverse induced scattering are first derived and the
formation of the interpulse component is considered.
In the framework of the suggested physical model of
the interpulse the spectral and polarization properties
of this component as well as its connection to the main
pulse are explained.
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NEAR-FIELD SCATTERING OF WAVES
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I. FIELD FLUCTUATIONS
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An expression has been derived for the fluctuating field component scattered by a statistically rough surface.
The expression represents the leading term of a series expansion with respect to a large parameter which
determines the wave zone relative to the source and observation point positions.

The asymptotic representation is uniform with respect to the altitudes of these points above the surface
and can be used as a basis for determining power characteristics of the fluctuating field in the near zone
relative to the surface.

KEY WORDS: scattering, fluctuations, asymptotic representation, rough surface, spectrum

1. INTRODUCTION

Wave scattering by small random irregularities of inter-
faces have been theoretically investigated for more than
fifty years. Nevertheless there are only few results on
investigating near-field scattering which do not offer
sufficient generality. Many papers on radar investiga-
tions of the disturbed sea surface involve the specific
scattering cross-section obtained by Barrick [1] for
a small scattering area within which the wave front cur-
vature of the spherical wave can be neglected. Inade-
quacy of such a model for areas illuminated by the
radar antenna pattern is quite evident. The reason
is that the Fresnel parameter corresponding to the far-
field zone of the antenna aperture is ( )2 1,ka R  where
a is the antenna aperture size; 2 ,= π λk  with λ  being
the wavelength; and R is the range. Since the angular
size of the antenna pattern is ~ ,λ a  the transverse
dimension of the illuminated area can be estimated as

~ .λL R a  Therefore the respective Fresnel parameter
for the scattering area is ( ) ( ) 12 2 2~ 4 1,

−
πkL R ka R

which means that the wave front curvature across the
area should be taken into account.

The scattering model suggested by Bass and Fuks
(see [2], § 10) seems to be deficient for the following
reasons. First, the calculations have been performed
for the soft and rigid surfaces. Second, the applicabili-
ty of the calculation results to describing wave scatte-
ring by real surfaces still remains questionable. And
third, the writers themselves cast doubt on that the
introduction of the “spectrum separation range” (see
footnote on page 107) is valid for aperiodic surfaces.

Thus investigation of near-field scattering by rough
surfaces still remains a topical problem of great impor-
tance for practice.

2. INTEGRAL REPRESENTATION
OF THE FLUCTUATING FIELD COMPONENT

Let us obtain a representation for the scattered field
which would have no rigid limitations on the source
and observation point altitudes and the scattering area
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size, and hence on the Fresnel parameter magnitude. In
a particular case of scattering from an infinite surface
( )→∞L  this parameter assumes infinite value for any
observation point located at a finite range ( )< ∞R  from
the surface.

As we mentioned earlier [3], the perturbation method
of the theory of wave scattering by random surface
irregularities implies in fact three versions of the per-
turbation method which differ by the ranges of appli-
cability. The most general of these seems to be the
Kreichnan approximation [4] according to which the
scattered (fluctuating) field ( )2u R  at a time moment t
(the time dependent factor 0exp( )− ωi t  has been omit-
ted) can be expressed as

( ) 2 2
2 1 22

2 2

1d d
( )4 ⊥

⊥
= − ×

+ ηπ ∫∫ ∫∫S
z

iu R r k
k k k

( ) ( )( ) ( )
1

2 2 1 2 2 1 1 1 1
0

exp .⊥
=

⎡ ⎤× − + − ς⎣ ⎦z
z

i k r r k z z L U

(1)

Here

( )
11 1 1 0=ς =zL U

1

1 1 1 1 0 1
1 0

;
=

⎧ ⎫⎛ ⎞∂⎪ ⎪= ∇ ς ⋅∇ − ς + η⎨ ⎬⎜ ⎟∂⎪ ⎪⎝ ⎠⎩ ⎭ z

ik U
z

(2)

( )1 1=U U R  is the average field at the point

1 1 1( , );=R r z  1
1 1

∂ ∂∇ = +
∂ ∂x yi i
x y

 is the gradient with

respect to the variables 1x  and 1y  within the mean
plane S (see Fig. 1); 1 1( )= ς = ςz r  are random irregula-
rities of the scattering surface with the mean value

1 0= =z z  forming the plane S; 0 constη =  is the
impedance of the unperturbed (smooth) surface; and
( )2⊥η k  is the effective impedance which corresponds

to the average field and can be found through solving
the integral equation [4]

( ) ( )
( )

2 22
2 0 d

∞ ⊥
⊥ −∞

− χση = η + χ ×
χ + η χ∫ ∫

z

W k
k

k k

( )2 2 2
2 0 2 2 0 .⊥ ⊥ ⊥

⎡ ⎤ ⎡ ⎤× −χ − η η −χ + η χ⎣ ⎦⎣ ⎦ zk k k k k k k (3)

The exponential terms in Eq. (1) with different com-
ponents 2⊥k  within the plane 0=z  correspond to a
set of homogeneous ( )2⊥ ≤k k  and inhomogeneous

( )2⊥ >k k  plane waves with wave vector projections
on the oz-axis equal to 2 2

2 ,⊥= −zk k k  with Im 0.≥zk
Here 0= ωk c  is the wavenumber, with 0ω  and c being,
respectively, the frequency and phase velocity of the
wave.

Application of the iteration method to Eq. (3), with
( )2 0( ) ⊥η χ = η = ηk  having been used in the right-hand

part as a zeroth-order approximation, yields an expres-
sion possessing the symmetric property

( ) ( )2 2 ,⊥ ⊥η − = ηk k (4)

which follows from the symmetric property
( ) ( )− =W K W K  for the real field of random irregulari-

ties [4].
According to paper [4], the average field at the point

0 0 0( , )=R r z above the rough surface produced by a
point-size source located at the point 1 1 1( , )=R r z  is

( ) 2
1 1 1 0

1d exp ( )
2

∞
⊥ ⊥−∞

⎡ ⎤≡ = − ×⎣ ⎦π ∫ ∫ z

iU U R k ik r r
k

[ ] ( ) [ ]{ }1 0 1 0exp ( ) exp ( ) .⊥× − + +z zik z z V k ik z z (5)

Here 2 2 ,⊥= −zk k k  with Im 0,≥zk  and the reflection
factors of plane waves from a plane surface with the
effective impedance ( ),⊥η k

FIG. 1: Scattering geometry
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( ) ( )
( ) ,⊥

⊥
⊥

− η
=

+ η
z

z

k k k
V k

k k k
(6)

are determined by the relations as follows

( ) ( )
21 ⊥

⊥

+ =
+ η

z

z

kV k
k k k

(7)

and

( ) ( )
( )

2
1 .⊥

⊥
⊥

η
− =

+ ηz

k k
V k

k k k
(8)

With account of Eqs. (7) and (8), the expressions
Eqs. (1) and (5) can be brought, after rather simple
mathematics, to the form

( ) ( )
1

2
2 1 12 1 1 12 0

1 d ,
4 =

= − ς
π ∫∫S z

u R r I L U (9)

01 01
1 01 01

01 01

exp( ) exp( ) ,
′ ′≡ = + +

′
ikR ikRU I I

R R
(10)

with

12 12
12 12

12 12

exp( ) exp( ) .
′ ′= + +

′
ikR ikRI I

R R
(11)

In the derivations we have used the Weyl expan-
sion (see [5], page 215) in plane inhomogeneous waves,
viz.

2exp( ) 1d exp ( ) ,
2

∞
⊥ ⊥−∞

⎡ ⎤= +⎣ ⎦π ∫ ∫ z
z

ikR i k i k r k z
R k

(12)

with   ( , ),=R r z    0≥z    and   Im 0,≥zk

and have introduced the notation 01 1 0,= −R R R
12 2 1,= −R R R  01 1 0,′ ′= −R R R  and 12 2 1,′ ′= −R R R  with
0 0 0( , )′ = −R r z  and 1 1 1( , )′ = −R r z  being radius vectors

of the mirror reflections of the source and the scatte-
ring point within the plane 0.=z

The expressions for the values 01′I  and 12′I  are as
follows

( )2
01

1d 1
2

∞
⊥ ⊥−∞

⎡ ⎤′ = − ×⎣ ⎦π ∫ ∫ z

iI k V k
k

( )1 0 1 0exp ( ) ( )⊥⎡ ⎤× − + +⎣ ⎦zi k r r k z z (13)

and

( )2
12 2 2

2

1d 1
2

∞
⊥ ⊥−∞

⎡ ⎤′ = − ×⎣ ⎦π ∫ ∫ z

iI k V k
k

( )2 2 1 2 2 1exp ( ) ( ) .⊥⎡ ⎤× − + +⎣ ⎦zi k r r k z z (14)

Here it has been allowed for that the condition 1 0→z
results in 12 12.′ →R R

Thus to determine the scattered Eq. (9) and average
Eq. (10) fields it is necessary to calculate the values
given by Eqs. (13) and (14).

3. ASYMPTOTIC REPRESENTATIONS FOR ′01I
AND ′12I  IN THE WAVE ZONE ′ ′01 12( , 1)kR kR

Let us introduce a spherical coordinate frame with the
equatorial plane coincident with the plane 0,=z  i.e.
with the surface S, and the polar axis pointed along the
oz-axis. Then we can write

( )01 01 01 01 01 01 01 01 01sin cos , sin sin , cos .= θ ϕ θ ϕ θR R R R
(15)

Accordingly, the spherical coordinates for the vec-
tor 12R  are 12 ,R  12θ  and 12.ϕ  The respective coordi-
nates for the vectors 01′R  and 12′R  will be primed. The
wave vector can be expressed as

( )sin cos , sin sin , cos .⊥= + = θ ϕ θ ϕ θz zk k i k k k k (16)

The spherical coordinates for the vector
2 2 2⊥= + z zk k i k  are k, 2θ  and 2 ,ϕ  with the ranges of

variability as follows
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20 , 2 ;≤ ϕ ϕ ≤ π         20 , ;
2
π≤ θ θ ≤ (17)

and 2, .
2 2
π π− ⋅∞ ≤ θ θ ≤i

The angles θ  and 2θ  assume complex-valued mag-
nitudes along a broken line given by the inequalities
Eq. (17).

Then, the expressions Eqs. (13) and (14) take the
form (see [5], page 216; and [6-8])

[ ]2
201 0 0

d sin d ( , ) 1
2

π− ∞ π
′ = θ θ ϕ θ ϕ − ×

π ∫ ∫
iikI V

[ ] ( )01 01 01 01exp sin cos( ) exp cos cos ,′ ′ ′ ′× θ ϕ−ϕ θ θikr ikR
(18)

[ ]2
212 2 2 2 2 20 0

d sin d ( , ) 1
2

π− ∞ π
′ = θ θ ϕ θ ϕ − ×

π ∫ ∫
iikI V

[ ] ( )12 2 2 12 12 2 12exp sin cos( ) exp cos cos .′ ′ ′ ′× θ ϕ −ϕ θ θikr ikR
(19)

Here 01 01 01sin′ ′ ′= θr R  and 12 12 12sin ,′ ′ ′= θr R  and the
values ( , )θ ϕV  and 2 2( , )θ ϕV  have been obtained
through going over in the expressions for ( )⊥V k  and
( )2⊥V k  to the spherical coordinates of the vectors ⊥k

and 2 .⊥k
Let us denote

2 ( , )( , ) ( , ) 1 .
cos ( , )
− η θ ϕθ ϕ ≡ θ ϕ − =
θ + η θ ϕVf V (20)

The symmetry of the relation Eq. (4) implies the sym-
metry of ( , )θ ϕVf  with respect to the changes θ→ −θ
or ϕ→ϕ± π  (the changes result in ),⊥ ⊥→ −k k  viz.

( , ) ( , ) ( , ).−θ ϕ = θ ϕ± π = θ ϕV V Vf f f (21)

To integrate the expression Eq. (18) over ,ϕ  we will
use the expansion (see [9], page 987)

[ ] [ ]01 01exp cos( ) ( )exp ( )
∞

=−∞
′ ′ϕ −ϕ = ϕ−ϕ =∑ m

m
m

ip i J p im

[ ]01( )exp ( ) ,′= − ϕ−ϕ∑ m
mi J p im (22)

where 01 sin ,′= θp kr  and the relations as follows (see
[10], pages 180 and 183)

(1) (2)
2 2 2

1( ) ( ) ( )
2
⎡ ⎤= +⎣ ⎦m m mJ p H p H p (23)

and

( )(2) (1)
2 2exp( ) exp( 2 ) ( ).m mH p i i m H p− π = − π (24)

The result is

201 01 0
( 1) exp( 2 ) d sin

2
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∑ ∫
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01 01 22exp cos cos ( ) ( )′ ′× θ θ θ −mmikR H p C

( ) (1)2 01 01 220
d sin exp cos cos ( ) ( ) ,

π− + ∞ ⎤
′ ′− θ θ θ θ −θ ⎥

⎥⎦
∫

i
mmikR H p C

(25)

where 
2

2 0

1( ) exp( 2 ) ( , )d
2

π
θ = − ϕ θ ϕ ϕ

π ∫m VC i m f   are the

expansion coefficients of ( , )θ ϕVf  in the Fourier series
with respect to ϕ  which allow for the symmetry of the
transformation .ϕ→ϕ±π  As is usual for the wave
zone 01 1′kR  and for the saddle-point method [5, 6
and 8], we will confine the consideration to the first
term in the asymptotic expansion

2
(1)
2

2 16 1( ) ( 1) exp 1 ... ,
4 8

⎧ ⎫⎡ π ⎤ −⎪ ⎪⎛ ⎞≈ − − + +⎨ ⎬⎜ ⎟⎢ ⎥π ⎝ ⎠ ⎪ ⎪⎣ ⎦ ⎩ ⎭
m

m
mH p i p i

p p

(26)

which is valid in the case of a weak dependence of
( , )η θ ϕ  on .ϕ  Substitution of Eq. (26) into Eq. (25)

yields

2
01

01 2

exp d sin
4 2

π− ∞

π− + ∞

π⎛ ⎞′ = θ θ ×⎜ ⎟ ′π⎝ ⎠ ∫
i

i

RI i
r

[ ] [ ]01 01 01( , ) 1 exp cos( ) .′ ′ ′× θ ϕ − θ−θV ikR (27)
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Here we have taken into account that 01 sin ,′= θp kr
where 01 01 01sin ,′ ′ ′= θr R  and the Fourier expansion of

01( , )′θ ϕVf  is

01 01 2 01( , ) ( , ) 1 ( )exp( 2 ).
∞

=−∞
′ ′ ′θ ϕ = θ ϕ − = θ ϕ∑V m

m
f V C i m

(28)

Thus integration over ϕ  in the wave zone picks
up in the expansion only those waves whose azimu-
thal direction coincides with the direction 01′ϕ  of the
vector 01.′R

In a similar way we can obtain for the wave zone
12( 1)′kR

2
12 2 2

12 2

exp d sin
4 2

π− ∞

π− + ∞

π⎛ ⎞′ = θ θ ×⎜ ⎟ ′π⎝ ⎠ ∫
i

i

RI i
r

[ ] [ ]2 12 12 2 12( , ) 1 exp cos( ) .′ ′ ′× θ ϕ − θ −θV ikR (29)

The integrals Eqs. (27) and (29) over a complex plane
of angles are typical of the problem on the field from a
point-size source above an interface [5, 6, 8], however
with one complication, specifically, the impedance is
dependent on the angle θ  or 2.θ  To the best author’s
knowledge, there is no precise method for calculating
integrals like these. However, the saddle-point tech-
nique is quite an efficient asymptotic method for calcu-
lations in the wave zone.

4. SADDLE-POINT METHOD
FOR THE INTEGRALS ′01I  AND ′12I

The saddle-point technique is presented in mono-
graphs [5-8] with different degrees of furnishing the
details required for our purposes. In the greatest detail
the method is discussed in [8]. However the selection
of the coordinate frame in this monograph differs from
that used in the present study and in [5-7]. As a result,
conformal maps of the complex plane are different too
which necessitates a brief description of the technique
using some details from [5-7]. Felsen and Marcuvitz [7]
presented only schematically the solution of the prob-
lem on the filed produced by a point-size source field
near an impedance plane. At the same time the assump-

tion concerning the character of the solution 0(sin ~ 1θ
or 0 2)θ ≈ π  made by Brekhovskikh [5] in the very
beginning of § 20 (see page 236) does not allow the
obtained results to be applicable for arbitrary locations
of the source and observation point. Apparently, for
this reason the solution was not included in the gener-
al form in the second edition of the monograph in 1973.

Going over from the complex plane of ⊥k  to the

plane of θ  requires the value ( )1 22 2
⊥= −zk k k  to be

unambiguously determined on this plane. One of the
conditions which determines such a selection for real-
valued 0>zk  is (see [6], page 27)

0>zk    for   .⊥− < <k k k (30)

The requirement of finiteness of the integrand in Eq. (13)
for 1 0⋅ + →∞zk z z  yields the second condition for
all admissible complex-valued ,⊥k  viz.

Im 0,>zk (31)

To completely determine the two-valued function
,zk  it is necessary to introduce a two-sheeted Rieman-

nian surface of the complex-valued variable ,⊥k  with
the transition from one sheet of which to another
being performed along the section line. The selection
of the surface determines locations of the domains with-
in the complex plane of ⊥k  which correspond to va-
lues of the square root with Im 0>zk  and Im 0<zk
(see [6], page 28).

