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TOWARD A NONINTRUSIVE STOCHASTIC
MULTISCALE DESIGN SYSTEM FOR COMPOSITE
MATERIALS

Wei Wu* & Jacob Fish

Multiscale Science and Engineering Center, Rensselaer Polytechnic Institute, Troy, New York
12180

*Address all correspondence to Wei Wu E-mail: wuw3@rpi.edu

In this paper we study a nonintrusive stochastic collocation method in combination with a reduced-order homogeniza-
tion method for solving partial differential equations with oscillatory random coefficients. The method consists of the
two-scale homogenization in space, eigendeformation-based model reduction, Galerkin approximation of the reduced-
order problem in space, and collocation approximation based on a sparse grid in the probability space that naturally
leads to a nonintrusive approach. By this approach the solution of the original stochastic partial differential equations
is constructed from a set of decoupled deterministic solutions from which statistical information is obtained. Prelimi-
nary numerical experiments are conducted to determine the feasibility of the method for solving two-scale problems in
heterogeneous media.

KEY WORDS: multiscale, homogenization, nonintrusive, stochastic

1. INTRODUCTION pathysubramanian and Zabaras, 2008; Cao et al., 2005;
Xu, 2007; DeVolder et al., 2002).
It is well known that information across scales contains a The primary objective of the present manuscript is
certain level of uncertainty due to incomplete knowledg®t to develop a new multiscale or stochastic approach,
of input parameters and physical laws (assuming that the rather to explore the feasibility of applying the best
error of numerical solutions of the deterministic problemombination to practical problems of interest. Our choice
is negligible). However, incorporation of stochastic praf the “best of two worlds” is affected by the ability
cesses into multiscale modeling with accurate assessntenintegrate existing stochastic and multiscale capabili-
of uncertainty propagation across scales is highly chies. For the multiscale simulation engine we select an
lenging. Moreover, despite growing computer power, eaigendeformation-based, reduced-order homogenization
gineering designs that resolve fine-scale details and awethod (Fish and Yuan, 2009; Oskay and Fish, 2007;
count for uncertainty in the input data such as constitutivean and Fish, 2009) due to its computational efficiency
equations, forcing terms, boundary conditions, and geostemming from a unit cell solution constructed in terms
etry at multiple scales are very rare. When both multiscalé eigendeformation modes thatpriori satisfy equilib-
and stochastic phenomena are taken into account, crogsn equations at the fine scale, and therefore eliminate
cutting multiscale stochastic modeling forms an emertiie need for costly solution of discretized nonlinear equi-
ing research frontier, as evidenced by numerous papditgjum. For uncertainty quantification, we choose a non-
books, new journals, workshops, and funding opportirtrusive approach based on stochastic collocation origi-
nities. Anecdotally, we counted over one million hits afally proposed by Mathelin and Hussaini (2003), which
“stochastic multiscale” on the Google search engine. Mien combined with the sparse grid approach (Gerstner
refer to few selected references for a comprehensive aed Griebel, 1998; Klimke, 2005) has been shown (Gana-
view of the subject matter (Shi and Ghanem, 2006; Gamthysubramanian and Zabaras, 2007), outperforms other

1543-1649/10/$35.00(©) 2010 by Begell House, Inc. 549



550 Wu & Fish

nonintrusive methods, such as nonintrusive polynomial o;;(x,ym)= L 1 (X,y;n) |:gkl (x,ym)
chaos (Walters, 2003; Xiu and Karniadakis, 2002), Monte

Carlo simulation, and its improved version based on the I x X e o v )
Latin hypercube sampling (Iman and Conover, 1980). B ; M (%ym) | cLyeome
However, if integration considerations were not an issue,

various derivatives of the spectral stochastic finite element T oul oul
method (Ghanem and Spanos, 2003) may have offeredgij(x,y,n):uby'_)+u(()im):l( i .7)
computational advantages. e w021\ 9y; Oy )

, XeEN yeO, nev

of the two-scale stochastic problem with properties of + B + 6;
microphases and microinterfaces as random variables is J ¢
given in Section 2. These are the dominant variables af-

fecting the coarse-scale quantities of interest, such as uj — periodic on 96 (6)
critical stresses and strains as indicated in Wu (201
Reduced-order homogenization and sparse grid COHOg%)_Coarse scale

tion methods are reviewed in Section 3. The nonintrusive _ .