Since sinθ  is a periodic function, the transfor-
mation

sin ,⊥ = θk k (32)

involved in our consideration, maps the entire ⊥k -plane
on any of the strips of width 2π  lying within the
θ -plane. The inverse function ( )1sin− zk k  is multi-
valued on the ⊥k -plane, with the branching points
given by the equality

d cos 0.
d
⊥ = θ =
θ

k k

The first-order branch points are located at .⊥ = ±k k
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Substitution of ,θ = θ + θr ii  with θr  and θi  being
the real and imaginary parts of ,θ  into Eq. (32) yields
for ⊥ ⊥ ⊥= +r ik k ik

sin cosh⊥ = θ θr r ik k   and  cos sinh .⊥ = θ θi r ik k (33)

The four quadrants of the ⊥k -plane are mapped
into four half-strips (see Fig. 2) which correspond to

Eq. (33) and form the strip ,
2 2
π π− ≤ θ ≤r  .−∞ ≤ θ ≤ ∞i

These ranges are periodically repeated within the
θ -plane as θr  is changed by a value multiple of 2 .π

Let us draw cut sets within the ⊥k -plane along the
real axis from −k  to −∞  and from +k  to ,+∞  and
assume

2 2 cos⊥= − = + θ =zk k k k

(cos cosh sin sinh ).= θ θ − θ θr i r ik i (34)

Since with 0⊥ =k  we have ,=zk k  the choice of
this sign corresponds to mapping the point 0=zk  into
the point 0.θ =  Moreover the strip 

2 2
π π− ≤ θ ≤  corre-

sponds to the upper sheet of the surface where
Re 0,>zk  with Im 0>zk  within regions 2 and 4 while
Im 0<zk  within regions 1 and 3. Any adjacent strip
of width π  on the plane of complex-valued θ  can
represent the second sheet of the Riemannian surface.
Figs. 2 and 3 illustrate the correspondence of the re-
gions for this mapping.

The function 01( , )′θ ϕVf  given by the relation Eq. (20)
shows the presence of a pole in the point θ = θp  which
is determined from the condition

01cos ( , ) 0.′θ + η θ ϕ = (35)

In the case of small values of the impedance ( )1η
Eq. (35) can be solved by the iteration method. With

2
πθ ≈p  selected in the capacity of the zeroth-order

approximation, the next iteration yields

01cos , .
2
π⎛ ⎞′θ = −η ϕ⎜ ⎟⎝ ⎠p (36)

The physically realizable values of the impedance
are characterized by Re 0.η >  Hence, θ p  lies within

FIG. 2: The plane of complex-valued ⊥k

FIG. 3: The plane of complex-valued  θ

either the plane ,
2
π⎛ ⎞π⎜ ⎟⎝ ⎠

 or ,
2
π⎛ ⎞−π −⎜ ⎟⎝ ⎠

 near the real

axis. The second value can be disregarded [8]. The
reason is that the corresponding point is located
rather far from the saddle-point integration path
and hence, provides for an exponentially small con-
tribution. Therefore the value ,

2
πθ = + Δθp p  with

01sin , ,
2
π⎛ ⎞′Δθ = η ϕ⎜ ⎟⎝ ⎠p  remains alone to be taken into

account. Whence it follows that

01, .
2 2
π π⎛ ⎞′θ ≈ + η ϕ⎜ ⎟⎝ ⎠p (37)

Omitting the argument of the impedance for the sake
of brevity of the notation, we can write for the real,

,θpr  and imaginary, ,θpi  parts of θ
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2
πθ = + ηpr r    and   .θ = ηpi i (38)

Under the condition 01 1,kR  the quick variations
of the integrand in Eq. (27) with changing θ  are pro-
vided by the exponential factor [ ]01exp ( ) ,′ θikR f  where

01( ) cos( ).′θ = θ −θf i (39)

The stationary point 01′θ = θs  is determined from
the condition

01
d sin( ) 0,
d s

f i
θ

′= − θ−θ =
θ

(40)

with ( ) cos0 .sf i iθ = =  According to the saddle-point
technique let us introduce a new variable s through the
relation 2( ) ( ) ,θ − θ =sf f s  whence it follows that

( ) 012 exp 4 sin .
2
′θ − θ= ± πs i (41)

The saddle-point integration path is determined from
the condition

Im ( ) Im ( ) 1.θ = θ =sf f (42)

Making use of Eq. (41) we can obtain

1

0

d d 2 exp( 4).
d dS s

s i
s

−

= θ

θ ⎛ ⎞= = ± π⎜ ⎟θ⎝ ⎠
(43)

The argument in Eq. (43) near θ = θs  should coin-
cide with the argument .θ − θs  Hence the upper sign
“+” should be selected in Eqs. (41) and (43).

The equation (42) for the saddle-point integration
path yields

01cos( )cosh 1′θ − θ θ =r i (44)

or

( )1
01 cos 1 cosh .−′θ −θ = θr i (45)

With θ → ±∞i  the contour of integration asymptoti-
cally tends to 01 2,′θ − θ = ±πr  as is shown in Fig. 4.
The process of conversion of the initial contour into the
saddle-point integration path can be traced using the
transformation of the plane θ  into the plane s given by
Eq. (41). The branching points ( )2 exp 4= ± = ± πbs s i
and cut sets are shown in Fig. 5 borrowed from [6] (see
page 481).

The pole 
2
πθ ≈ +ηp  is transferred into the point

= ps s  according to the relation

( ) 012 exp 4 sin .
2
′θ − θ

= π p
ps i (46)

FIG. 5: The initial, P ,′  and modified, P contours
of integration within the s-plane, with

( ) 01
1,2 2 exp sin

4 2
⎛ θ ⎞π⎛ ⎞= + π 4 ±⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

s i

FIG. 4: The initial, P,  and modified, ,zP  contours
of integration within the θ -plane
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Making use of Eq. (46) we can obtain for small im-
pedances ( )1η  [8]

( ) 1 2
01 01exp 4 1 cos 1 sin .⎡ ⎤′ ′≈ π + η θ − −η θ⎣ ⎦ps i (47)

By introducing the grazing angle

01 01,
2
π′ ′ψ = − θ (48)

it can be shown [8] that Im 0<ps  provided that

01′η > η +ψi r    and   arg 4,η < −π (49)

i.e. the impedance should be of a “strongly inductive”
character. In this case the initial contour crosses the
pole in the course of transformation into the saddle-
point integration path. For this reason it is necessary
to add the residue in the point = ps s  to the integral
taken over the contour of the quickest descent.

In the case of “weakly inductive” or “capacitive”
impedances we have arg 4,η > −π  and hence the con-
tour of integration does not cross the pole in the course
of transformation since the latter lies within the upper
half-plane (Im 0).>ps

It follows from the condition Eq. (49) that the gra-
zing angle for which Im 0<ps  with arg 4η < −π  is
small, viz.

01 1.′ψ < ψ = η −ηcr i r

To summarize we can write

01

0, if 0,

, if 0,

>⎧⎪′ = + ⎨ <⎪⎩

p
qd

p

s
I I

Q s
(51)

where

( ) ( )01

01

exp
4 exp 4

2
′

= − πη π ×
π ′p

ikrkQ i i
r

1 0exp ( ) ,⎡ ⎤× − η +⎣ ⎦pik z z (52)

( )01 01( , ) 2, ,′ ′η = η θ ϕ ≈ η π ϕp p

and qdI  is the integral taken over the modified contour
of the quickest descent.

The value Q describes a surface wave (Cen-
nek wave) decaying away from the boundary as

0 1exp ( ) ,⎡ ⎤− η +⎣ ⎦pik z z  while as 011 ′r  along the boun-
dary.

The integral qdI  can be expressed as

2
01

01
01

exp( )exp( ) ( )d ,
∞

−∞

′−′= Φ
′π −∫qd

p

kR skI ikR s s
r s s

(53)

1 2
01

01 01

2 ( , )(sin )( ) ( ).
cos ( , )cos

2

′− η θ ϕθΦ = −′θ − θ ′θ + η θ ϕ ps s s (54)

Here ( )θ = θ s  and 
1dd d

d

−
⎛ ⎞θ = ⎜ ⎟θ⎝ ⎠

s s  are inverse functions

of s determined from the dependences Eqs. (41) and
(43), respectively.

When going over from θ  to s we have multiplied
and divided the integrand by ( )− ps s  in order to iso-
late the pole 1( )−− ps s  in the explicit form. It is evident
that ( )Φ s  in Eq. (54) is a regular function in the point
= ps s  and can be expanded in powers of s in the vi-

cinity of the saddle point. Cutting the series expansion
down to the leading term, we have

01 01
01

01 01 01

2 ( , )( ) (0) ... sin ( ).
cos ( , )

′ ′− η θ ϕ′Φ = Φ + ≈ θ −
′ ′ ′θ + η θ ϕ ps s

(55)

Here we have taken into account that 01′θ→ θ  with
0.→s

Multiplying the integrand by 1
+

≡
+

p

p

s s
s s

 and taking

into account the property of its parity we can obtain

2 01 01 01

01 01 01

2 ( , )
cos ( , )

′ ′ ′η θ ϕ≈ ×
′ ′ ′θ + η θ ϕ πqd p

kRI s

2
01 01

2 2
01

exp( ) exp( ) d .
∞

−∞

′ ′−×
′ −∫

p

ikR kR s s
R s s

(56)
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Denoting 01′ν = kR s  and 01′ν =p pkR s  and taking
into account the relation Eq. (20) we can write

[ ]
2 2

01
01 2 2

01

exp( ) exp( )1 ( , ) d .
∞

α −∞

ν′ −ν′ ′= − θ ϕ ν
′ π ν − ν∫p

qd
p

ikRI V
R

(57)

As can be shown [8], the integral in the right-hand
part of Eq. (57) is reducible to an expression containing
the error function of a complex-valued argument, viz.

2 22( ) exp( ) exp( )d ,
∞⋅α

ν

πν = −ν ν ν
ν ∫

p

i
p p

p
I (58)

where sgn Im sgn Im .α = ν =p ps  Similar integrals in [5]
(see page 241) and [6] (see page 496) can differ by the
factor ±i  in front of the integration variable.

In the presence of the residue θ  in the pole we can
combine it with qdI  to obtain a unique asymptotic rep-
resentation (see Eq. (14.45) in [8]) which is indepen-
dent of the value sgn Im ,ps  viz.

[ ] 201
01 01 01

01

exp( )1 ( , ) 2 exp( )
′′ ′ ′= − θ ϕ ν −ν ×

′ p p
ikRI V

R

2exp( )d .
∞

−∞
× ν ν∫

i
(59)

Now let us substitute the obtained expression into
the formula Eq. (27) and the result into Eq. (10). Then,
making an identical transformation consisting of adding
and subtracting the term 01

01 01
01

exp( ) ( , ),
′ ′ ′θ ϕ

′
ikR V

R
 we ar-

rive at

01 01
01 01 01

01 01

exp( ) exp( )( , )
′′ ′= + θ ϕ +

′
ikR ikRI V

R R

[ ] 01
01 01 01

01

exp( )1 ( , ) ,
′′ ′ ′+ − θ ϕ

′
ikRV W

R
(60)

where

2 2
01 1 2 exp( ) exp( )d

∞

ν
′ = + ν −ν ν ν∫

p

i
p pW (61)

is the “propagation factor” for the path 01.′R  It is evi-
dent that the “propagation factor” introduced in such
a manner coincides with the respective expression
for the vertical component of the electric field radiated
by a vertical electric dipole (see [8], page 105).

In a similar way we can obtain

12 12
12 12 12

12 12

exp( ) exp( )( , )
′′ ′= + θ ϕ +

′
ikR ikRI V

R R

[ ] 12
12 12 12

12

exp( )1 ( , ) .
′′ ′ ′+ − θ ϕ

′
ikRV W

R
(62)

The asymptotic behavior shown by the “propa-
gation factors” 01′W  and 12′W  is determined by mag-
nitudes of the respective numerical distances. In the
case of 01′W  we have

( )201 01′ ′= =pw kR s

2
01 01 011 sin 1 cos .⎡ ⎤′ ′ ′= + η ψ − −η ψ⎢ ⎥⎣ ⎦

ikR (63)

Call to mind that 01′ψ  is the grazing angle deter-
mined by Eq. (48). The corresponding expression for

12′w  can be obtained by changing 01 12′ ′→R R  and

12 122
π′ ′ψ → −θ  in Eq. (63).

Numerical distances increase with the grazing angle.
For 01 12 0′ ′ψ = ψ =  we have

2
01 01 2′ ′≈ ηw ikR    and   2

12 12 2,′ ′≈ ηw ikR (64)

whereas if 01 12 2,′ ′ψ →ψ = π  then

01 01 1 1′ ′≈ + ηw kR  and 12 12 1 1.′ ′≈ + ηw kR (65)

In the case given by Eq. (64) 01′w  and 12′w  can
assume both small and large magnitudes depending on
the values 01′kR  and 12 ,′kR  and smallness of 2 .η  Ex-
cepting the case of a “strongly inductive” impedance
(arg 4),η > −π  the propagation factor can be asymp-
totically expressed as

01 01 011 ( )′ ′ ′≈ + π +W i w O w    for   01 1′w (66)
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or

01
01 01

1 31 ...
2 2

⎛ ⎞′ ≈ − + +⎜ ⎟′ ′⎝ ⎠
W

w w
   for   01 1.′w (67)

The behavior shown by 01I  and 12I  as the inci-
dence (grazing) angle is changed can be rather easi-
ly analyzed for limiting cases. If 01 12 Br, ,′ ′ψ ψ ψ
where Br ~ψ η  is the Brewster angle, then

01 12cos ,cos′ ′θ θ η  and 01 01 12 12( , ), ( , ) 1′ ′ ′ ′θ ϕ θ ϕ →V V
while the factor [1 ]−V  in Eq. (60) tends to zero
([1 ] 0).− →V  In addition the case given by Eq. (67) is
realized. As a result, 01I  and 12I  describe the “two-beam
interference” for the signal from a real source and that
from the mirror source multiplied by the respective reflec-
tion factor. In the opposite case with 01 12 Br,′ ′ψ ψ ψ
we have 01 12cos ,cos′ ′θ θ η  and accordingly

01 01;′ →R R  12 12;′ →R R  01 01 12 12( , ), ( , ) 1′ ′ ′ ′θ ϕ θ ϕ → −V V
and [1 ] 2.− →+V  As a result, the direct and mirror
beams cancel each other and the field is determined by
the effects of reradiation and attenuation due to the
interface.

To substitute Eq. (2) into Eq. (1) it is necessary
to calculate the respective derivatives of 01I  at 1 0.=z
The structure of the formula Eq. (60) for 01I  is such
that the main contribution to the result of differentia-
tion is provided by the exponential factors, viz.

01
1 01 0

01

exp( )
= ⊥∇ ≈ α ×z

ikRI ik
R

{ }
1

01 01 01 01 0(1 ) (1 ) (1 ) ,=
′ ′ ′ ′× + + − + zV V W O kR

1

01
01

1 010

exp( )

=

∂ ≈ α ×
∂ z

z

ikRI ik
z R

( ){ }
1

01 01 01 01
0

( 1 ) (1 ) 1 ,
=

′ ′ ′ ′× − + + − +
z

V V W O kR

and

1

2
2 2 01

012
011 0

exp( )

=

∂ ≈ − α ×
∂ z

z

ikRI k
Rz

( ){ }
1

01 01 01 01
0

(1 ) (1 ) 1 .
=

′ ′ ′ ′× + + − +
z

V V W O kR

Here 
1

0

01 0

,
=

−α = −z
z

z
R

 
1

0

01 0=

α =
′z

z

z
R

 and

1 1
01 010 0 .= =

′=z zR R  Also we have used the notation

01 01 01( , )′ ′ ′= θ ϕV V  to make the writing shorter. If

01

1 1,
′kR

 then in the above expressions we can con-

fine ourselves to considering the terms represented
in the explicit form.

Taking into account the above consideration the
field fluctuations can be represented as

[ ]
1

2 01 12
2 1 01 12

01 12 0

1( ) d exp ( ) .
4 =

= − +
π ∫∫S z

J Ju R r ik R R
R R

(68)

Here

{ 2 2
01 1 1 1 01[ ](1 )⊥ ′= α ⋅∇ ς + α ς + +zJ ik k V

2 2 2
0 01 1 1 1 1(1 ) [ ⊥′+ α η − ς + α ⋅∇ ς + α ς +z zk V ik k

}
1

2
0 1 01 01

0
](1 )

=
′ ′+ α η ς −z

z
k V W (69)

and

{ }
1

12 12 12 12 0
(1 ) (1 ) ,

=
′ ′ ′= + + −

z
J V V W (70)

where 1

01
⊥α = r

R
 and 0

01
,α =z

z
R

 with 2 2
01 1 0= +R r z

at 1 0.=z
The integrand in Eq. (68) has been reduced under

the assumption that the following conditions hold
01 1,′kR  12 1′kR  and 01 12cos ,cos 2.′ ′θ θ ≠ π  The case

where these conditions violate requires using suitable
approximations which do not affect essentially the
amount of the integral. The heights 0z  and 1z  can
assume here any arbitrary magnitudes. With this in mind
the expression Eq. (68) can be regarded as an initial
relation for calculating other statistics of the fluctua-
ting field.
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The average intensity and frequency spectrum of fluctuations of the near field scattered by a statistically
rough surface is determined. The derivations are based on the asymptotic expansion of the fluctuating field
obtained in Part I of the paper. Limiting transitions to the familiar particular cases are analyzed.

KEY WORDS: scattering, fluctuations, roung surface, spectrum, intensity

Part II of the paper is aimed at determining the average
intensity and frequency spectrum of the fluctuating
field component based on the integral representation
for the field that has been derived in Part I [1].

Proceeding from the expression Eq. (68) of paper
[1], let us represent the average intensity of field fluc-
tuations as (the asterisk “*” stands for complex conju-
gation)

( ) ( ) ( )2
2 2 2u R u R u R∗≡ =

2 2
1 12

01 01 12 12

1 1d d
(4 ) S

r r
R R R R
′= ×
′ ′π ∫∫

[ ]{ } 1 1

* *
01 01 12 12 01 01 12 12 0exp ,z zik R R R R J J J J ′= =′ ′ ′ ′× − + −

(1)

where the substitutions as follows 1 1r r′→  and 1 1z z′→
have been made in all the primed values. Call to mind
that

1
1

2 2
01 01 1 00 0

( ) ,z z
R r z z= =

= + −   with  01 1 0,r r r= −   and

1
1

2 2
12 12 2 10 0

( )z z
R r z z= =

= + −   with  12 2 1,r r r= −

where 0 0( , ),r z  1 1( , )r z  and 2 2( , )r z  are coordinates of
the source location, and the scattering and observa-
tion points, respectively; and 01J  and 12J  are deter-
mined by Eqs. (69) and (70) of paper [1].

Let us denote 01 01r r′ρ = −  and use the Fresnel dif-
fraction approximation. Then retaining in the expansions
the second-order terms with respect to ,ρ  in contrast
to [2] (see page 104), and selecting the coordinate ori-
gin at 0 0r =  (in this case 01 1r r=  and 12 2 ),r r D= =  we
can obtain

1

1

2 2
2 2

01 1 0 010
01 0

( )( ) ...
2z

z

R r z R
R

⊥
⊥=

=

ρ − ρα′ = +ρ + ≈ +ρα + +
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and

1

2 2
12 1 2 120 ( )zR D r z R ⊥=
′ = − −ρ + ≈ −ρβ +

1

2 2

12 0

( ) ... .
2

z
R

⊥

=

ρ − ρβ+ +

Here 1

01

r
R⊥α =  and 1

12
.D r

R⊥
−β =

In this notation we can write

2 2
01 01 12 12 ( ) ,x y x yR R R R A B C⊥ ⊥′ ′− + − = β −α ρ+ ρ + ρ + ρ ρ

(2)

where ( , ),ρ = ρ ρx y  with ρx  and ρy  being component
of the vector ρ  within the plane S, and ( , )⊥α = α αx y
and ( , ).⊥β = β βx y

The equality Eq. (2) involves the following contrac-
ted notation for real-valued quantities

2 2

01 12 01 12

1 1 1 1 0,
2 2

x xA
R R R R

⎛ ⎞⎛ ⎞ α β= − + + + <⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2 2

01 12 01 12

1 1 1 1 0,
2 2

y yB
R R R R

⎛ ⎞α β⎛ ⎞
⎜ ⎟= − + + + <⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

and 
01 12

0.
α α β β

= +x y x yC
R R

≶

Then the exponential term in the integral Eq. (1) can be
brought to the form

{ }01 01 12 12exp ( )ik R R R R′ ′− − + − =

{ }exp ( ) ( ),⊥ ⊥= − β −α ρ ⋅ ρik M (3)

where the exponent ( )ρM  can be represented as the
Fourier expansion

( ){ }2 2( ) expρ = − ρ + ρ + ρ ρ =x y x yM ik A B C

d d exp( ) ( ),
∞ ∞

−∞ −∞
= − ρ∫ ∫x yq q iq M q (4)

where

2
1( ) d d exp( ) ( ).

(2 )
∞ ∞

−∞ −∞
= ρ ρ ρ ρ

π ∫ ∫x yM q iq M (5)

Calculation of the integral yields

1 2
2 2

1( )
(2 )

4

γ γ= ×
π

−

M q
Ck B A

B

2

2

2
2exp ,

4
4

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥−⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥⎜ ⎟× +⎢ ⎥⎜ ⎟
−⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

x y
y

Cq qqi B
k B CA

B

(6)

where 1 exp sgn
4
π⎛ ⎞γ = π −⎜ ⎟⎝ ⎠

i B

and  
2

2 exp sgn .
4 4

⎡ ⎤⎛ ⎞πγ = π − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Ci A
B

If in Eq. (6) 0→B  or 
2

0,
4

− →СA
B

 then the re-
spective part of the expression turns into the Dirac delta
function.

Let us represent random elevations figuring in the
values *

01J  and 01′J  (see Eqs. (69) and (70) in [1]) as
the Fourier expansion

2
1 1 1 1 1( ) d ( )exp( ),

∞

−∞
ς = χ ς χ χ∫ ∫r i r (7)

and proceed in a similar way with 1 1( ) ( ).′ς = ς + ρr r  Then
going over in Eq. (1) to integration over 1r  and ρ  in-
stead of 1r  and 1′r  we can obtain

( )
*2 2 2 12 12

2 12 * *
01 01 12 12

1 d d
(4 )

∞

−∞

′
= ρ ×

π ∫∫ ∫ ∫S

J Ju R r
R R R R

2 2 2
1 1 1d d d ( ) ( )q

∞ ∞ ∞ ∗
−∞ −∞ −∞

′ ′× χ χ ς χ ς χ ×∫ ∫ ∫ ∫ ∫ ∫

01 1 01 1 1( ) ( ) ( )exp ( )∗
⊥ ⊥⎡ ⎤′ ′ ′× χ χ ⋅ − ρ+ χ ρ− β −α ρ ×⎣ ⎦J J M q iq i ik

[ ]1 1 1exp ( ) .i r′× − χ −χ (8)
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The formula Eq. (8) has been derived on the usual
assumption that the correlation length of irregularities
is much smaller than the characteristic size of the scatte-
ring surface. For this reason integration over ρ  is per-
formed in the infinite limits. Application of asymptotic com-
putation techniques, like, for example, the stationary phase
method, allows neglecting the difference ρ  in expressions
for the primed values 01,′R 12 ,′R ... in contrast to the
unprimed ones. In addition the field of surface irregulari-
ties is assumed to be statistically homogeneous such that
by virtue of the Wiener–Khinchin theorem we have

2
1 1 1 1 1( ) ( ) ( ) ( ),∗ ′ ′ς χ ς χ = σ χ δ χ − χW (9)

where 2
1( )σ χW  is the spatial power spectrum of the

irregularities.
The result of integration over ρ  is

( )2
1(2 ) .⊥ ⊥⎡ ⎤′π δ χ − − β −α⎣ ⎦q k  Hence with account of

Eq. (9) the formula Eq. (8) can be brought to the form

( )
222 122

2 1 2 2
01 12

d
4
σ= ×∫∫S

J
u R r

R R

( ) 22
01d q J k q

∞
⊥ ⊥−∞

⎡ ⎤× β −α + ×⎣ ⎦∫ ∫
( ) ( ).⊥ ⊥⎡ ⎤× β −α +⎣ ⎦W k q M q (10)

The expression for 01 1( )χJ  can be obtained from
the formula for 01J  by replacing 1 1∇ ς  with 1χi  and 1ς
with 1.

Let us go over in the inner integral over q  to a
dimensionless wavenumber =q q k  2 2 2(d d )=q k q
and denote the result as

d d exp ( ) ( ),
∞

−∞
⎡ ⎤= ⎣ ⎦∫ ∫q x yI q q iGf q F q (11)

where 1,=G kR  01 12

01 12

1
2

=
+

R RR
R R

 is the geometric

mean of 01R  and 12 ,R

2

2

2

2
( ) ,

4
4

4

⎛ ⎞
⎜ ⎟−⎜ ⎟⎝ ⎠= +
⎛ ⎞
−⎜ ⎟⎜ ⎟⎝ ⎠

y
x

y

q C
q

Bq
f q

RB CR A
B

   and

1 2
2 2

21( )
(2 )

4
4

γ γ= ×
π

−

kF q
CB A

B

( ) ( )2

01 .⊥ ⊥ ⊥ ⊥⎡ ⎤ ⎡ ⎤× β −α + β −α +⎣ ⎦ ⎣ ⎦J k kq W k kq

To calculate Eq. (11) we will apply the asymptotic
method of stationary phase. Let us make a transforma-

tion whose Jackobian is equal to 1, viz. 1 2
ξ = − y

x
q C

q
B

and 2 .ξ = yq  Then we can write

1 2d d exp ( ) ( ),
∞ ∞

−∞ −∞
⎡ ⎤= ξ ξ ξ ξ⎣ ⎦∫ ∫qI iGf F (12)

where 
2

22
12( ) .

4 (4 )
ξξ = + ξ

−
Bf

RB R AB C
The stationary point for ( )ξf  is 0.ξ =s  The

Hessian value at the stationary point is
12 2

det 4 ,
4

−
⎛ ⎞∂ = ⋅ −⎜ ⎟⎜ ⎟∂ξ ∂ξ ⎝ ⎠is js

f CR B A
B

 while the signs

of the Hessian eigenvalues 1d  and 2d  are equal

to 
2

1sgn sgn
4

⎛ ⎞
= −⎜ ⎟⎜ ⎟⎝ ⎠

Cd A
B

 and 2sgn sgn ,=d B  respec-
tively.

As a result the leading term of the asymptotic rep-
resentation calculated by the stationary phase method
(see [3], page 529) becomes

( ) ( )2

01 .⊥ ⊥ ⊥ ⊥⎡ ⎤ ⎡ ⎤= β −α β −α⎣ ⎦ ⎣ ⎦qI J k W k (13)

Substitution of Eq. (13) into Eq. (10) yields finally

( )
222 122

2 1 2 2
01 12

d
4
σ= ×∫∫S

J
u R r

R R

( ) ( )2

01 .⊥ ⊥ ⊥ ⊥⎡ ⎤ ⎡ ⎤× β −α β −α⎣ ⎦ ⎣ ⎦J k W k (14)

Now let us analyze the behavior of the integrand in
the expression Eq. (14) for two limiting cases of great
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and small grazing angles 01′ψ  and 12.′ψ  Recall that

01 01 12 12 01 0 01and , with cos ,
2 2

z Rπ π′ ′ ′ ′ ′ψ = −θ ψ = −θ θ =

and 12 2 12cos .′θ = z R  If the Brewster angle is ~ψ ηBr

and 01 12, ,′ ′ψ ψ ψBr   then the Fresnel reflection fac-
tors 01′V  and 12′V  in the expressions

( )01 ⊥⎡ ⎤β −α =⎣ ⎦J k

2 2 2
1 01 0 01(1 ) (1 )⊥⎡ ⎤ ′ ′= − α χ + α + + α η − +⎣ ⎦z zk k V k V

( )1

2 2 2
1 0 01 01(1 )

⊥ ⊥
⊥ χ = β −α

⎡ ⎤ ′ ′+ − α χ + α + α η −⎣ ⎦z z kk k k V W

(15)

and

12 12 12 12(1 ) (1 ) ,′ ′ ′= + + −J V V W (16)

with 01′W  and 12′W  being the propagation factors [1],
both tend to one 01 12( , 1).′ ′ →V V

As a result, taking into account that 2 2 1⊥α +α ≡z
we can obtain

2
01 2 1 ⊥ ⊥⎡ ⎤≈ −β α⎣ ⎦J k    and   12 2.≈J

Then the formula Eq. (14) takes the form

( ) 2 4 2 2
2 1 2 2

01 12

14 d= σ ×∫∫Su R k r
R R

( ) ( )2
1 .⊥ ⊥ ⊥ ⊥⎡ ⎤× −β α β −α⎣ ⎦W k (17)

The formula Eq. (17) is completely coincident with
the expression Eq. (11) obtained by Bass and Fuks [2]
(see page 105) for a rigid surface if the relationship
between 1( )χW  and the correlation function has been
taken into account.

In the case of grazing propagation with
01 12, ,′ ′ψ ψ ψBr  we have 01 12, 1,′ ′ → −V V  0,α →z

12 122 ′→J W  and ( )2
01 012 1 ⊥ ⊥ ′→ −β αJ k W  such that

the formula Eq. (14) takes the form

( ) ( )2 24 2 2
2 1 2 2

01 12

14 d 1 ⊥ ⊥= σ −β α ×∫∫Su R k r
R R

( )01 12 .⊥ ⊥⎡ ⎤′ ′× β −α⎣ ⎦W W W k (18)

The transition to the soft surface in Eq. (14) cannot
be performed since it implies another kind of the bound-
ary conditions ( )0η →∞  and accordingly another
kind of the reflection factors.

POWER FREQUENCY SPECTRUM
OF THE FLUCTUATING FIELD COMPONENT

Let us consider wave scattering from an oscillating
random surface ( , ).= ςz r t  With the assumption that
these oscillations represent a quasistationary process

0( ,Ω ω  where ~ ∂ς ⎞Ω ς ⎟∂ ⎠t
 the fluctuating field

is described as before by the formula Eq. (68) of [4],
however with changing 1( )ς r  to 1( , )ς r t  where t is re-
garded as a parameter, viz.

( ) 0
2

exp( ),
4
− ω= − ×
π
i tu R t

[ ]
1

01 122
01 12

01 12 0

exp ( )
d .

=

+
×∫∫S

z

ik R R
r J J

R R
(19)

The formula Eq. (19) contains the explicit form of
the time dependent factor 0exp( )− ωi t  which has been
omitted before. The factors 01J  and 12J  are given by
the formulas Eq. (69) and (70), respectively, from [1],
however with the first one involving now 1 1( )ς = ς r
instead of 1 1( , ).ς = ς r t

Let us construct the time-domain correlation func-
tion

( ) ( )2 2( ) , ,∗τ = + τ =B u R t u R t

*
2 20 12 12

1 12
01 01 12 12

exp( ) d d
(4 )

′− ω τ ′= ×
′ ′π ∫∫ ∫∫S S

i J Jr r
R R R R

[ ]
1 1

*
01 01 01 01 12 12 0

exp ( ) .
′= =

′ ′ ′× − − + −
z z

J J ik R R R R (20)
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This expression is similar to the formula Eq. (1) for
the mean intensity apart from the factor 0exp( )− ω τi
and the time shift of the value 1( , )′ς + τr t  figuring
in 01.′J  The rest of the primed values are the same as
in  Eq. (1).

Now let us represent 1( , )ς r t  as a Fourier expan-
sion, viz.

2
1 1 1( , ) d d

∞ ∞

−∞ −∞
ς = ω χ ×∫ ∫ ∫r t

[ ]1 1 1 1 1( )exp ( ) ( ),
=±

× ς χ χ −ω δ ω −ω∑ j j
j

i r t (21)

where 1( )ω =Ω χj j  are frequencies determined by the
dispersion relation for the surface oscillations. Substi-
tution of Eq. (21) into the expressions for 01′J  and *

01J
yields

* 2
01 01 1 1 1d d d

∞ ∞ ∞

−∞ −∞ −∞
′ ′= ω ω χ ×∫ ∫ ∫ ∫J J

2 *
1 01 1 01 1

'
d ( ) ( )

j j
J J

∞

−∞
=± =±

′ ′ ′× χ χ χ ×∑ ∑∫∫

[ ] [ ]1 1 1 1 1 1 1exp ( ) exp( )exp ( )′ ′ ′ ′× − χ −χ χ ρ ω −ω − ω τ ×i r i i t i

*
1 1 1 1( ) ( ) ( ) ( ).′′ ′× ς χ ς χ δ ω −ω δ ω −ωj j j j (22)

The values 01 1( )′χJ  and *
01 1( )χJ  are determined by

Eq. (15).
Let the random field of irregularities be statistically

homogeneous and stationary. Then making use of the
Wiener–Khinchin theorem the correlation function of
the spectral amplitudes [4] can be represented as

2

1 1 1 1 1( ) ( ) ( ) ( ).
2

∗
′ ′

σ′ ′ς χ ς χ = χ δ δ χ −χj j j jjW (23)

Whence it follows that

2 2* 2
01 01 1 01 1 1d ( ) ( )

2
∞

−∞
=±

σ′ = χ χ χ ×∑∫ ∫ j
j

J J J W

1exp ( ) .⎡ ⎤× χ ρ −ω τ⎣ ⎦ji (24)

Substituting Eq. (24) into Eq. (22) and then the result
into Eq. (20) we arrive at

2
0

2
exp( )( )

2(4 )
− ω τ στ = ×
π
iB

( )2 2
1 2 2

01 12

exp
d d

∞ ⊥ ⊥

−∞

⎡ ⎤− β −α ρ⎣ ⎦× ρ ×∫∫ ∫ ∫S

ik
r

R R

22 2
12exp ( )⎡ ⎤× − ρ + ρ + ρ ρ ×⎣ ⎦x y x yik A B C J

22
1 01 1 1 1d ( ) ( )exp ( ) .

∞

−∞
=±

⎡ ⎤× χ χ χ χ ρ−ω τ⎣ ⎦∑∫∫ j j
j

J W i (25)

Making use of the Fourier expansion Eqs. (4) through
(6) for ( )ρM  we can obtain

22
1220

1 2 2
01 12

exp( )( ) d
4 2 S

JiB r
R R

− ω τ στ = ×∫ ∫

( )2
1 1d

∞
⊥ ⊥−∞

⎡ ⎤× χ χ − β −α ×⎣ ⎦∫ ∫ M k

2
01 1 1( ) ( )exp( ).

=±
× χ χ − ω τ∑ j j

j
J W i (26)

Now let us determine the frequency spectrum

1( ) ( )exp( )d ,
2

∞

−∞
ω = τ ωτ τ

π ∫S B i (27)

22
122

0 1 2 2
01 12

( ) ( ) d
8
σω ≡ ω +Δω = ×∫∫S

J
S S r

R R

( )2
1 1d

∞
⊥ ⊥−∞

⎡ ⎤× χ χ − β −α ×⎣ ⎦∫ ∫ M k

2
01 1 1( ) ( ) ( ),

=±
× χ χ δ Δω−ω∑ j j

j
J W (28)

where 0.Δω = ω−ω
The expression Eq. (28) has much in common with

the formula Eq. (10) for the mean intensity, which be-
comes especially clear after changing the variable

( )1 .⊥ ⊥χ → β −α +k q
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What essentially differs Eq. (28) from Eq. (10) is the
presence of 1( )⎡ ⎤δ Δω−ω χ⎣ ⎦j  under the integral. This
makes it necessary to integrate first over the wavenum-
bers 1χ  figuring in the argument of the delta function
regardless the quickness of variations in the rest part
of the integrand.

Analysis of the spectrum Eq. (28) in the general
case represents a rather complicated problem. For this
reason we will confine ourselves to considering sim-
plest particular cases.