stochastic multiscale design system (NSMDS), based on ~ Oie; (Xm) +6i (x) =0, xeQme ¥  (7)
the sparse grid collocation method in combination with

the reduced order multiscale approach, is given in Sec-. _ 1

tion 4. Numerical examples arepF;Jresented gi]n Section 5°% (X’n):@/@c” (y.n)d®, xe, nev (8
We conclude the manuscript with a brief summary and

future work in Section 6. ud (x,n) =u; (X), Xe€Ty, 9)

The manuscript is organized as follows. A statement (8 0 3uq>
3

2. PROBLEM DEFINITION Oy (m)n; 0) =4 (), xele  (10)
We assume that various response fields such as displé{@%@re Eq. (4) describes the constitutive relation which as-

ments, strains, and stresses, denotag{&sy, 1), are de- sumes an additive decomposition of total strajninto
pende,nt on th,e macro and ,micro spatial7 co,ordinaXeselas“C and inelastic components, more generally referred

andy = x/(, respectively, related by < ¢ < 1, as to aseigenstraind u;,;, where the left superscrigtstands
' ' ' for various eigenstrain types, such as inelastic deforma-

well as on a set of input independent random variabl X S
tion, thermal change, moisture effects, etc. For simplic-

. id . i .
n —_{” }izlspannmg thei dlmen5|onal_support space y, we assume that coarse-scale essential and natural
¥, Since random variables may have different probab,

ity density functionsf* (n*), the joint probability density
function can be obtained by their product as

oundary conditions as well as fine-scale periodic bound-
ary conditions are deterministic. Similarly, the geometry
of body is assumed to be deterministic and depends on

d coarse-scale coordinates.
fm) = H i (ﬂ’) (1) In the present manuscript we focus on a case where
i material constitutive parameters at the fine scale are ran-

. o dom variables with a given joint probability distribu-
A two-scale asymptotic expansion is employed to appragon. We will assume that the fine-scale topology (or mi-

imate the displacement field crostructure geometry) is deterministic and that the con-
0 . stitutive relation does not vary randomly from one point to
u; (Xym) = u; (X,ym) + Cu; (x,ym) another in the coarse-scale dom&inSuch variation can

(@)

be described in terms of random fields with a given co-
variance structure. Although such random fields are prop-
The resulting two-scale strong form of the boundary valeely described by means of an infinite humber of ran-
problem is given by dom variables, Karhunen-Loeve expansion (Ghanem and
(a) Fine scale Spanos, 2003) could be employed to describe the random
fields in terms of a small number of uncorrelated random
oijy;, (XYM) =0, xeQyeOmnel¥ (3) variables, butthis case is not considered here.

+Cuf (xym) + -

Journal for Multiscale Computational Engineering
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3. REVIEW OF BUILDING BLOCKS OF NSMDS wheren; andm are the number of partitions of phases
and interfaces, respectivelng‘) and SS) are the aver-
age eigenstrain and eigenseparation in the phase partition
« and in the interface partitio, respectively.N (%) (y)

Due to its nonintrusive nature, the solution in probabifS & Piecewise constant shape function defined as

ity support spac& can be decoupled into a set of inde- (o)

. () 1 ye (@) s
pendent problems solvable by a deterministic solver on N (y) = 0 o
Q x ©. We employ an eigendeformation-based homoge- y & ’
nization to solve for the two-scale deterministic problem.

For each realizatiom € ¥, we construct a residual- free
ear finite element shape functions defined over the surface
microscale displacement field (x,y,n) to ensure the

stress field in a unit cell satisfies equilibrium equanor?artmon‘(" The reduced-order system of equations can be

%tamed b
. ) S0 i : y
for arbitrary eigenstraingy;; and eigenseparationng (i) Fine scale

3.1 Eigendeformation-Based Reduced-Order
Homogenization

(14)

whereasV (¥ (y) is a linear combination of piecewise lin-

u11 (x,y,mn) = (x,y,m ZI CAA £(|_3) Z Z Ip(ﬁoc) (a)
ij

ikl ’ H’kl (X7T])
uf (%,y,n) = Hijj¢ (y,n)ﬁkl (x,m) . f=test
(&)
+Z/Ih:z;c}1 y y,]’])l ugl (X7)7J])d)7 (11) ZQ'LJn ’ 6 ( ) Az]kl(y7 )ekl(x7n)7
. (15)
+ / R (Y,9,m) 84 (X,9,m) dY. —szcni?‘ v, mge? om) + 47 (x,m)
I=1 x=1
S

(9¢ (&) )
The resulting fine-scale displacement gradients is giveﬁZDﬁm (Y,1)8,7 (X, n) =By (¥, m)Er (X, 1),
by £=1
mic (i) Coarse scale
U, y] (X y:n ) = Yijkl (ya ) €kl (X,T])

mic. . . . 0ij (X M) = Lijr (Y, M) € (X, M)
+Z/Igwkl (y,9,m) 1 (%, 9,m) dy

12 o a
T @ LS SRR W
mic. A ~ ~ I=1 x=1
+/gm ®(y,¥,m) 8 (x,¥,m) dY,
S +ZFz(ﬁ3 (v, 1) 85 (x,m),

whereG¢, ’gz’y}gE ", andgri-® are influence functions

for macrostrain, elgenstraln and eigenseparation, respeberet;, = G (5;) represents the traction along the in-
tively. When elastic constitutive parameters are consigface. All the coefficient tensors are determined prior to
ered as random variables, these influence functions needlinear macro analysis (Yuan and Fish, 2009) and de-
to be recomputed at each realization by solving a g#nd on the randomness of material elastic constitutive

guence of elastic boundary value problems. parameters.
The reduced-order model is obtained by discretizing
the eigenstrain and eigenseparation fields as 3.2 Stochastic Collocation Method Using Sparse
Grid
Tl (xy,m Z TN () (y pm ) (x,1), Consider a stochastic collocation method that approxi-

mates probability space in multidimensions by interpo-
(13) |ation from a set of collocation points (referred to as real-

5y (%, ¥,m) = > N® )8 (x, 1), izations). Lety (nj,.n7, - .nj,) be a deterministic so-
( )= (v) 85" (x.m) lution of the two- slcale2pr0blem (15)—(16) at a collocation

Volume 8, Number 6, 2010



552 Wu & Fish

point(n} ,n2,,--- ,nd,) in thed-dimensional probability NN iy i g
space, V\I/herék denotes the,th node index irk-direction g(’) = Zg (nj) N; (). (19)
(or kth random variable). Denote the total number of grid ) _’:1 ) o

points ink-direction asmy,. The interpolated solution in  Here: denotes the interpolation level. Similarly, for the

random space is given by (¢ — 1)th interpolation level, we have
mg—1
G =33 g (e k) N (o) g =2 g )N @, o)
giml ja=1 17) =t _
_szg (ﬂz) _._N]l_id (nd) wherem;_; and m; denote the total nhumber of basis

nodes in levels — 1 andsi, respectively. In the follow-

whereN¥ is an interpolation function in the-direction, ing we consider a Clenshaw—Curtis grid that provides a
& ested structure of basis nodes, i.e., the basis nodes in

such as Lagrange polynomials, satisfying the interpol%\ , _ e )
1if jy = j level i — 1 are a subset of those in levielSince levek

tion propertyNF (n} ) = 0 otherwise interpolants can exactly represgnfn’~') we have

The quantities of interest are typically the statistical m;
moments ofg (n). The pth statistical moment denoted g(n'~')=> "N/ (ﬂi)[zg(ﬂfl)]\f;ﬁ_l(ﬂ}_l)]- (21)
by M,, can be calculated using numerical integration that j=1 k=1
takes advantage of the function evaluation at the collo
tion points

mi;—1

qﬁﬁe difference between the two subsequent levels is de-
fined as
ma md my
Mp=3 > [ i) F (g, ) Al=gm') =g (") = g ) Nj(n)
=1 ja=1 (18) =

. wl "U}2- fwd my ) ) mi—1 . ) )
( J1 J2 Jd) _ ZN; (nz) [ g (nzfl) Nlifl (n;l)] (22)
wheref (n} ,--- ,n4,) is ajoint probability density func- J=1 k=1
tion; (wjl wi w;id) are weights at quadrature points — [ i n i1 i
: =2 Lo mj) —a (i )N (') -
(n}l’.”’n?d)' ]2:; ! ’ !