Let us consider a specific kind of surface oscil-
lations, namely, the gravity waves on a deep liquid
in which case the dispersion relation is

1 ,ω = χj j g    with    ,= ±j

where g is the acceleration of gravity.
We will start from the situation where the quadratic

terms 2~ ρk R  in the exponential factor of ( )M ρ
(formula Eq. (4)) can be neglected. This means that we
can assume , , 0→A B C  such that Eq. (5) yields

( ) ( )= δM q q  and hence the correlation function be-
comes

22
1220

1 2 2
01 12

exp( )( ) d
4 2
− ω τ στ = ×∫∫S

JiB r
R R

( ) ( )2

01 1exp( ).⊥ ⊥ ⊥ ⊥
=±

⎡ ⎤ ⎡ ⎤× β −α β −α − ω τ⎣ ⎦ ⎣ ⎦∑ j j
j

J k W k i

(30)

Accordingly the spectrum can be expressed as

22
122

0 1 2 2
01 12

( ) ( ) d
8
σω ≡ ω +Δω = ×∫∫S

J
S S r

R R

( ) ( )2

01 [ ],⊥ ⊥ ⊥ ⊥
=±

⎡ ⎤ ⎡ ⎤× β −α β −α δ Δω−ω⎣ ⎦ ⎣ ⎦∑ j j
j

J k W k

(31)

where 0Δω = ω−ω  and ,⊥ ⊥ω = β −αj j gk  with
.= ±j

If the grazing angles for the paths 01R  and 12R  are
much greater than the Brewster angle, then Eq. (31)

goes over into the formula (1b) by Bass and Fuks [2]
(see page 139).

As follows from Eq. (31), the spectrum is formed
by certain points of scattering and lies around the fre-
quency 0ω  within the frequency range

max
.⊥ ⊥Δω = ± β −αgk (32)

In the most general case of an infinite scattering
surface S the value of ⊥ ⊥β −α  for different scattering
points varies within the interval

0 2.⊥ ⊥≤ β −α ≤ (33)

If S is of a finite size, then the range of possible
variations in ⊥ ⊥β −α  can be much smaller and is de-
termined by the specific geometry of the problem. Strict-
ly speaking the initial formula Eq. (1) in [1] has been
derived under the assumption that the surface S rep-
resents an infinite plane. For this reason application
of the results which follow from the expression, to a
surface S of a finite size greater than the wavelength
should be considered as a short-wave asymptotic for
the boundary-value problem of the Helmholtz equation
(see [5], Chapter 1).

Of special interest is the case of wave backscatte-
ring 12 01( = −R R  and )⊥ ⊥β = −α  when

2 .⊥Δω= ± αgk (34)

It is evident that the scattering at a given frequency
is provided by those points of the surface for which

const⊥α =  independently of the azimuthal angle. The
range of possible variations of the angle of incidence
determines the spectrum width.

In the absolutely degenerated case of grazing pro-
pagation 0( 0)=z  the angle of incidence (and scatte-
ring) is fixed and equals to 2.π  Hence 1⊥α =  and all
the points of scattering contribute at the same frequen-
cy shift, viz.

2 .Δω= ± gk (35)
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In this case the argument of the function
2⎡ ⎤δ Δω±⎣ ⎦gk  is independent of 1.r  Hence the func-

tion can be factored out from the integral in the for-
mula which follows from Eq. (31) at .⊥ ⊥β = −α  The
spectrum of field fluctuations in this case consists of
two infinitesimally thin (as a result of the mathemati-
cal idealization admitted before) lines.

In all other cases the argument of the delta func-
tion is dependent on the scattering point 1r  and hence
factoring it out from the integral as has been done
by Bass and Fuks [2] (see Eq. (2) on page 139) is
inadmissible.

The effect of the phase front curvature of the inci-
dent and scattered fields is essential at the distances

01R  and 12 ,R  where the phase of ( )ρM  is much grea-
ter than unity. The spectrum Eq. (28) in this case is
determined through double integration over points
of the scattering surface and double integration over
wave vectors of the spatial spectrum of the surface
irregularities.

Taking the integral over the wave vectors is a rather
difficult problem even in the particular case of the
wave backscattering and will be not considered in the
present paper. The same concerns the general case of

an arbitrary geometry. This consideration can be a
subject of a special investigation.

Thus the results of Parts I and II of the paper
allow describing the near-field scattering of waves by
rough surfaces in terms of both the wave field fluctu-
ations and the mean intensity of the fluctuations and
its frequency spectrum. Further analysis of these cha-
racteristics will contribute to a more detailed under-
standing the effects of wave scattering.
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The problem of synthesizing the optimized equi-amplitude array antenna (AA) on the 8 8×  grid based on
a Hadamard difference set is considered. By using newly found sets of this type on the 8 8×  grid the 28- and
36-element AAs having a low sidelobe level are obtained.

A numerical experiment showed that by a small alteration of the structure of such a set, further reduction
of the AA sidelobe radiation is possible.

KEY WORDS: array antenna, synthezing, numerical experiment, difference sets, power pattern

1. INTRODUCTION

The idea of using cyclic difference sets (DSs) for syn-
thesizing aperiodic linear array antennas (AAs) with
a low sidelobe level (SLL) was suggested in [1], and
it was generalized to the 2-D case in [2]. Further inves-
tigation of this issue in both linear and planar cases
was described in monograph [3]. In particular, there
it was shown that the basic DS class appropriate for
the construction of planar aperiodic AAs is that of
Hadamard difference sets (H sets [4]).

It will be mentioned that one can build the H sets
only on integer grids of definite sizes [5]. In each case
there exist several inequivalent versions of such a set,
where the number of the inequivalent H sets has a ten-
dency to grow with the larger grid size. Each of these
sets generates an ensemble of equivalent H sets, which
can be obtained from the initial one by a definite pro-
cedure (see below); and after finding in each of the
ensembles the set ensuring the minimum SLL for the
AA, the best of them is then chosen.

The difficulty lies in the fact that now the complete
collection of inequivalent H sets is built only for the

grids of sizes 4 4,×  6 6,×  and 3 12;×  as for the grids
of larger sizes, little is known in this respect.

In the recent paper [6] several new inequivalent H
sets on square ×n n  grids with 8, 12, 16=n  and 24
were obtained, and the corresponding AAs having the
minimized SLL were synthesized. To further this line,
the knowledge of new inequivalent H sets is required.

This paper continues investigation of the AAs based
on H sets on the 8 8×  grid. In this case, the number of
the found inequivalent H sets is brought up to twenty
that enables obtaining an AA with improved characteri-
stics. Also, a numerical experiment to clarify the possi-
bility of further reducing of the AA SLL when the struc-
ture of the underlying H set undergoes small alterations
is carried out.

2. GENERAL INFORMATION ON H SETS

By definition [7], a k-element DS { }( , )i ia b  on an inte-
ger ν ×νx y  grid is such a set that any nonzero node
( , )a b  of the grid has exactly Λ  representations of the
form
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mod ,≡ − νi j xa a a            mod ,≡ − νi j yb b b

where

( 1) ( 1),Λ = − −k k V           .= ν ⋅νx yV (1)

An H set is a DS whose parameters satisfy the ad-
ditial condition [8]

4( ).= − ΛV k (2)

H sets exist on grids with [5]

2 , 3 2 ,ν = ⋅n n
x            ,ν = νy x            1,≥n (3a)

and

1 12 , 3 2 ,+ +ν = ⋅n n
x      4,ν = νy x       1.≥n (3b)

(An H set on the ×s t  grid is equivalent to a perfect
binary array PBA ( )×s t  [9] which represents a binary
array of size ×s t  whose autocorrelation function re-
mains constant with all cyclic shifts of its elements along
the both grid sides [10]. Further, we make no distinc-
tion between an H set and the corresponding PBA.)

It follows from (1)–(3) that the element number
of an H set is determined by parameter V:

( )1 2.= ±k V V (4)

Note that with the “–” in (4) the fill factor of the array
0.5.β = <k V  The H set for which one “+” is taken

in (4) is called complementary. Its elements are placed
in all grid nodes empty from those of the first set, so
its element number is 1 .= ν −k k

For a square grid, ,ν = ν = νx y  and ( 1) 2.= ν ν ±k
Thus, H sets with 28 and 36 elements can be build on
the 8 8×  grid.

It is known [7] that if there exists a DS with given
parameters, then there also exists an ensemble of equi-
valent sets having the same parameter values; in the
2-D case, these sets are obtained from the initial one
by a simultaneous cyclic shifting all its elements along

the grid sides, and also by the grid automorphisms
transforming it by the formulas

1 11 12 ,= ⋅ + ⋅i i ia c a c b         1 21 22 ,= ⋅ + ⋅i i ib c a c b (5)

with 11 12 21 22, , ,c c c c  integers 1 1( ,i ia b  are then taken
modulo ,νx  modulo ,ν y  respectively), provided the
determinant of the equation system (5)

11 22 21 12Det = ⋅ − ⋅c c c c

is a number co-prime with the grid sidelengths [11].
In all known cases the 2-D H sets exist in a number

of inequivalent versions unobtainable one from another
by the described procedure. Each of such sets posses-
ses its own ensemble of the equivalent ones, so the
total number of H sets with given parameters is propor-
tional to that of the inequivalent sets.

3. NEW INEQUIVALENT H SETS
ON THE ××××8 8  GRID

For the 8 8×  grid, two inequivalent H sets are given in
[12] and [13], and three more – in [6]. To our know-
ledge, no more inequivalent H sets are given in the
literature.

Here, we found 15 new inequivalent H sets. Several
such sets are obtained by using the formula [14]

2 , ,2 ,+ +=i r j i j rw u

where 0 ,≤ ≤i s  0 ,≤ <j t  0 1,≤ ≤r  ( )= ijU u  is a
PBA of size (2 ),×s t  and ( )= ijW w  is an array of size
(2 ) .×s t  Under specific conditions, W is also a PBA.
The fulfilment of these conditions is difficult to check,
however, one can make sure by direct verification that
in our case (at 4,=s  8),=t  W is an H set on the 8 8×
grid. This allows to obtain H sets on this grid by using
the known H sets on the 4 16×  grid, and choose the
inequivalent ones among them. As a main source for
obtaining H sets on the 8 8×  grid by this method a
wealth of H sets on the 4 16×  grid given in [15] was
used; so, 8 new inequivalent H sets were found. Be-
sides, one such set was obtained from [12] in this way.

One more method consists in transforming an H set
{ }( , )i ia b  into the set { }1 1( , )i ia b  on the grid of the same
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size following the rule: if sum +i ia b  is an even number
then 1 ,=i ia a  1 ,=i ib b  whereas in the opposite case
its odd component decreases by 1 and its even compo-
nent increases by 1 (thus, in all cases, 1 1 ).+ = +i i i ia b a b
As the result, an H set is again obtained, and among
the sets obtained in such a way 6 new inequivalent
ones occured.

The found collection of the inequivalent H sets
is probably still incomplete, however, by using these
sets the AAs having lower SLL than those obtained
earlier were synthesized.

4. SEARCHING PROCEDURE FOR THE AA
WITH MINIMIZED SLL

The normalized power pattern of a planar equiampli-
tude AA is

2

1

1( , ) exp ( ) ,
=

⎡ ⎤= ⋅ + ⋅⎣ ⎦∑
k

x y j x j y
j

F q q i a q b q
k

(6)

where ,j ja b  are now co-ordinates of an array element,
xq  and yq  are the generalized space coordinates:

02 ( ) ,= π − λxq d l l  02 ( ) ;= π − λyq d m m  d is the dis-
tance between the adjacent nodes in an array row or
column; λ  is the wavelength; l, m are the cosines of
the angles between the beam and the axes x and y; and

0 0( , )l m  is the direction towards which the beam is
pointed. In what follows, pattern (6) is optimized on
the domain ( ,−π ≤ ≤ πxq  0 ),≤ ≤ πyq  therefore, the
results obtained are valid for any values of λd  and

0,l  0;m  without losing generality, one can take
2= λd  and 0 0 0.= =l m

When set { }( , )j ja b  represents a DS, function (6)
takes the constant value 2( )= − λcF k k  over the net
of space points { }(2 , 2 ) ,π ν π νs t  0+ ≥s t  [4]. There-
fore, we may expect that for a square AA, F takes
its maximum value near a point of the net

{ }( , ) ;π ν π νs t ( 1), ..., 1, 0, 1, ..., 1;= − ν − − ν −s
(7)

under the conditions

Abs( ) 2>s    or   2;>t  ( )mod 4 0,⋅ >s t (8)

first of which means that only the sidelobe region is
considered, and the second one – that the points at
which = cF F  are excluded.

The calculation was described in [6]; briefly, it is as
follows. An H set for which the quantity max=Fm F
(dB) over the space points net (7) does not exceed some
given M is found; then the value of Fm over the net
of double thickness is found, and so on. The process
of double thickening continues until the magnitude of
Fm is stabilized, coming to a certain quantity 0.F

Further, an H set giving a value of Fm over net (7),
(8) which is less than that for the initial set is searched
for, and the described procedure giving now a new
value of 0F  is repeated; if this value is smaller than the
preceding one, such set is stored, and so on.

Note that a smaller value of Fm does not inevitably
lead to a smaller value of 0;F  therefore, to diminish the
probability of omitting the real minimum value of the
latter over the whole considered ensemble of H sets,
the described process was periodically repeated, be-
ginning in each case from a new H set of the ensemble.

The calculation was carried out through the ensem-
bles corresponding to all known inequivalent H sets on
the 8 8×  grid. As the result, the 28-element AA having
the SLL –12.59 dB, and the 36-element AA with the
SLL –13.86 dB were synthesized. The power patterns
of these AAs, together with the schemes of their ele-
ment arrangement are given in Figs. 1 and 2.

5. ON THE POSSIBILITY OF FURTHER
SLL REDUCTION

Recently, the so called genetic algorithms were ap-
plied to the synthesis of linear AAs in a number of
papers, including those where cyclic DSs as initial ones
were taken [16]. In some cases, one can pass from a
linear grid to a rectangular one having coprime side-
lengths, thus obtaining a planar AA.

In this way, it is impossible to obtain a square AA.
However, in this case one can search for an AA with
a still smaller SLL by slightly altering the underlying
H set, e.g., by shifting a few of its elements from their
places to other grid nodes, and then calculating
through the ensemble of sets obtainable from such
a set by the same described procedure.

We made a numerical experiment using inequivalent
H sets having a structure of the form shown in Fig. 3.
Here, in three rows of the grid there are two set ele-
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ments, six elements in one row and four elements in each
of the rest rows. While making by turns all possible
element shifting in the rows containing only two ele-
ments of the set, one obtains, in each case, a “disturbed”
H set, and when taking this set and that complementary
to it as the initial ones, we obtain, by using the aforesaid
procedure, the ensembles of 28- and 36-element sets.

The calculation through these set ensembles has
shown that in this way the AAs with smaller SLLs can

be synthesized. As an example, a “disturbed” 36-element
set ensuring the SLL –14.43 dB is shown in Fig. 4.

6. CONCLUSION

The collection of the inequivalent H sets found also
allows obtaining optimized AAs of larger sizes. Thus, by
the method suggested in [14, 15] and somewhat simpli-

FIG. 1: The power pattern of the optimized 28-element AA (a), and the scheme of its element arrangement (b)

FIG. 2: The power pattern of the optimized 36-element AA (a), and the scheme of its element arrangement (b)
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fied in [3], when having an H set on the ×s t  grid, one
can obtain the H set on the (2 ) (2 )×s t  grid. In this way
the H sets on the 16 16×  grid can be built, and on their
base the AAs with a large number (120 and 136) of ele-
ments having a low SLL synthesized, that becomes press-
ing in the development of modern radio telescopes [17].
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The maximum number of elements of a nonredundant configuration on a square array antenna is estimated
empirically employing the investigated structure of differences between the elements of the configuration
mapping onto the scan.
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1. INTRODUCTION

The problem of constructing a nonredundant con-
figuration (NRC) of elements is of urgent necessity
for radio interferometry. Here, a momentous problem
is how to build the NRC with the maximum number
of elements to obtain the maximum number of interfe-
rometer baselines. Such NRCs on square ×n n  grids
(so called “Golomb squares” [1]) with the maximum
possible elements are found at 22≤n  in a number
of papers [1-7]. At the same time, the size of modern
array antenna, as well as the number of its elements,
can substantially exceed these values [8] that requi-
res the elaboration of methods for building NRCs
on large grids.

Such NRCs were obtained in [4] with using com-
binatorial constructions – cyclic difference sets (see
also [9]). However, it remains unclarified to what de-
gree the element number of the NRC thus found is close
to a maximum.

The rigorous estimates for the NRC element number
on a square grid were obtained in [1, 3], however, the
former is too overrated, while for applying the latter

the information on NRCs on linear grids of large lengths,
unavailable to date, is required. In this connection, the
obtainment of the upper estimate based on available
empirical data is of interest.

2. ANALYSIS OF THE MAPPING STRUCTURE
OF THE NRC ON THE SQUARE GRID SCAN

Consider an arbitrary k-element NRC on the ×n n  grid
and analyze the system of vector differences between
its elements (see Fig. 1). Number the cells of the first
grid row from 1 to n, of the second one – from 1+n
to 2n, and so on. The vector connecting the cells
can be pointed rightwards or strictly downwards
(type I), or leftwards (type II). When scanning the
grid, the NRC on it passes to a point system on the
segment, and the differences between these points
can be either one-fold (i.e. non-repeated) or two-fold
ones. Obviously, vector differences on a 2-D grid be-
longing to the same type cannot pass to equal diffe-
rences on the scan, while only some part of these
belonging to the opposite types passes to the equal
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ones. Thus, the share of the one-fold differences on
the scan can be expected to exceed half of their total
number ( 1) 2.= −K k k  Besides, it should be taken
into account that the NRC placed on a square grid,
the latter being rotated through 90 ,°  would give an
alternative point system on the scan (see Fig. 2). In
addition, for most of n values, at least, several diffe-
rent NRCs with a maximum number of elements can
be built [7]. This allows suggestion that for almost

all values of n a maximum-element NRC on the ×n n
grid can be built for which the share ( )α  of the non-
repeated differences on the scan exceeds 50 % of their
total number,

50 %.α > (1)

These qualitative considerations were verified by
using the available data. The ×n n  grids at 3 22≤ ≤n
with the NRCs found in [4, 6, 7] placed on them were
scanned in two variants (as in Fig. 2), and it was found
out that for all n in this range, except for 7,=n  this
suggestion was validated at least in one of such va-
riants (see Table 1).