To realize the enormous computational complexity of _ 4
the tensor product rule in multidimensions, consider a tedinceg (n}) = g (nj~') onm;_, nodes of levek — 1,
sor product of two random variables with 10 nodesin EQ. (22) can be rewritten as

andn;, directions, which has a complete polynomial order A

of up to 9. From the Pascal triangle it follows that there are i RN - i

55 monomials forming complete polynomial expansion A'=g (ﬂ ) —9 (ﬂ ) - Z_; [g (nj) (23)
of up to order 9, yet the tensor product involves summa- i oy =

tion of 100 terms, i.e., 45% of terms are wasted. The per- -9 (nj ) ]Nj (ﬂ ) )

centage of wasted monomials grows exponentially W'\t/vmeremf — m; — my_, denotes the number of new

increase in the number of random variables. For mStanEyOG)des that are added to levdtom leveli — 1.

. 0 . .
in 3d, 78% of terms are wasted, in 4d, it increases to 92 9’7The Smolyak algorithm constructs the sparse in-

and in 5d and 6d, the number of wasted terms reachest lati ird-di ; I
and 99%, respectively. This is often referred to as acure<rapo ation space ire- IMensions as follows. Let;,
' ' P 1,2,--- ,d be the interpolation level along the

of dimensionality. _— _ S ) . .
. . . direction, andi = (i1,i2,- - ,iq) the multi-index with
The basic idea of theparse gridmethod, originally i{i — iy + -+ + ig. The Smolyak algorithm builds the in-

Eroposg:d bde_molyz_ik (1|96§)’ |s|to ;:onszrijr(]:t athlerarc_ ﬁhpolation function in multidimensions by adding a com-
asis otone-dimensional interpo/ants and ten to CoNSIRt. i, of one-dimensional functions of ordersubject

a tensor product of interpolants that contribute only to ”tlgthe constraing — d + 1 < [i| < ¢, which yields
completeness of the polynomial we want to approximate. ==
Starting from a one-dimensional univariate condition, g, =aMm),_y + Z (A @ @ Al), (24)

the hierarchical interpolation is given by lil=q
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(such as damage law parameters), and geometric param-
eters describing material microstructure (such as volume
fraction of fiber). The above uncertainties can either vary
from one unit cell to another (random fields) or be con-
stant throughout the macro domain (random variables),

(Ail®...®Aid)zz...z[g(n;ﬁl?... ,nﬁf,)

Ji=1  ja=1
—g (e i) Loy NG (n7)
x N2 (") -~ Nit (n') as shown in Fig. 1.

whereq — d > 0 denotes the sampling level in the sparse From a computational complexity point of view and in

grid. Equation (24) states that given an approximation {AS COntext of a reduced-order homogenization method,

the previous level ()|, _,, new sampling points are seWve identify six levels of computational complexity (cate-
q_ )

(25)

lected so that monomials that satiéfy— ¢ are added to gory | being of the highest computational complexity):

the approximation in the new leval |
The Clenshaw—Curtis grid points are defined as

i 7 (jr — 1)
n;: Ccos (mk —

)7 jk:17"'7mk

N =0 if my = 1. (26)

mi1 =1 and my = 2tk —1 +1 for 7 > 1.

Note that sparse grids are defined on a hyper{whd]d. II.
A mapping functiorT' is employed to translate points in
the hypercube to the random space spanned by random
variablesn.

4. NONINTRUSIVE STOCHASTIC MULTISCALE
DESIGN SYSTEM FOR COMPOSITE
MATERIALS

In this section we describe a nonintrusive stochastic mul-
tiscale design system aimed at quantifying the influ-
ence of various uncertainties in the microstructure on the
coarse-scale quantities of interest (Qol). The microstruc-
tural uncertainties include elastic constitutive parameters
of phases (such as Young’'s modulus, Poisson ratio), in-
elastic constitutive parameters of phases and interfaces

fiber
~. Em_1 Em_2 Em_n
/.—F’
Tt fé li:p. !é é fé '?:,
matrix |"I'[ |I‘. |"I'[ ||‘| |"I'[ ||‘|
It 4| e 4|1k
e T . 1
o b ‘.- ‘.-
plate 1 plate 2 plate n

Random Variable

. Microstructural geometry as random field

Since microstructural geometry defines residual-free
fields in the unit cell, the influence functions will
vary from point to point in the coarse-scale domain.
Thus, the coefficient tensors of Egs. (15) and (16)
need to be evaluated on the fly during nonlinear sim-
ulation at each quadrature point in the macro do-
main.

Microstructural geometry as random variable

Even though the influence functions are constant
over the coarse-scale domain, they have to be recom-
puted due to randomness of the unit cell geometry.
This will require recreation of the unit cell computer
aided design (CAD) and finite element models.

Elastic constitutive parameters of each phase as
random fields

While fine-scale elastic properties affect the influ-
ence functions, they can be precomputed in the pre-
processing stage and consequently reused with each
nonlinear constitutive parameter of phases and inter-
faces. The influence functions also need to be com-
puted on the fly for each macro domain’s quadrature
point during nonlinear macro simulation.

vi_1 2

Ii| \\. 4";
Sl d

Y 4
v | @

vf_4

L]

plate 1
Random Field

FIG. 1: Random variables and fields.
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IV. Inelastic constitutive parameters of each phase/ Random field classifie—The stochastic partial dif-
interface as random fields ferential equation is classified into one of the six cate-
ries described in the previous section.

. . : 0
If elastic properties and microstructural geometr()’/ Random variable decoupler—The original depen-
are assumed to be deterministic, then the influenge

functions need to be computed only once throughciy nt random variables are transformed into independent

the entire stochastic analysis. The inelastic constitrf}‘—nOlom variables.
ysIS. Stochastic model reducer/decouplerThe infinite-

tive laws of micro-phases and micro-interfaces a(r]e . . . .
. . imensional probability space is reduced to a finite-
allowed to vary in macro-domain.

dimensional space of random variables commonly known
as a “finite-dimensional noise assumption” using the
Karhunen-Loeve (KL) expansion.

Stochastic solver—The Monte Carlo (MC) or
These parameters affect the influence functiorstpchastic collocation (SC) methods are applied to trans-
however, in this case the influence functions are tf@m stochastic partial differential equations into deter-
same from one macro quadrature point to anotherministic equations in the physical space that can be solved

by the deterministic multiscale design system (MDS).
VI. Inelastic constitutive parameters of each phase/ Coarse-scale statistics abstracteIt provides esti-
interface as random variables mation of statistical moments in the quantities of interest
. . . . . and failure probabilities.
This level is the simplest and most inexpensive sce- . o .
) In the present manuscript attention is restricted to
nario. o S
study levels V and VI of complexity, i.e., we consider in-

The general framework of the nonintrusive stochasf%ﬁpendem random elastic and inelastic constitutive vari-
multiscale design system (NSMDS) that can address les. The algorithm for this case is summarized in the

six levels of complexity is shown in Fig. 2. The NSMDéable be!ow. , , .
consists of the following building blocks: Algorithm: Nonintrusive stochastic solver based on

sparse grid collocation and reduced order homoge-

V. Elastic constitutive parameters of each phase as
random variables

nization
(Preprocessing 1. Set level of the Clenshaw—Curtis sparse grid.
Random Field Classifier 2. Construct sparse grid in hypercupel, 1]d and ap-
‘ ply mapping to translate grids onto the random vari-
d d k
Random Variable Decoupler able space{n}b,n}w] @9 [nlb’nUb]’ Wherenlb
P andn’, are lower bound and upper bound of random
¢ variablen”.
Stochastic Model . . . . .
Reducer/Decoupler 3. Group the grid points with the same elastic constitu-
tive parameter&’$' |G - -- UG, i.e.,

l l l l
Y (n(ila"'aﬂi;)U(ﬂizf"ani;)U
Stochastic Solver Deterministic MDS
(MC, SC) Gel Gel
1 2