Now we will seek the upper estimate for the NRC
element number under the assumption that for 7>n
a maximum-element NRC can be found for which condi-
tion (1) is fulfilled.

3. UPPER ESTIMATE
OF THE NRC ELEMENT NUMBER

Consider a k-element NRC placed on the ×n n  grid.
When scanning the grid, the NRC elements pass to a
point sequence

1 2 ...< < < ka a a (2)

FIG. 1: An example of a nonredundant configuration
(NRC) on the square grid. The NRC elements are deno-
ted with bold dots. The vectors connecting the elements
are pointed rigthwards or strictly downwards (type I)
or leftwards (type II)

FIG. 2: A grid with an NRC placed on it, and its scan (a).  The same grid rotated through 90°,  and its scan (b). The
share of non-repeated differences between the points on the scan is denoted with α  (%)
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on the scan.
Here, we apply the approach suggested for the linear

case [10]. The order of differences between elements
ja  and ia  of sequence (2), ,>j i  is the difference

,−j i  at this point, the sum of differences of the first
order is

2
2 1 1( ) ... ( ) ,−− + + − <k ka a a a n

and similarly, the sum of differences of order ν  is

2
1 1( ) ... ( ) .ν+ −ν− + + − < νk ka a a a n

It follows that the sum of differences of orders up
to t is

2 ( 1) 2.< +tS n t t (3)

On the other hand, the number of these differences is

( 1) ... ( ) ( 1) 2 ,− + + − = − + =k k t kt t t ts (4)

where ( 1) 2, 1 .= − + ≤ ≤s k t t k
Should the differences between the elements on the

scan be all distinct then one might write

1 ... ,≥ + +tS ts

and comparing the last inequality with (3) find the esti-
mate of the maximum element number. Virtually, in such
a way the estimate for the maximum element number
of an NRC on a linear grid can be obtained [10].

In our case, some part of differences on the scan
are two-fold, but using condition (1) and with the
Eq. (4) considered, we may write

[ ]( ) [ ]( ) [ ]2 1 ... 4 4 1 ... 3 4 ,≥ + + + + + +tS ts ts ts (5)

where [c] means integer part of c. If one writes
4 ,= +βts r with the r integer and 0, 1, 2β =  or 3, ine-

quality (5) can be rewritten in the form

2(1 ... ) ( 1) ... (4 ).≥ + + + + + + + β −tS r r r r

When performing here the summation operations
and returning again to the ts one obtains

2 2 25 1 1 5( ) ( ) .
16 8 2 16 16tS ts ts tsβ⎛ ⎞≥ + + + β >⎜ ⎟⎝ ⎠

Further, one correlates the last inequality with (3)
and obtains:

2
25 ( 1)( ) ,

16 2
+< t t nts

Table 1: The characteristics of the maximum-element
NRCs and point sequences obtained from them when
scanning the location grids. Here, n is the grid sidelength,
k is the number of the NRC elements, m is the number of
non-repeated differences between points on the scan,
and α  is their share in the total number of differences
equal to ( 1) 2= −K k k

n k m K a (%)

3 5 6 10 60.0
4 6 11 15 73.3
5 8 16 28 57.4
6 9 24 36 66.7
7 11 27 55 49.1
8 12 34 66 51.5
9 13 45 78 56.7

10 15 53 105 50.5
11 16 64 120 53.3
12 17 82 136 60.3
13 18 87 153 56.9
14 19 101 171 59.1
15 21 112 210 53.3
16 22 125 231 54.1
17 23 149 253 58.9
18 24 168 276 60.9
19 25 184 300 61.3
20 26 198 325 60.9
22 29 244 406 60.1
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whence

( )1 1 1 1 (2 ) ,< + ≅ +s nb t nb t

with 8 5 1.265,= =b
and

( )( 1) 2 1 1 (2 ) ( ).< + + + =k t nb t f t

Function ( )f t  has its minimum at ,=t nb  thus

1.265 1.124 0.5< + +k n n (6)

or ,≤ ek k  where ek  is the integer part of the expres-
sion in the right-hand side of (6).

4. RESULTS

Table 2 shows the maximal found element numbers
of NRCs placed on ×n n  grids at 7>n  taken from [7],
in comparison with their estimates as obtained by (6)
and those known from literature. It can be seen that
the values of ek  are smaller than the estimates given
in [1]; as for the estimates in [3], obtained only for

11,≤n  in this range they roughly equal to ours.
As is seen from Table 2, there is a “reserve” kept

in the discrepancy between ek  and the corresponding
value of k. Apparently, owing to this estimate (6)
is valid also for the case of a possible value of n when
condition (1) is not fulfilled.

The comparison of the estimates for large arrays
given by (6) with the results obtained in [4] (see
Table 3) shows that the number of NRC elements
given by the suggested method, though not maximum,
is nevertheless wholly acceptable for feasible purposes.

5. CONCLUSION

The upper estimate obtained for the element number
of an NRC on a square grid is more efficient than those
earlier known. It can serve a guiding line when buil-
ding a large size array antenna with the maximum
NRC element number.
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A vector equation to describe the radiation diffuse scattering by a random densely packed medium of similar
spherical particles has been obtained. The medium is a statistically homogeneous, plane parallel layer illumina-
ted by an oblique plane electromagnetic wave. The assemble averaging of the relationships for the elements
of the radiation reflection matrix is due to the quasi-crystalline approximation. The obtained equation takes
into complete account the wave nonuniformities near the scatterers. In the limiting case of sparse medium,
the equation turns into the classical vector radiative transfer equation.
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1. INTRODUCTION

Effects of electromagnetic wave scattering and absorp-
tion are widely exploited in science and technology
to realize remote sensing of objects and quality control
of materials. The interpretation of radar, optical and other
information from the remote sensing of objects calls
for sufficiently reliable theory of wave scattering by
various media. In this connection, of particular interest
are theoretical models of electromagnetic wave scatte-
ring by discrete media with a scatterer size of the wave-
length order, in which case the scattered radiation cha-
racteristics are most sensitive to wavelength variations.
The theoretical treatment of the radiation scattered
by the materials of the nature is a challenge because
a great number of effects not occurring in sparse media
must be taken into account. In particular, the correla-
tion between the particles complicates the assemble
averaging of the scattering characteristics [1, 2].

In sparse media, the particle spacing much exceeds
the radiation wavelength and the particle size. In this
case, all medium scatterers are in the far zones of one
another, which means that the wave coming to a scat-

terer from another one is spherical and can be mode-
led, by virtue of large distances between the particles,
by a uniform plane wave [3-5]. On this basis, the medium
multiple scattering can be handled using such instru-
ments of the well developed theory of single scattering
[4, 6] as scattering matrix, extinction cross section, scat-
tering and absorption.

In dense media, the wave coming from a scatterer
to its nearest neighbor is a nonuniform one [7, 8]. Be-
sides, for describing the sparse medium scattering, we
have right to restrict ourselves to only the ladder and
cyclic diagram summation in the diagram representa-
tion of the Bethe-Salpeter equation [4, 9]. In the dense
medium case, some more diagrams must be taken into
account, such as those corresponding to the interfe-
rence of waves scattered by neighboring scatterers or
the waves with different scattering orders [2, 10]. All
these complicate noticeably the theoretical treatment
of the scattering by dense media.

To alleviate the above-mentioned difficulties, works
[2, 11, 12] suggest employing the classical vector trans-
fer equation. In it, the radiation attenuation coefficient
and the scattering characteristics are adapted to the
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so-called elementary volume in the dense medium case.
Yet the transfer equation, considering its derivation
from Maxwell’s equations, is valid when the medium
scatterers are far apart from one another. Hence it is
true for sparse media [3-5], and the results from this
approach may happen to be unreliable. Another way
[10] calls for deriving the relevant equations for the
sums of all diagrams contributing significantly to the
scattered radiation. It is not efficient for media of small-
size particles because a large number of different type
diagrams must be taken into account. When the scat-
terer size is of the wavelength order and larger, not
many diagram types contribute clearly to the scattered
radiation. In particular, one of the main contributions
corresponds to the ladder diagram summation charac-
terizing the noncoherent (diffuse) part of the scattered
radiation. In the sparse medium case, this summation
is governed by the classical radiative transfer equation
[3-5]. In [10], the relevant equation was obtained
for the sum of these diagrams in the case of a densely
packed medium of similar spherical scatterers. The me-
dium was assumed to be a semi-infinite layer, the in-
cident radiation was normal to the medium surface.
Examples of the numerical solution of this equation for
a medium scatterer comparable in size with the radia-
tion wavelength showed that the field nonuniformi-
ties about the scatterers exerted a fairly large effect on
the reflection matrix elements. The effect was pro-
nounced even for not too densely packed scatterers.
The role of the field nonuniformities in the forming of
the scattered radiation has yet to be studied. Hence
the development of theoretical methods to describe the
electromagnetic wave scattering by densely packed
media is very important. The present paper seeks to
extend the equation obtained in [10] to the case of
a finitely thick medium layer and oblique wave inci-
dence. As in [10], the medium is assumed to be statis-
tically uniform and isotropic and consisting of similar
spherical scatterers.

2. ESSENTIAL RELATIONSHIPS
IN ELECTROMAGNETIC WAVE SCATTERING
THEORY FOR SETS OF SCATTERERS

The theory of scattering by a set of spherical particles
(see, e.g. [4]) will form the basis of the transfer equa-
tion derivation. The notations were chosen for consis-
tency with that of works [10, 13].

The coordinate systems required for the transfer
equation derivation are given in Fig. 1. Let us consider
the scattering of radiation by a medium layer of geomet-
rical thickness 0.Z  The upper boundary of the layer
coincides with the plane 0 0x y  of the coordinate sys-
tem 0 0 0( )x y z  whose axis 0z  is given by unit vector

0n  and directed inward the material. This coordinate
system is symbolized by 0ˆ .n  The jth particle is located
by the radius-vector jR  ( 1, ..., ,=j N   where N  is the
number of particles in the layer, 1).N  The inci-
dent plane wave is given in the coordinate system 0k̂
with the z axis directed along the wave vector 0k

0( 2 ,= λπk  and λ  is the wavelength). The scattered
radiation is described in the coordinate system ˆ

sck  with
the axis scz  aligned with the wave vector  sck

0( .)=sck k  The rotation of the coordinate system 0n̂
to the system 0k̂  is defined by the Eulerian angles

0 ,ϕ  0,ϑ  0,γ  and the 0n̂  to ˆ
sck  rotation is given by

the angles ,ϕ  ,ϑ  .γ
The electromagnetic wave scattering is convenient

to describe in a circular wave basis (the so-called
SP-representation). In it, an incident circularly pola-
rized plane wave can be expressed in the form [4, 14]

(0) (0)
0 0

ˆ( )exp( ),=n n nE iE e k k r (1)

FIG. 1: The medium layer radiation scattering geometry
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where 1,= ±n  (0)
nE  is the wave amplitude, 0

ˆ( )ne k
is the covariant cyclic unit vector [15] in the coordi-
nate system 0

ˆ .k  Throughout the paper the time de-
pendence exp( )− ωi t  is always omitted. For 1,=n  the
sense of rotation of wave electric vector (1) is that of a
right-handed screw when looking in the direction of
wave vector 0,k  and of a left-handed screw for 1.= −n

The field scattered by the medium can be written as

( ) ,=∑ j

j
E E (2)

where ( )jE  is the field scattered by the jth particle.
The scattered amplitude matrix pnT  ( , 1)= ±p n  of the
medium can be defined as [4]

(0)
1 11 1 1 10

(0)
1 11 1 10 1

exp( ) .−

− − − − −

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

EE T Tik r
E T Tik r E

(3)

Here r is the distance from the origin of the coordinate
system 0n̂  to the observation point.

Matrix (3) relates the vector components of the inci-
dent and the scattered waves given in different coordi-
nate systems. At the oblique incidence on the medium
layer, the polarization state of the incident radiation is
convenient to determine in the plane produced by the
vectors 0n  and 0.k  For the scattered radiation, the
corresponding plane is that given by the vectors 0n
and sck  [4]. Hereinafter it will be assumed that matrix
(3) relates the vector components given in these planes.

According to (2), the components of the scattering
amplitude matrix are

( ) ,=∑ j
pn pn

j
T t

where ( )j
pnt  is the scattered amplitude matrix of the jth

particle [4].
The scattering matrix translating the Stokes parame-

ters of the incident wave into the Stokes parameters of
the scattered wave is established by the relationship
[4, 10-13]

( ) *( ) ( ) *( )

,
,μν μν μν

≠
= +∑ ∑j j j s

pn pn pn
j j s j

S t t t t (4)

where the angle brackets indicate the assemble avera-
ging, , 1.μ ν = ±  The first term on the right-hand side
of this equation corresponds to the noncoherent (dif-
fuse) component and the interference component pro-
duced by the interference of waves traveling along some
looped trajectories in the medium [5]. The second term
corresponds to the interference of waves, including
the one demonstrating itself in the phenomenon of back-
scattering coherent amplification [5, 9, 13]. Here, only
the noncoherent component will be considered.

To find ( ) ,j
pnt  refer to the theory of radiation scatte-

ring by systems of spherical particles (see, e.g. [4]).
Then the field ( )jE  can be expressed as [10, 13]

0( )

0

exp( )
= ×

−
jj

j

ik r
i rk

E

( ) *
0

1 1

2 1 ˆ ˆˆ( , ) ( ).
2

∞

= =− =±

+×∑ ∑ ∑
L

jpn L
Mp sc p scLM

L M L p

L A D n k e k (5)

Here jr  is the distance from the jth particle to the ob-
servation point, ˆ )(p sce k  is the cyclic unit vector [15]
in the coordinate system ˆ

sck  ( 1),= ±p  and
0

ˆˆ( , ) ( , , )= ϕ ϑ γL L
Mp sc MpD Dn k  is the Wigner function [15]

governing the rotation from the coordinate system 0n̂
to the system ˆ .sck  The scattering directions are as-
sumed to be the same for all the particles.

The coefficients ( )jpn
LMA  come from the system of

equations [10, 13]

( ) ( )
0 00

ˆˆexp( ) ( , )= +jpn pn L
MnLM L jA a i Dk R n k

( ) ( ) ( )
0

,
ˆ ˆ( , ).

≠
+∑ ∑∑pq sqn q

jsL lm LMlm
q s j l m

a A H n r (6)

Here 1,= ±q  ( ) ,= +pn
L LLa a pnb  ,L La b  are the Mie coef-

ficients [4]. When L is of the order of the parameter
0 0 ,=x k a  and over, where a  is the particle radius, these

coefficients tend to vanish rapidly. This establishes the
order of equation system (6) and the upper values of
the indices in (5). The symbols ( )

0ˆ ˆ( , )q
jsLMlmH n r  repre-

sent the coefficients of the addition theorems for the
Helmholtz vector harmonics [16, 17]

( )
0

2 1ˆ ˆ( , ) ( 1)
2
+= − ×q m

jsLMlm
lH n r

1 1 1 11
1 1

1 1

0
0 00

,
ˆ ˆ( ) ( , ) ,−

− −×∑ l l m ll
l js js LMl m Lql qm

l m
i h k r D C Cn r (7)
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where ˆ jsr  is the coordinate system whose axis jsz  is
aligned with the radius-vector of the sth particle in the
jth particle coordinate system (the axes of the coordi-
nate system related to the center of the jth particle are
parallel to the axes of the coordinate system 0ˆ ),n

1 0( )l jsh k r  is the spherical Hankel function, symbol C
stands for the Clebsch–Gordan сoefficients [15]. The
Clebsch–Gordan сoefficients are other than zero provi-
ded that 1 = −m M m  and 1| |− ≤ ≤ +L l l L l  [15]. This
property of the coefficients establishes a range of indi-
ces in (7) and in the following formulas. It must be men-
tioned that the Wigner function 1

1 00 ˆ ˆ( , )l
jsmD n r  in (7) de-

pends only on the two Eulerian angles defining the sense
of the vector jsr  in the coordinate system 0ˆ .n  The third
Eulerian angle characterizing the rotation of the coordi-
nate system ˆ jsr  about the axis jsz  is arbitrary.

In equation system (6), coefficients (7) include all
features of the field outside the particles. When the
particle spacing is far larger than λ  and the particle
size, these coefficients describe the spherical wave trave-
ling from the sth particle to the jth one [5, 13].