¢ ...U(nilnv...’ni{:>7

ostprocessing N ,
Gel
Coarse Scale "
Statisti e
Abotractor wheren ‘'™ denotes thg'" point in the groupGe!.
4. For each groug®., 1<m <mn,
FIG. 2: Block diagram of nonintrusive stochastic multi- 1) Compute coefficient tensors for Eqgs. (15) and
scale design system. (16).
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2) For each grid point in the groumjl'", 1< ) dim=1 e
j S kma —A— sparse grid
: . - ] —Fequigid | 5
- update inelastic constitutive parameterg 5
and perform simulation, g g
.. . [ [
- record coarse-scale quantities of mteres} s
(Qors)g (ns'™),
© ©
- record joint probabilityf (1< )and inte- 075 i ;0 ’ .
J p Y/ \M; 10 10 10 10 10 10
. . . number of realizations number of realizations
gration weightw (nj "L). e dim=3 e dim=4
—A— sparse grid —&— sparse grid
5. Denote the total number of grid points 8§ and £ reqegid | g =~ equal grid
compute statistical moment of Qols by, = £ 2"
N » % %
> lg ) f (i) w (i) 2° 24°
=1 2 3
To this end we compare the sparse grid and equal gr‘Tqu_10 ® * ‘
methods. In the uniform grid case, each direction is di- 1’ 10° 10° 10° 10°
vided into equal intervals as shown in Fig. 3. We consider number of realizations . number of realizations

a probability density function having normal distribution

N (m, 02)d in multidimensions. Leiw = 0, o = 1/3,
and consider integration domajp — 30, + 30]d
[~1,1]%. The analytical solution ifer f (3/v/2)] ‘

dim=5

—A— sparse grid
—&— equal grid

a
oN

o

S o, o5

absolute relative error
J
o

Figure 4 compares the two methods dimanging from 0°
1to 5. In all the cases, the sparse grid is found to have a 0
faster convergence rate. However, for low accuracy, it can 10° L cded
be seen that the equal grid has a lower computational cost O o ozt

than the sparse grid.

5. NUMERICAL EXAMPLES

We consider a fibrous composite microstructure

FIG. 4: Numerical integration of multidimensional nor-
mal distribution PDF.

as

a fine-scale model and a 7-layer composite lamin@#0/90/0/90/90/0 subjected tensile loading as a coarse-

PDF

FIG. 3: Equal grid in 1D case.

Volume 8, Number 6, 2010

scale model as shown in Fig. 5. For the constitutive model
of microphases we consider an isotropic damage model as
shown in Fig. 6, wheré denotes the elastic proportional
limit stress and= the strain energy per unit volume. The
material properties considered are shown in Table 1.

A typical stress—strain curve is plotted in Fig. 7. We
investigate the effect of variations in material inelastic pa-
rameters on the coarse-scale ultimate stress and the effect
of variations in material elastic parameters on homoge-
nization modulus. For the reference solution, we consider
a Latin-hypercube Monte Carlo (LHMC) method with up
to 10,000 sampling points.

Problem 1: Inelastic constitutive parameters as
random variables with Gaussian distribution

Statistical properties of random variables are depicted
Table 2 for problem 1.
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Figure 8 compares the absolute relative error in the
mean and variance of ultimate stress as obtained by the
sparse grid, equal grid, and LHMC. Several observations
are noteworthy. First, LHMC at 5000 realizations seems
to converge, and the reference solution in the following
examples is set as LHMC at 5000 points. Second, LHMC
needs a larger number of realizations than the collocation
methods, and the computational time of LHMC is about
5-6 times higher. Third, sparse grid and equal grid col-
location methods converge to the reference solution as

FIG. 5: Tensile test of 0/90/90/0/90/90/0 composite lanthe number of realizations increases; however, the latter

inate (symmetric model).

30
25
20
15
10

stress (MPa)

o2

— \
0.001 0.002 0.003 0.004
strain

0.005

seems to oscillate at high accuracy level.

Problem 2: Inelastic constitutive parameters as
random variables with Lognormal distribution

Statistical properties of random variables are depicted
in Table 3 for problem 2. LHMC at 5000 points is used as
a reference solution. The equal and sparse grid methods
are compared in Fig. 9.

Problem 3: Elastic constitutive parameters as ran-
dom variables with Lognormal distribution

Statistical properties of random variables are depicted
in Table 4 for problem 3. In this example, an elastic ho-
mogenization modulus of coarse-scale model is selected
as a quantity of interest. LHMC at 5000 sampling points
is used as a reference solution. Figure 10 compares the
equal and sparse grid methods.