Field relation (5) yields the ( )j
pnt  matrix [5, 10, 13]

( )
0exp( )= − + γ − γ ×j

pn sc jt i in ipk R

( ) *
0

,

2 1 ˆˆ( , ).
2
+×∑ jpn L

Mp scLM
L M

L A D n k (8)

3. THE RADIATIVE TRANSFER EQUATION

The formulas above allow us to derive the equation for
the noncoherent (diffuse) part of the first term on the
right-hand side of (4). The relevant method for a semi-
infinite medium and the normal incidence of radiation is
presented in [10]. It is not too different from the sparse
medium approach (see, e.g. [3-5] with the references)
and is as follows. Substitute (8) in (4) to get the exp-
ression carrying the coefficient product ( ) *( ) .μνjpn j

LM lmA A
For these coefficients, the system of equations corre-
sponding to the noncoherent part of the scattered ra-
diation is derived in the following way. The solution
of system (6) is available by iteration. The so obtained
series corresponds to the expansion of the solution of
system (6) in wave scattering orders with the initial
wave polarization n and the final polarization p. Next,
a similar series is written for a wave with the initial

polarization ν  and the final polarization .μ  Multiply
the first series by the complex conjugate of the second
series, keeping only those terms of the product series
which refer to the same propagation trajectories of both
waves. These scattering schemes correspond to the
diffuse component of the scattered radiation. In the
sparse medium case, these schemes lead to the equa-
tion which, on assemble averaging, yields the radiative
transfer equation [2-5, 10, 14]. The medium characteri-
zation by the effective refractive index quite facilitates
the assemble averaging. The complex effective refrac-
tive index efm  can be calculated, for one, in the quasi-
crystalline approximation of the medium [18, 2]. The
introduction of the effective refractive index of the
medium provides a means for describing the change of
the wave amplitude and phase in the medium. For this
purpose, the wave vector 0k  in the medium is replaced
by the vector  0.efm k  Then the wave vector 0k  in (6)
is substituted by the vector

0 0 0 0
0

1
,

cos
−

= +
ϑ

efm
kK k n (9)

and the vector sck  in (8) is substituted by the vector

0 0
1

.
cos

−
= +

ϑ
ef

sc
m

kK k n (10)

The introduction of vectors (9) and (10) allows descri-
bing the changes of the wave amplitude and phase
when it travels from the point where the wave enters
the medium to the jth particle and from the jth particle
to the point where the wave leaves the medium [13]
(supposedly the layer backscattering area is conside-
red). Then the matrix component product ( ) *( )

μν
j j

pnt t  ap-
pears to be [10, 13]

( )( ) *( ) *exp ( )μν = − ×j j
pn jt t iR K K

[ ]0
, , ,

(2 1)(2 1)exp ( ) ( )
4L M l m

L li n i p + +× − γ ν − + γ μ − ×∑
( ) *( ) *

0 0
ˆ ˆˆ ˆ( , ) ( , ),μν

μ× jpn j L l
Mp sc m scLM lmA A D Dn k n k (11)

and the equation system for the coefficient product
( ) *( )μνjpn j
LM lmA A  becomes [10, 13]
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1
1 1 1 1

*( ) *( ) ( ) *( )
0 0 0 0

ˆ ˆˆ ˆ( , ) ( , )μν μν
ν= ×Ljpn j pn L

MnLM LL M L MA A a a D Dn k n k

1
1

1

*(* ( )
0 0

,

)exp ( ) μ⎡ ⎤× − + ×⎣ ⎦ ∑ qpq
j L L

q q
i a aR K K

1 1
1 1 1 1 1 1

1 1

*( ) *( )( ) ( )
0 0

, , , ,
ˆ ˆ ˆ ˆ( , ) ( , ).ν× ∑ sq qsqn q

js jslm LMlml m L M l m
s l m l m

A A H Hn r n r

(12)

The coefficients ( )
0ˆ ˆ( , )q

jsLMlmH n r  describe the wave
propagation in between the scatterers. To take their
refractive index efm  into account, represent Hankel
function (7) in the form

0
0 0

0

exp( )( ) ( ),= ςl l
ik xh k x k x

k x
(13)

where the function ( )ςl x  allows the recurrent relation

1 1
(2 1)( ) ( ) ( )+ −

+ς = ς − ςl l l
lx x x
x

starting with the values

0 ( ) ,ς = −x i                 1( ) 1 .⎛ ⎞ς = − +⎜ ⎟⎝ ⎠
ix
x

When the particle spacing substantially exceeds the
particle size, 1( ) ( ) ,+ς ≈ − l

l x i  and coefficients (7) de-
scribe a spherical wave. When the particle spacing
is of the order of the particle size, coefficients (7)
include all wave peculiarities outside the scatterers.
Replace 0k  by 0 ,efm k  in the exponent in (13) and con-
sider the amplitude and phase change accompanying
the wave traveling in between the scatterers.

Next transformations lie in the assemble averaging
of matrix (11). The averaging is available in the quasi-
crystalline approximation [18, 2] consisting in the fol-
lowing. The distribution function of the particles

1( ,..., )Np r r  (the probability density to find N  parti-
cles at the points 1,..., )Nr r  can be written as [2, 18]

1 1( ,..., ) ( ) ( ,..., ,..., | )′= =i i iN Np p pr r r r r r r

1( ) ( | ) ( ,..., ,..., ,..., | , ).′ ′ ′= i j i i j i jNp p pr r r r r r r r r (14)

Here ( )ip r  is the probability density to find the ith
particle at the point .ir  Then 1( ,..., ,..., | )′i iNp r r r r
is the conventional probability to find the rest of par-
ticles at relevant points (the prime over ir  indicates
that the variable ir  is absent) and ( | )j ip r r  is the con-
ventional probability to find the jth particle at the point

jr  with the ith particle fixed. When N  is large and the
collection of particles is homogeneous and isotropic,

( )( | ) | |η −j i j ip g Nr r r r (15)

(see, e.g. [2, 18]), where η  is the concentration of par-
ticles and ( )g r  is the pair correlation function [19, 20]).

The expansion in (14) can be extended to the case
with two particles fixed, three particles fixed and so on.
Then the assemble average of (11) will be expressed
via the coefficient products ( ) *( ) ,μνjpn j

LM lmA A  assemble
averaged with the jth particle fixed. In turn, the avera-
ges of these products with the jth particle fixed will come
from (12) in terms of their averages with the jth and
the sth particles fixed and so on. Thus, the hierarchy of
equations has been obtained for finding the assemble
average of (11) [2]. The quasi-crystalline approximation
suggests that the average with two particles fixed is
approximately equal to the average with one particle
fixed [2, 18]. This assumption reduces the equation
hierarchy to only one equation. The calculation of the
average of coefficient product ( ) *( )μνjpn j

LM lmA A  (12) be-
comes relatively simple, and so does, consequently, the
calculation of the average of reflection matrix (11). We
emphasize that this approximation is similar to the lad-
der diagram summation presented in [4] for a sparse
medium but, in addition, it includes the pair correla-
tions [2, 21]. In other words, the same as in Tverskoy’s
theory for a sparse medium (see, e.g. [1,4]), this ap-
proximation also does not include the scattering
schemes of double, triple, etc. wave scattering from the
same obstacle.

Multiply (11) and (12) by (14) and integrate it over
the medium volume to get the assemble-averaged re-
flection matrix. Denote

1 2

( )( )( )

,

(2 1)(2 1)
4

j pn
LL lM

M m

L lB μν + += ×∑

( )2 2( ) *( )
0( 1) exp ( )μν +μ

−× − γ − νL Mjpn j m
LM lm LMl mA A C i n (16)

and
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1 2 1 2

( )( )( ) ( )( )( ) .μν μν=z pn j pn
LL lM LL lMB B

Expand the product of the two Wigner functions in the
Clebsch–Gordan series [15]. From (11), after simple
manipulations,

2 02
0 1

1 2

*( )

0 , , ,
( , ,0)μν −μ

η= ϕ θ ×∑ L NLnc
pn MN LpL

L L L M
S D C

k

0 0

2 1

( )( )( )
0

exp d .
cos

μν τ⎛ ⎞× ⎜ ⎟ϑ⎝ ⎠∫
k Z z pn

L MLL
zB z (17)

Here the reflection matrix ( )
μν

nc
pnS  for the noncoherent

portion of the scattered radiation is normalized to the
unit area of the medium surface, 0 ,= −μN p  and

2Im( ).τ = efm  Matrix (17) can be also adopted for de-
scribing the scattered radiation in the directions

2.ϑ< π  For this, z  in (17) is replaced by  0 0−z k Z
[13]. Then the exponential factor will describe the ra-
diation absorption on the way from the z  point to the
point of the radiation exit from the medium in the direc-
tions 2.ϑ< π

The system of equations for the coefficients

2 2 1

( )( )( )μνz pn
L M LLB  comes from system (12). Multiply (12) by

the coefficients of ( ) *( )μνjpn j
LM lmA A  in (16), sum up over

indices M and m and employ the quasi-crystalline ap-
proximation to have the system of equations for the
coefficients 

2 2 1

( )( )( ).μνz pn
L M LLB  In this case, after the product

of the two Wigner functions has been expanded into
the Clebsch–Gordan series in view of the unitary pro-
perty of the Clebsch–Gordan coefficients [15], the first
term on the right-hand side in (12) takes a simple form.
To calculate the average of the second term on the
right-hand side of (12), we substitute

1
1 1 1 1

*( )( )
0 0ˆ ˆ ˆ ˆ( ) ( , ) ( , ) =qq

js js jsLMlm L M l mg r H Hn r n r

1
1 1 1 1

*( )( )
0 0ˆ ˆ ˆ ˆ( ) ( , ) ( , )⎡= −⎣

qq
js js jsLMlm L M l mg r H Hn r n r

1
1 1 1 1

*( )( )
0 0ˆ ˆ ˆ ˆ( , ) ( , )⎤− +⎦

qq
js jsLMlm L M l mH Hn r n r

1
1 1 1 1

*( )( )
0 0ˆ ˆ ˆ ˆ( , ) ( , ).+ qq

js jsLMlm L M l mH Hn r n r

Here the coefficients ( )
0ˆ ˆ( , ),q

jsLMlmH n r  differ from coeffi-
cients (7) in that the Hankel functions are replaced by

their asymptotical values at 0 1,jsk r l  i.e. these coef-
ficients correspond to a sparse medium. Then practi-
cally the same as in [10], we arrive at the following
equation system for the coefficients 

2 1

( )( )( ) :μνz pn
L MLLB

2 1 2 1

( )( )( ) ( )( )( )
3
0

4μν μν πη= + ×z pn z pn
L MLL L MLLB A

k

1 1 1
1 2 1 2 1 1 2

1 1 2

*( ) ( )( )( ) ( )( )1

, , ,

(2 1)(2 1)
4

μ ν+ + +×∑ ∑q z qn q qqpq
L L l Mll L LL ll l

q q l l l
M

L L a a B G

1 2
2 1 1 1

1 1 2

( )( )
3

, ,0 ,

2 μ
−

πη+ χ ×∑ ∑pq q l N
L LL lql q

q q l l l
C

k

1 2 2
2 1

( )( )( ) exp( ) ( ) ( )sin d d .ν× −τ ω ω ω ω∫ y qn q L l
MN MNl MllB x d d x

(18)

Here cos ,= − ωy z x  the angle ω  is measured from the
0−n  direction. The upper limit of the integration

with respect to x is cos ,ωz  if 2,ω< π  and it is
0 0( ) cos ,− ωz Z k  if 2;ω > π  ( )ωL

MNd  is the Wigner
function [15], 1;= −N q q

2
2 1 2 1

( )( )( ) ( )( )
0 0

0
exp ( , ,0);

cos
μν μν

−ν
⎛ ⎞τ= χ − ϕ ϑ⎜ ⎟ϑ⎝ ⎠

Lz pn pn
MnL MLL L LL

zA D

(19)

2
2

( )( ) ( ) *( )(2 1)(2 1) ;
4

−νμν μν
−ν

+ +χ = L npn pn
L l LnlL Ll

L l a a C

1 1 2
2 22 1 1 2

( ) 0

, ,
( 1) + + + − −

−= − Π ×∑qq M L l l d b c b
L l bc Lql qL MLL ll l

b c d
G Ci

1 1 1 1 2 2

1 1
0 0 0

0 0

2 2

;− −

⎧ ⎫
⎪ ⎪× ⎨ ⎬
⎪ ⎪⎩ ⎭

c d d
L q l q b c L Ml M bcd

l L c
C C C Y l L b

l L d
(20)

(2 1)(2 1)(2 1)(2 1);Π = + + + +bcdf b c d f

0

*( ) ( ) ( ) ( ) exp( )d .
∞ −
ρ
⎡ ⎤= ς ς − τ −τ⎣ ⎦∫ c b

bcd b c dY g x x x i j i x x x

(21)
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In the formulas above, 0 02 ,ρ = k a  a  is the medium
particle radius, ( )lj x  is the spherical Bessel function,
and ( )g x  is the pair correlation function (15). The
braced expression in (20) is the 9j Wigner symbol [15].

The transfer equation in the form of (17) and (18)
is the medium layer equation in a circular polarization
basis. This equation can be rewritten as a series
in azimuthal harmonics, which is standard practice for
the classical transfer equation in a sparse medium [22].
Then formula (17) takes the form

( ) 2 02
0 1

1 2

( )
0

0 , , ,
exp ( ) d ( )μν −μ

η= ϕ−ϕ θ ×∑ L NLnc
pn MN LpL

L L L M
S iM C

k

0 0

2 1

( )( )( )
0

exp d .
cos

μν τ⎛ ⎞× ⎜ ⎟ϑ⎝ ⎠∫
k Z z pn

L MLL
zB z (22)

In this case, only the first right term of (18) has
a change. We mean coefficients (19), where the func-
tion 2

0 0( , ,0)−ν ϕ ϑL
MnD  has to be replaced by 2

0( ).−ν ϑL
Mnd

The obtained transfer equation is a more general
one than the equation for the incident radiation normal
to the semi-infinite medium layer in [10]. Also, a men-
tion should be made of one more difference between
the just obtained transfer equation and the equation
from [10]. It refers to the appearance of coefficients
(21). In [10], the size of medium scatterers is supposed
to be of the wavelength order and larger, the medium
absorption inconsiderable ( )Im( ) 1 .efm  On these as-
sumptions, coefficients (21) appear to be [10]

( )
0

*( ) 1 ( ) ( ) ( )exp( )d .
∞

ρ
= − ς ς τ −τ∫bcd b c dY g x x x j i x x x

(23)

Coefficients (23) vanish if ( ) 1,=g x  i.e. for a sparse
medium. In this case, the scatterers supposedly reside
far apart from one another. No assumptions were made
for the (21) derivation. In particular, coefficients (21)
are still valid for scatterers that are small compared
to the wavelength. For them, coefficients (21) vanish
if ( ) 1=g x  with the proviso that the scatterers are far
from one another. In the far zone, 1( ) ( ) +ς − l

l x i  and,
as seen from (21), these coefficients vanish unless the
correlation is included.

Formulas (22) and (18) coincide with those from [10]
as 0 →∞Z  and 0 0.ϑ =  In this case,

2 1 2 1

( )( )( ) ( )( ) exp( )μν μν
−ν= χ −τ δz pn pn

MnL MLL L LLA z (24)

and, as seen, = − νM n  in (18). The Stokes parameters
of the incident radiation lie in the plane of 0n  and 0k
vectors. The Stokes parameters of the scattered radia-
tion are in the plane of 0n  and sck  vectors (Fig. 1).
Therefore expression (22) depends on the azimuthal
difference between the incident and scattered radiation
directions. When the incident radiation is normal to
the medium layer, the Stokes parameters are convenient
to define in the plane of 0k  and sck  vectors. Then
formula (22) will be azimuthally independent.

The relationship between the medium packing den-
sity and the transfer equation is established by coef-
ficient G involved in equation system (18). The corre-
lation function ( )g x  is introduced in this coefficient
via formula (21). When the medium is free from the
correlation and the scatterers are far apart from one
another, the coefficient G vanishes. Then the comp-
lexity of the obtained formulas goes down substantial-
ly. The summation over 1,L L  in (22) yields [10]

( )
0

( )
0

0 ,
exp ( ) d ( )μν

η= ϕ−ϕ θ ×∑nc L
pn MN

L M
S iM

k

0 0 ( )( )( )
0

exp d ,
cos

μν τ⎛ ⎞× α ⎜ ⎟ϑ⎝ ⎠∫
k Z z pn

LM
z z (25)

where coefficients ( )( )( )μνα z pn
LM  are available from the

equation system

( )( )( ) ( )( )
0

0
( )exp

cos
μν μν

−ν
⎛ ⎞τα = χ ϑ − +⎜ ⎟ϑ⎝ ⎠

z pn pn L
MnLM L

zd

1

1

( )( )
3

,0

2 μπη+ χ ×∑ pq q
L

q qk

1( )( )( ) exp( ) ( ) ( )sin .d dν× α −τ ω ω ω ω∑∫ y qn q L l
MN MNlM

l
x d d x

(26)

Here it has been introduced the notation

1 1
1

( )( ) ( ) *( )

,

(2 1)(2 1) .
4

−ν −μμν μν
−ν −μ

+ +χ =∑ L n L ppn pn
L l Lnl LplL

L l

L l a a C C
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Formulas (25), (26) represent the vector equation
of radiation transfer for a sparse medium layer in a cir-
cular polarization basis. For its derivation from Max-
well’s equations, refer to works [4, 5, 13]. For scalar
waves, equation (26) is presented in [22] as a source
function in a medium. Some examples of the numerical
solution of equation (22) in the case of a semi-infinite
medium and the normal incidence on the medium sur-
face can be found in [10] together with the relevant
code for system (22) solution.

Let us estimate how much the wave nonuniformity
around the particles acts on the radiation reflection in-
tensity from an optically thin medium layer when the
incident radiation is normal to the layer surface. In this
case, coefficients (19) are written in the form of (24).
That the layer is optically thin allows the approxi-
mation 

2 1 2 1

( )( )( ) ( )( )exp( ) ,μν μν−τz pn pn
L MLL L MLLB z B  in system (18).

The integral involved in the last right term in (18) can
be written as

1 2 2
2 1

( )( )( ) exp( ) ( ) ( )sin d dν −τ ω ω ω ω∫ y qn q L l
MN MNl MllB x d d x

( ) ( )2 2
2 1

( )( )exp( ) 2 2 .μν−τ π π
τ

L lpn
MN MNL MLL

z B d d

Denote by 34 3ξ = ηπa  the medium packing density.
From (22) and (18) after some manipulations,

[ ]2
0 0 0( )

3
0

3 cos 1 exp( )
4 (cos 1)μν

ξ ϑ − −τ β
= ×

πτ ϑ−
nc

pn
k k Z

S
x

2 02
0 1 2 1

1 2

( )( )

, ,
( ) ,μν

−μ× θ∑ L NL pn
MN LpL L MLL

L L L
d C B (27)

where ,= − νM n  0 ,= −μN p  (cos 1) cos ,β = ϑ− ϑ
and the coefficients 

2 1

( )( )μνpn
L LLMB  come from the system

2 1 2 1

( )( ) ( )( )
,

μν μν
−ν= χ δ +pn pn

M nL MLL L LLB

1
1

1

*( )( )1
3

,0

(2 1)(2 1)3
4

μ+ +ξ+ ×∑ qpq
L L

q q

L L a a
x

1 1 1
2 12 1 2 1 1 2

11 2

3
0

( )( ) ( ) ( )( )

,, ,

3
2

ν μξ× + χ ×
τ

∑∑ qn q qq pq q
L LLl ll L LL ll l

q ql l l
M MB G

x

( ) ( )2 1 2 2
1 1 2 1

1 2

( )( )

, ,
2 2 .ν

−× π π∑ l N qn q L l
MN MNlql q l Mll

l l l
C B d d

Here 1.= −N q q
The reflected radiation intensity is characterized

by the reflection matrix component ( )
11

,
,= ∑ nc

pnpn
p n

R U S

where ( )2
02 cos= −π ϑU k  (see [4, 10, 13]). Examples

of this component calculation are reported in Fig. 2 for
a 0 0 10=k Z  thick medium layer filled with particles
of the size 0 0 2= =x k a  and the refractive index

1.5 0.0.= +m i  The effective refractive index of the me-
dium has been calculated in the quasi-crystalline ap-
proximation [2]. The imaginary parts for this refractive
index for cases of packing density ξ  shown in Fig. 2
are: Im( ) 0.026=efm  ( 0.1),ξ =  Im( ) 0.035=efm
( 0.2), Im( ) 0.033 ( 0.3), Im( ) 0.026ef efm mξ = = ξ = =
( 0.4).ξ =  The solid curves correspond to the calcu-
lations in the uniform wave approximation, i.e. for

1( ) ( ) +ς = −l
lx i  in (21). The dashed curves correspond

to the calculations with the wave nonuniformities
involved. That the element 11R  increases with pac-
king density is caused by both the ξ  growth (see formu-
la (27)) and by a larger contribution from the mul-

FIG. 2: The reflection matrix component 11R  versus the
scattering angle for different packing densities ξ  of par-
ticles in an optically thin medium layer. The ξ  values
are indicated on the curves. The particle parameters
are 0 2,=k a  1.5 0.0.= +m i  The solid line corresponds
to the calculations involving only the particle correla-
tion (the uniform wave approximation). The dotted line
is for both particle correlation and wave nonuniformities
around the particles involved
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tiple scattering. As seen from Fig. 2, the wave nonuni-
formities around the scatterers take effect for a packing
density 0.3.ξ ≥  A similar result as to the packing den-
sity estimation was obtained in [10] for a semi-infinite
medium of absorbing particles.

4. CONCLUSIONS

The obtained equation of radiative diffuse transfer in a
layer of a dense-packing medium of similar spherical
scatterers is more general than the equation from work
[10], which corresponds to the radiation normal incidence
on the medium surface. The assemble averaging employs
the quasi-crystalline approximation which includes the
two-particle correlation between the scatterers. The equa-
tion was obtained in full regard to the wave nonunifor-
mities near the scatterers. The allowance for these non-
uniformities substantially complicates the transfer equa-
tion compared to the sparse medium case. The equation
describes the diffuse part of the medium scattered radia-
tion, which corresponds to the ladder diagram summa-
tion in the diagram representation of the Bethe–Salpeter
equation. In this case, the interference of waves scat-
tered by closest neighbors is not included. Therefore
the equation can be employed when the scatterer size
is of the radiation wavelength order and larger. The
wave interference leading to the backscattering cohe-
rent amplification (weak localization) is not considered
either [4, 5, 9, 13]. The contribution from the interfe-
rence part of the scattered radiation to the medium re-
flection matrix is left to a separate paper.
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MUTUAL SCREENING OF SCATTERERS
IN THE NEAR FIELD
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The equations in theory of electromagnetic wave scattering by a cluster (aggregate) of spherical particles are
analyzed in terms of two scattering models: one involves the near field, the other ignores it. For some cluster
examples, the radiation scattered by cluster particles was calculated to find out that the radiation intensity
in the directions of mutual screening of particles is substantially larger from the model ignoring the near field
than from that considering it.
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1. INTRODUCTION

At present the theoretical treatment of multiple scatte-
ring of electromagnetic waves (EMW) by discrete me-
dia rests on the idea that the secondary waves trave-
ling outside medium scatterers are spherical. In parti-
cular, the classical equation of radiation transport comes
from Maxwell’s equations right under the assumption
that the scatterers are in the far zones of one another
[1, 2]. In spite of the fact that this assumption is rea-
sonable for sparse media where the scatterer spacing
exceeds the scatterer size tremendously, the transport
equation and its modifications are also being of com-
mon use when radiation reflection characteristics of
dense packing media are treated [3-6]. One such modi-
fication of the classical transport equation is the so-
called diffuse approximation. The practice exists [7]
to instantly apply it to dense media, paying no atten-
tion that the assumption that waves traveling outside
the medium scatteres are spherical drops a number of
characteristic features of the EMW scattering by dense-
packing systems. In particular, peculiarities of the near-
field scattering are ignored.

The near field effect on the radiation scattering cha-
racteristics of discrete media has yet to be studied. Only
rather few works study specific features of the near-
field scattering in dense-packing systems of several
scatterers (see [8-14] with the references). In particular,
the emphasis was [8-12] on the amount of linear pola-
rization of the scattered radiation in the near field. About
the scatterer, the total (incident plus scattered) field
is nonuniform, which makes the electric vector depart
from the electric vector of the incident wave. As a re-
sult, the field vector component parallel to the incident
wave vector appears. For clusters (aggregates) of par-
ticles compared in size with the wavelength, the men-
tioned departure of the field vector produces some nega-
tive linear polarization in the area of the opposition
scattering angles. As to the intensity of the scattered
radiation, the field vector departure diminishes it in the
forward and backward scattering directions and raises
it in the side directions [8-12].

The present paper considers one more effect rela-
ted to the near field. This is the mutual screening of
scatterers. This phenomenon can grow important when
the scatterer spacing is comparable with its size. When
the scatterer is vastly larger than the incident wave-
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length, the mutual screening is analogous to the shading
effect (see [3] and [13, 14]). Yet the mutual screening
phenomenon will be also encountered in systems of
scatterers far less in size than the wavelength.

The screening effect will be considered by examples
of clusters of spherical scatterers. Section 2 contains
essential formulas of EMW scattering theory for sys-
tems of such scatterers. The near field is thoroughly
analyzed. For the scatterer systems, the calculation re-
lationships of radiation scattering characteristics are
given in both model terms: with the near field included
or ignored. On this basis, both models are compared
for scattered field intensity in Section 3. The compari-
son starts with a simplest-kind cluster consisting of two
similar scatterers and is extended to complicated chao-
tic-orientation clusters (with equally probable orienta-
tion distribution function) for cases of 50, 100 and 200
similar near-spherical particles randomly distributed over
the cluster, the packing density being of about 0.2.

2. EMW SCATTERING BY A SYSTEM
OF SPHERICAL PARTICLES. THE NEAR FIELD

The EMW scattering theory for systems (clusters) of
arbitrary-size spherical scatterers of an arbitrary refrac-
tive index can be found in the literature (see, e.g. mono-
graphs [15, 16] with the references). The essential equa-
tions are presented below, the notations adopted to
coincide with those [17, 18].

The coordinate systems to describe the EMW scat-
tering by a cluster are shown in Fig. 1. Let a cluster
consist of N particles located by their radius-vectors

jR  ( 1... )j N=  in a laboratory coordinate system 0n̂
such that the x, y, z axes and the origin are at the center
of the minimum-radius sphere enveloping the cluster.
A caret over a symbol, for instance ˆ ,v  indicates a right-
handed coordinate system with the z axis directed along
the vector v. The incident plane wave is considered
in the coordinate system 0

ˆ ,k  the axis 0z  aligned with
the incident wave vector 0k  0( 2k = π λ  and λ  is the
wavelength). The wave scattered by the cluster travels
to the observation point along the wave vector sck
in the coordinate system ˆ .sck  The rotation from the
coordinate system 0n̂  to the coordinate system 0k̂
is given by the Eulerian angles 0 ,ϕ  0,θ  0.ψ  The 0n̂
to ˆ

sck  rotation is given by the Eulerian angles ,scϕ
,scθ  .scψ  The 0k̂  to ˆ

sck  rotation is given by the
Eulerian angles ,ϕ  ,θ  .ψ  These systems are comple-
ted with local coordinates related to each scatterer.

Their origins are at the centers of the scatterers, the
axes are aligned with the axes of the laboratory coordi-
nate system (Fig.1). The local coordinate systems are
required for describing the waves acting on each par-
ticle from the side of the rest members of the cluster.

The EMW scattering is convenient to consider in a
circular polarization basis (the so-called CP-representa-
tion [15]). For a plane circularly polarized monochro-
matic wave, the electric field at the point P (Fig. 1) can
be written as follows

(0)
0 0

ˆ( )exp( ).n i i t= − ωE e k k r (1)

Here 1,n = ±  ω  is the frequency, and 0
ˆ( )ne k  is the

covariant cyclic unit vector [19] generated by the unit
vectors 

0
,xe  

0ye  in the coordinate system 0k̂  (Fig. 1).
For 1,n =  the sense of rotation of vector (1) is that of
a right-hand screw when looking in the direction of
vector 0k  and a left-handed screw for 1.n = −  The
corresponding circular polarization of waves is said
to be right-handed or left-handed, respectively [15]. The
scattered wave dependence on time t is exp( )i t− ω  and
will be omitted.

At any point outside the particles, the scattered
field is supposed to be the sum of the fields scattered
by each particle of the cluster [15]

FIG. 1: The coordinate systems for describing the EMW
scattering by a cluster
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( )

1
,

N
j

j=
= ∑E E (2)

where (see, e.g. [17])

( ) ( )
0( ) ( , )j j

L j LM j jLM
LM

B h k r
⎡

= θ ϕ +⎢
⎣

∑E X

( )
0

0

1 ( ) ( , ) .j
L j LM j jLMA h k r

k
⎤

+ ∇× θ ϕ ⎥
⎦

X (3)

Equation (3) expresses the wave scattered by the jth
particle with respect to the coordinate system whose
origin is at this particle center and the axes are parallel
to the 0n̂  system axes (Fig. 1). Here ,jθ  jϕ  are the
angular coordinates of the observation point (vector

)j j= −r r R  in the jth coordinate system, ( )Lh x  is the
spherical Hankel function, and ( , )LM j jθ ϕX  is the vec-
tor spherical function [16, 19] ( 1, 2..., ).L L M L= − ≤ ≤
Notice that (3) is the general solution to the Helm-
holtz vector equation when the field divergence is zero
(no free charges). A particular appearance of the scat-
tered field is determined by the coefficients ( )j

LMA  and
( )j
LMB  available from the boundary condition that the

field tangential components are continuous across the
scatterer surface. Solving these equations with the
boundary conditions applied delivers these coefficients
depending on the size and the refractive index of the
scatterer.

The common practice is that the scattered radiation
characteristics of the cluster are considered in the far
zone defined by the conditions [2] 0 ( ) 1,mk r a−

2
0 02 ( ) ,mk r k a   and .mr a  Here ma  is the radius

of the minimum sphere circumscribed around the clus-
ter and r is the observation point distance in the labo-
ratory coordinate system. Upon the asymptotical rep-
resentation 1( ) exp( )L

Lh x i ix x− −≈  ( ,x L  1),x the
cluster far field comes from (3) in the form [17]:

( ) 0

0

exp( ) exp( )j
sc j

ik r i
ik r

= − ×
−

E k R

( ) *
0

2 1 ˆ ˆˆ( , ) ( ).
2

jpn L
Mp sc p scLM

LMp

L A D+×∑ n k e k (4)

Here 1,p = ±  ˆ( )p sce k  is the covariant cyclic unit vec-
tor [19] in the coordinate system ˆ ,sck  0

ˆˆ( , )L
Mn scD =n k

( , , ) exp( ) ( )exp( )L L
Mn sc sc sc sc Mn sc scD iM d inϕ θ ψ = − ϕ θ − ψ

is the Wigner function [19], the asterisk stands for the
complex conjugation, and

( )( ) ( ) ( )1 .
2 (2 1)

jpn L j j
LM LM LMA i A pB

L
−= +

π +
(5)

The coefficients ( )jpn
LMA  come from the equation sys-

tem (see, e.g. [17]) in the form

( ) ( )
0 0 0

ˆˆexp( ) ( , )jpn jpn L
LM L j MnA a i D= +k R n k

( ) ( ) ( )
0ˆ ˆ( , ).

N
jpq sqn q

L jslm LMlm
q s j lm

a A H
≠

+∑ ∑∑ n r (6)

Here ˆ jsr  is the coordinate system with the axis jsz
aligned with the vector jsr  (Fig. 1), 1;q = ±

( ) ( ) ( ) ,jpn j j
L L La a pnb= +  where ( ) ,j

La  ( )j
Lb  are the coef-

ficients of field expansion (3) for the jth particle isola-
ted [2], and

( )
0

2 1ˆ ˆ( , ) ( 1)
2

q m
jsLMlm

lH += − ×n r

1 1 1 11
1 1

1

0
0 00 ˆ ˆ( ) ( , )l l m ll

l js js LMl m Lql qm
l

i h k r D C C−
− −×∑ n r    – (7)

are the coefficients of the addition theorems for the
Helmholtz vector harmonics (see, e.g. [17]), where sym-
bols C stand for the Clebsch–Gordan coefficients [19],

1 .m M m= −
Notice that equation system (6) can be solved by

the iteration method. For this system, | | ,M L≤  and
the maximum of index L is usually the integer of

1 34 2j jX X+ +  [2], where 0 ,j jX k a=  and ja  is the jth
particle radius.

Expression (4) is the transverse spherical wave lea-
ving the jth particle. The substitution of (4) into (2)
yields the transverse spherical wave leaving the clus-
ter. In this case, the cluster size is assumed small com-
pared to the observation point distance. So, the obser-
vation point direction is the same for all particles of the
cluster (Fig. 1). The amplitude of wave (4) varies direct-
ly with 1,r−  where r is the cluster distance. Unlike (4),
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field (3) is not a transverse spherical wave. This field
contains a radial (along the vector )jr  component and
terms decaying like 1nr−  for 1 1.n >  The latter follows
from the Hankel function ( )lh x  expansion in the finite
series carrying 1nx−  degrees, 1 1, 2, 3, ..., 1n l= +  (see,
e.g. [20]). In the literature, the terms proportional to

1 ,nr−  1 1,n >  are identified with the near field [21]. The
scattering of this complex field from each particle of
the cluster is described by equation system (6). Coeffi-
cients (7) of this system determine the field outside the
particles. The field behavior depends on the distances
between them. Generally coefficients (7) contain terms
decaying faster than 1.jsr−  Keeping only terms propor-
tional to 1

jsr−  offers these coefficients in the form [17]

0( )
0

0

exp( )2 1ˆ ˆ( , )
2

jsq
jsLMlm

js

ik rlH
ik r

+= ×
−

n r

*
0 0ˆ ˆ ˆ ˆ( , ) ( , ).L l

Mq sj mq sjD D× n r n r (8)

Coefficients (8) govern the spherical wave traveling
from the sth particle to the jth particle. Hence a disre-
gard of the near field in (7) only keeps the terms refer-
ring to spherical waves propagating outside the scat-
terers, no matter what the scatterer spacing is. This
means that the description of the field outside the scat-
terers ignores the scatterer size with respect to its sepa-
ration. Formally coefficients (8) can come from (7) un-
der the conditions 0 1,jsk r  2

0 0 02 ( )js s jk r k a k a+
and js j sr a a+  ( ia  is the ith scatterer radius), that
is the scatterers are assumed to be far apart from one
another. Later on, a comparison between the scattering
models will be made upon coefficients (8) whatever the
scatterer spacing. Notice that the second of the two
conditions right above estimates the average spacing
under which the screening can take effect. This estima-
tion is true for particles whose size is of the wave-
length order and more. For equal particles, in particular,
this condition takes the appearance 2

0 02( ) ,jsk r k a
where a  is the particle radius.

Although any element of the scattering matrix can
be affected by the near field, the mutual screening takes
most effect on the intensity (for the near field action
on polarization, refer to Introduction). That is why our
consideration of the near field effect the on scattered
radiation characteristics will be only concerned with
intensity. The characteristics of radiation scattered by
a cluster are determined by the scattering matrix F de-

scribing how the Stokes vector-parameter 0I  of the
incident radiation is translated to the Stokes vector-
parameter I of the scattered radiation [2, 15]

02
0

1 .
( )k r

=I FI (9)

When the incident radiation is nonpolarized, related
intensity I of the scattered radiation is defined by ele-
ment 11F  of scattering matrix (9) (see, e.g. [22])

2
11 | | .pn

pn
I F S= = ∑ (10)

In the СР representation, pnS  ( , 1)p n = ±  is the ampli-
tude matrix of the radiation scattered by the cluster. Like-
wise scattered field (2), the cluster amplitude matrix pnS
can be summed from the amplitude matrices of all the
particles. The jth particle amplitude matrix ( )

0( , )j
pn sct k k

is available from (4) (see, e.g. [17, 18])

( )
0 0( , ) exp( )j

pn sc sc j sct i in ip= − + ψ − ψ ×k k k R

( ) *
0

2 1 ˆˆ( , ).
2

jpn L
LM Mp sc

LM

L A D+×∑ n k (11)

Matrix (11) is written in a basis of spiral unit vectors
[19]. These unit vectors are produced by the spherical
unit vectors 

0
,θe  

0ϕe  lying in the meridional plane pas-
sing the axis z and the vector 0 ,k  and by the spherical
unit vectors ,

scθe  
scϕe  lying in the meridional plane

passing the axis z and the vector sck  (Fig. 1). In other
words, the intensity vector components of the incident
and the scattered waves given in different meridional
planes are related by matrix (11). The passage to the
scattering plane (carrying 0k  and sck  vectors), where
matrix F is defined, is realized via the addition theorems
for the Wigner functions [19].

3. MUTUAL SCREENING IN DENSE-PACKING
SYSTEMS OF SCATTERERS

The screening idea is usually associated with a situa-
tion when the scatterer size is larger than the wave-
length. Yet the screening can come when the scatterer
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is much smaller than the wavelength. Characteristic fea-
tures of the electromagnetic wave scattering from
a couple of small (compared to the wavelength) close-
ly-spaced scatterers polarized like a dipole in an exter-
nal field will be considered in a qualitative sense. The
scatterer spacing is assumed to be small with respect
to the wavelength .λ  For a couple of such scatterers,
two possible charge configurations acquired in an ex-
ternal field (0)E  are shown in Fig. 2. The scatterers
reside in the scattering plane coinciding with the figure
plane, which is also the polarization plane of the inci-
dent radiation. The configuration in Fig. 2, a shows that
the charges are not coupled by their near (electrostatic)
fields. The intensity of the radiation scattered by the
particles is not zero on the straight line AB connecting
their centers. The charge configuration in Fig. 2, b is
for electrostatically coupled scatterers: the intensity
of the scattered radiation on straight line AB is zero.
In other words, the near field involvement leads to the
“screening” of one scatterer by the other along their
common centerline.

Of course, the scatterer configuration in Fig. 2, b is
idealized, with the electrostatic field contribution inten-
tionally inflated. By formulas from Section 2, the angu-
lar dependence of the scattered radiation intensity was
calculated for a couple of Rayleigh scatterers touching
each other. The results plotted in Fig. 3 are for the
particle wave parameter 0 0.01,X k a= =  and the refrac-

tive index 10.0 0.m i= +  That large refractive index was
taken to show up differences between the two models.
The scatterers reside in the xz plane, the symmetry axis
of the couple of scatterers makes an angle of 45°  with
the z axis. A unit-intensity radiation is incident along
the z axis. The scattering angle θ  is measured clock-
wise from the z axis. The intensity of the scattered radi-
ation is divided by 22 .X  The dashed and the solid
curves are from the models ignoring and considering
the near field, respectively. The thick and the thin
curves are given to distinguish between the cases of
the incident radiation polarization in the scattering plane
and in the plane normal to it, respectively.

As seen from the figure, the scattered radiation in-
tensity from the near-field ignoring model behaves the
same as for a single Rayleigh scatterer and fully obeys
the scheme in Fig. 2, a. Namely, when the radiation is
linearly polarized in the scattering plane, the scattered
radiation intensity maxima occur in the scattering di-
rections 0θ = °  and 180 ,θ = °  the minimum is at

FIG. 2: Schematic showing the near-field “screening”
of small-size dipole scatterers. Straight line AB connects
the centers of the scatterers. When the induced charges
do not interact, the intensity of the radiation scattered
by the particles is not zero on line AB (a). When they
do that and the near-field coupling takes place, the in-
tensity of the radiation scattered by the particles is zero
on AB line (b)

FIG. 3: Relative intensity I of the radiation scattered by
a couple of closely-spaced Rayleigh scatterers versus
the scattering angle θ.  The wave parameter of the partic-
les is 0.01X =  and the refractive index is 10.0 0.m i= +
The dashed and the solid curves are for the models ig-
noring and considering the near field, respectively. The
thick and the thin curves are for the incident radiation
polarization in the plane of scattering and in the plane
normal to it, respectively
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90 .θ = °  For the radiation linearly polarized in the per-
pendicular plane, the scattering intensity does not de-
pend on the scattering angle. In the 0θ = °  and

180θ = °  directions, the intensity does not depend
on polarization of the incident radiation.

In the near-field considering model, the scattered
radiation intensity in the 0θ = °  and 180θ = °  direc-
tions depends strongly on polarization of the incident
radiation. In these directions, the scattered radiation
intensity substantially exceeds the analogous amounts
from the other model when the incident radiation
is polarized in the scattering plane. The reason is that
the electrostatic interaction between the scatterers
(Fig. 2, b) considerably increases the dipole moments
compared to the previous model. The intensity maxi-
mum is seen, however, at 15 ,θ ≈ °  whereas the scheme
from Fig. 2, b predicts it in the direction normal to АВ
line connecting the centers of the dipoles (in the con-
sidered example, this direction corresponds to 45 ).θ = °
This means that the dipole moments of the scatterers
in Fig. 3 are aligned with the direction 105 ,θ ≈ °  where
the intensity is zero. The intensity behavior within
100 160° < θ < °  can be of interest. On this interval, the
intensity from the near-field model is distinctly lower
than that from the near-field ignoring model. This in-
tensity decrease is explained by the scatterer “scree-
ning” interpreted in qualitative terms in Fig. 2.

Previously the near field part was played by the
electrostatic field. Now turn to the screening arising
during the electromagnetic interaction of scatterers.
Consider the EMW scattering from a simplest cluster
consisting of two similar spherical particles (bisphere).
The bisphere particles touch each other, their radii
being comparable with the wavelength. The scattering
intensity of such a cluster versus the scattering angle
is plotted in Figs. 4, а and b for two bisphere orienta-
tions with respect to the scattering plane. The intensity
computations are due to the formulas from Section 2.
The bisphere symmetry axis is normal to the direction
of the incident nonpolarized radiation. The wave pa-
rameter of the bisphere particles is 0 4.0,X k a= =  the
refractive index is 1.32 0.05.m i= +  A choice of the re-
fractive index with a relatively small real part and a fairly
large imaginary part keeps intensity curves from abrupt
bursts, which are typical for nonabsorbing scatterers
with a large real part of the refractive index. For the
refractive index employed, the scattered radiation in-
tensity curves are relatively smooth, which simplifies
the comparison between the two scattering models. The
solid curves in Fig. 4 come from the calculations in-

volving coefficients (7) (the allowance for the near field).
The dashed curves correspond to the calculations with
coefficients (8) (the near field ignored). The scattering
plane coincides with the plane of the figure. The cor-
responding bisphere orientation with respect to the scat-
tering plane is seen at the upper right of Figs. 4, а and b.
For all the curves, the scattering radiation intensity
(component 11F  in (10)) was divided by 2 .X

A comparison of the curves in Fig. 4, а and b reveals
that the near field involvement substantially (nearly an
order of magnitude) reduces the scattering intensity in
the direction of the bisphere symmetry axis ( 90 ).θ = °
This fall in intensity is explained by the mutual scree-
ning of the particles in the near field. As mentioned
in Section 2, coefficients (7) include all peculiarities of
the field between the particles. These peculiarities are
realized, in particular, in the mutual screening of par-
ticles. A disregard of the field components decaying
faster than 1

jsr−  in coefficients (7) leads to spherical
wave approximation (8). This means that the descrip-
tion of the field between the particles neglects the par-
ticle size with respect to the particle spacing. In this
approximation, the mutual screening of particles is ruled
out. That is why the scattering along the bisphere axis
is much more intensive.

In Fig. 4, c, the radiation scattering intensity along
the bisphere axis is plotted versus the spacing between
the bisphere components. As is seen, the screening
action can be traced until the spacing gets several dia-
meters of the scatterers. The intensity minima are lo-
cated by the interference of waves leaving the scatte-
rers and arriving at the observation point with the phase
difference 1 ,n π  where 1n  is an odd integer. In the near-
field model, the scattered radiation intensity versus the
scatterer size demonstrates analogous minima along the
bisphere axis when the bisphere components touch each
other (Fig. 4, d, solid line). However the intensity curves
from the near-field model in Figs. 4, c and d are actually
dependences on the distance between the centers of
the scatterers, the interference character in Fig. 4, d
is not so bright. Besides, the amplitude of the interfe-
rence oscillations decays as the scatterer size grows,
which is caused by a larger destructive action of the
scatterer size on the wave interference because the
screening enhances.

For reference, Fig. 4, d presents the single-scatterer
dependence (points). It is seen that for the given re-
fractive index, the screening tends, as the scatterer size
grows, to the geometrical optical limit, where the scat-
tered radiation intensity is halved. A substantial (near-
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ly an order of magnitude) difference between the inten-
sities from the two models is caused by a large contri-
bution from the multiple scattering when the near field
is considered. In particular, a significant contribution

from the multiple scattering, which decreases as the
bisphere component spacing increases, is clearly seen
in Fig. 4, c at the intensity minima near 0 9k d ≈  and

0 15.k d ≈

FIG. 4: The relative intensity of the bisphere scattered radiation versus the scattering angle: the bisphere compo-
nents reside in the scattering plane (figure plane) (a) and in the plane normal to the scattering plane (b). The relative
intensity of the scattered radiation in the bisphere axis direction versus the scatterer separation odk  (c) and the
scatterer size (d). The intensity shown with points refers to a single scatterer. The solid and dashed lines correspond
to the models with and without the near field, respectively. The wave parameter of the bisphere particles is 4.0,X =
the refractive index is 1.32 0.05.m i= +  The bisphere axis is normal to the wave vector 0k  of the incident radiation
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It should be mentioned that the concept of “multiple
scattering” is different for the two models discussed.
To interpret its sense in the case of the near-field ig-
noring model, introduce the notation

( ) ( ) *
0 0

2 1ˆ ˆˆ ˆ( , ) ( , ).
2

j jpn L
pn sc LM Mp sc

LM

Lf A D+= ∑k n n k (12)

Then formula (4) becomes

( ) 0

0

exp( ) exp( )j
sc j

ik r i
ik r

= − ×
−

E k R

( )
0

ˆ ˆˆ( , ) ( ).j
pn sc p sc

p
f×∑ k n e k (13)

Field (13) is a superposition of waves with right-han-
ded ( 1)p =  and left-handed ( 1)p = −  circular polariza-
tions and ( )

0
ˆ ˆ( , )j

pn scf k n  amplitudes. To get the equa-
tion for these amplitudes, substitute (8) in (6) and make
use of the addition theorems for the Wigner functions
[19]. Eventually we arrive at the following system of
equations for coefficients (12)

( ) ( )
0 0 0

ˆ ˆ ˆˆ( , ) ( , )exp( )j j
pn sc pn sc jf g i= +k n k k k R

0( ) ( )
0

0

exp( )ˆ ˆ ˆ ˆ( , ) ( , ),
N

jsj s
pq sc sj qn sj

jsq s j

ik r
g f

ik r≠
+

−∑ ∑k r r n (14)

where

( ) ( ) *
0 0

2 1ˆ ˆ ˆ ˆ( , ) ( , ).
2

j jpn L
pn sc L np sc

L

Lg a D+= ∑k k k k (15)

Here ( )
0

ˆ ˆ( , )j
pn scg k k  is the amplitude of a circularly po-

larized wave with polarization p. The wave is scattered
by the jth particle along the axis jz  of the coordinate
system ˆ

sck  (Fig. 1). In this case, incident plane wave
(1) has circular polarization n and propagates along the
axis 0z  of the coordinate system 0

ˆ .k
The physical sense of equation system (14) is as

follows. The amplitude ( )
0

ˆ ˆ( , )j
pn scf k n  of the wave scat-

tered by the jth particle is a superposition of wave
amplitudes, one of which is provided by the scattering
of incident wave (1) (the first term in the right-hand

side of (14)). The rest amplitudes are caused by the
scattering of the waves arriving from the other scatte-
rers of the cluster (the second term in the right-hand
side of (14)). As the scatterer spacing is assumed to be
far larger than the scatterer size, the wave arriving from
the sth scatterer and acting on the jth scatterer is
thought of as a quasi-plane uniform wave with an am-
plitude proportional to 1.jsr−

Let us represent an iteration procedure solution to
equation system (14). This solution representation can
be interpreted as a series expansion of amplitude (14)
in scattering orders. In this case, the first term on the
right-hand side of (14) corresponds to the single scat-
tering from the jth particle. Its substitution into the se-
cond term corresponds to the double scattering from,
first, the sth scatterer and then from the jth scatterer,
and so on. In this way, expression (14) describes the
process of multiple scattering of quasi-plane waves in
the system of scatterers.

Unlike the previous model ignoring the near field,
equation system (6) with coefficients (7) cannot be re-
duced to the form of (14). However it still allows the
iteration procedure, which can be still interpreted as a
series expansion of coefficients (5) in scattering orders.
In these terms, the sense of the multiple scattering dif-
fers from its sense in the previous model. The near-
field ignoring model deals with the scattering of quasi-
plane waves acting on the scatterers. The near-field
considering model interprets the “multiple scattering”
as a process of the amplitude and phase redistribution
between the coefficients ( )jpn

LMA  at different j, L, M, n,
and p. In this case, such a relationship between the
amplitudes and phases of these coefficients is estab-
lished that leads to the scatterer screening.

Now let us trace the near-field mutual interaction of
scatterers in clusters with chaotic orientation of sphe-
rical particles. Some computer codes from the Internet
[23] were adopted for calculating the scattered radia-
tion characteristics of the clusters of the kind with the
near field included. These very codes were adapted
for calculating the scattering characteristics with the
near field ignored. Clusters of identical particles were
generated by the methodology from [24]. The cases of
clusters employed in the calculations and consisting
of similar 50, 100 and 200 particles are seen in Fig. 5.
The shape of the clusters is nearly spherical, the par-
ticle arrangement is random.

The wave parameter of cluster particles is 1.5,X =
the refractive indices are 1.55 0.001m i= +  and

1.55 0.1.m i= +  The cluster packing density is
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( )3
0 0.2,N X Xξ = ≈  where N is the number of partic-

les in the cluster. The cluster wave parameter is
0 0 mX k a=  m(a  is the radius of the minimum sphere

circumscribed around the cluster). The intensity of the
radiation scattered by these chaotic-orientation clus-
ters is plotted versus the scattering angle in Fig.6. The
thick curves were obtained with allowance for the near
field (with coefficients (7)). The thin curves are for the
near field ignored (with coefficients (8)). The intensity
was always divided by 2

0 .X
As seen from Fig. 6, a disregard of the near field

considerably increases the scattered radiation intensi-
ty at all scattering angles. A point of interest is the
intensity behavior at 60 .θ > °  With the near field in-
cluded, the intensity in this angular range depends
weakly on the number N of particles (especially for
heavily absorbing scatterers). In so far as the intensity
is normalized to the cross-sectional square unit (to be
specific, it is divided by 2

0 ),X  this dependence means
that at least in this angular range the intensity is mostly
determined by the upper layer of cluster particles. The
rest particles of the cluster are screened by the upper
layer of particles. When the near field is ignored, the
particles do not screen one another. Thus, the multiple
scattering process involves more particles, enhancing
the multiple scattering contribution and the scattered
radiation intensity compared to the model with the near
field included. For the same reason, the intensity de-
pendence on the number of particles in the cluster is
heavier from the model ignoring the near field, and it is
the more so for weakly absorbing scatterers.

In the scattering direction 0,θ ≈  the main contribu-
tor to the scattered radiation intensity is the interference
of single-scattered waves. When the near field is taken
into account, then, in view of the particle screening and
wave phase shifts inside the cluster, the main contribu-
tion to this interference is from the particles nearby the

FIG. 5: Clusters consisting of 50, 100 and 200 identical
spherical particles. The average wave parameter 0X  of
these clusters is about 9.25, 11.9 and 14.67, respectively

FIG. 6: The relative intensity of the radiation scattered
by chaotic-orientation clusters of spherical particles with
and without the near field considered (thick and thin lines,
respectively) versus the scattering angle θ.  —— 50,N =
– – – 100,N =  - - - 200.N =  The wave parameter
of the cluster particles is 1.5,X =  the refractive index
is 1.55 0.001m i= +  (a) and 1.55 0.01m i= +  (b)
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cluster equator (limb) [11]. The number N of these parti-
cles is approximately proportional to the cluster average
radius. As the interference contributes in proportion
to the number ( 1),N N −  the scattered radiation intensi-
ty in the 0θ ≈  direction varies directly with the cluster
cross-sectional area. Therefore with the normalization
as mentioned, the intensity in this scattering direction
does not depend too much on the number of particles
in a cluster. When the near field is ignored, each particle
of a cluster contributes to the interference. The scat-
tered radiation intensity is larger and depends more on
the number of particles in a cluster.

It would be of interest to trace the behavior of the
scattered radiation intensity in the area of the opposi-
tion scattering angles (near 180 ).θ = °  This angular
interval is a valid one for interpreting observations of
atmosphere-free celestial bodies offering, as a rule, the
so-called brightness opposition effect in the visible re-
gion of spectrum (see, e.g. [23]). For reference, the bright-
ness opposition effect consists in the nonlinear increase
of the object brightness as the phase angle α = π − θ
decreases. Fig. 7 reports the scattered radiation inten-
sity versus the phase angle for 50N =  and 200N =
clusters (solid and dashed lines, respectively). As be-
fore, thick and thin lines correspond to the calculations
with the near field considered and ignored, respectively.
According to the picture, the opposition effect is more
pronounced in the model with the near field ignored.
And this is the more so for heavily absorbing scatterers
(Fig. 7, b). Thus, in the near-field ignoring model, the

200N =  cluster demonstrates an obvious opposition
effect. In the near-field model, the opposition effect from
the same cluster is insignificant (the dashed curves
in Fig. 7, b). According to [8-12], this difference in the
intensity behavior between the two models is caused
by the near field nonuniformity (see Introduction). It is
notable that the brightness opposition effect is slight
for dark F-type asteroids, while for light asteroids it is
seen clearly [25]. This can be explained by a high pac-
king density of scatterers of a small-size and a large
imaginary part of the refractive index.

Attention is drawn to the oscillating character of
the intensity curves of the 200N =  cluster in the near-
field model (Fig. 7). Also, a similar but more pronounced
oscillating character of the intensity is demonstrated
by chaotic-orientation clusters of the same particles
with a regular packing of the particles at tetrahedron
vertices [11]. This suggests that the oscillations on the
curves in Fig. 7 can be caused by the cluster upper
layer getting structurally bounded at this packing densi-

FIG. 7: Relative intensity of the radiation scattered
by chaotic-orientation clusters of spherical particles with
and without the near field considered (thick and thin
lines, respectively) near the opposition scattering ang-
les. The refractive index is 1.55 0.001m i= +  (a) and

1.55 0.01m i= +  (b). The solid curves are for 50,N =
the dashed curves are for 200N =

ty. The periodicity of oscillations confirms it. In the
near-field ignoring model, the contribution from the
multiple scattering is large enough to “wash” these
oscillations “out”.
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4. CONCLUSIONS

In this paper, the near-field scattering features of collec-
tions (clusters) of spherical scatterers are considered.
It has been shown that the near-field mutual screening
of scatterers substantially reduces the cluster scattering
intensity compared to the scattering model ignoring the
near field. This model stands behind the modern theory
of multiple scattering by discrete media. The numerical
results on the intensity of the radiation scattered by
systems of scatterers indicate that consideration must
be given to the near field when the theory of multiple
scattering by dense packing media is constructed and
when various measurements are interpreted.
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