Problem 4: Four-dimensional random space

We consider the inelastic properties of the two phases
as random variables and the coarse-scale ultimate stress as
a quantity of interest. Statistical properties of input vari-
ables are listed in Table 5. The sparse grid collocation
method is studied in Fig. 11, but no comparison to the
reference solution is made as it would require millions of
LHMC realizations. It seems that the mean and variance
reached a plateau value at relatively small number of real-
izations, but without having a reference solution this may
or may not be a converged value.

6. SUMMARY

A nonintrusive stochastic multiscale design system (NS-

rlG_- 7 Strain/stress curve of tensile test of composiigps) was developed and limited numerical experiments
aminate.

TABLE 1: Microstructural material properties

EMPa) | v | S(MPa)| G
Matrix 2.E+4 | 0.2 13 0.04
Fiber 4E+4 | 0.2 160 0.1

were conducted to study its performance. The design
system decouples stochastic partial differential equations
into a set of deterministic equations, which are subse-
guently solved using a two-scale eigendeformation-based
reduced-order homogenization method. A stochastic col-
location method based on a sparse grid was seamlessly
integrated into a deterministic multiscale design system,
which employs ABAQUS as a coarse-scale solver. While
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TABLE 2: Inelastic random variables for problem 1

Mean | Standard deviation | COV(%) | Distribution
S of matrix 13 0.65 5 Gaussian
S of fiber 160 8 5 Gaussian
0 Mean of Ultimate Stress 4 Variance of Ultimate Stress
10 B ‘ ‘ 10 ‘ : ‘
—&— sparse grid —&— sparse grid
510" ——equalgid || x5 | —e—equal grid
5 —¥—LHMC s 10 —¥-LHVC |
210° 2
- - 0
210 2
3 3,
[e] o %
2 10* 210
© ]
-5 4
10 : : : 10 : : :
10° 10' 10° 10’ 10’ 10° 10' 10° 10° 10'
number of realizations number of realizations

FIG. 8: Absolute relative error in mean and variance of ultimate stress for problem 1. Problem 2: Inelastic constitutive
parameters as random variables with log normal distribution.

TABLE 3: Inelastic random variables for problem 2

Mean | Standard deviation | COV(%) | Distribution
S of matrix | 13 0.65 5 Log normal
S of fiber 160 8 5 Log normal
0 Mean of Uitimate Stress 4  Variance of Ultimate Siress
10 ‘ 10 :
—&— sparse grid —&— sparse grid
N —©— equal grid —©—equal grid
S S 1¢°
5 10° 5
2"
© ® 40
[ g 10
(] [
ERTIN 3
© ©
-6 4
10 : 10 :
10° 10° 10' 10’ 10° 10'

number of realizations number of realizations

FIG. 9: Absolute relative error in mean and variance of ultimate stress for problem 2. Problem 3: Elastic constitutive
parameters as random variables with log normal distribution.
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TABLE 4: Elastic random variables for problem 3

Mean | Standard deviation | COV (%) | Distribution
E of matrix | 2.E+4 2.E+2 1 Log normal
E of fiber | 4.E+4 4.E+2 1 Log normal
i« Mean of Homogenized Modulus o Variance of Homogenized Modulus
—B— sparse grid
ol —6—equal grid
S S 10|
5 5
210° 2
© © 402
] © 10
0 10°) ©
5 5
2 210°
10" C
-5 -2
10 : 10
10’ 10° 10' 10’ 10° 10'
number of realizations number of realizations

FIG. 10: Absolute relative error in mean and variance of homogenization modulus for problem 3.

TABLE 5: Inelastic random variables for problem 4

Mean | Standard deviation | COV (%) | Distribution type
S of matrix 13 0.65 5 Gaussian
G of matrix | 0.04 0.002 5 Uniform
S of fiber 160 8 5 Gaussian
G of fiber 0.1 0.005 5 Uniform
02 Mean of Ultimate Stress 04 Variance of Ultimate Stress
1 1
10’
(MPa) 2
9
101 (MPa“)
10'
10’
0 -1
10 ‘ 10 ‘
10 10° 10’ 10° 10° 10’
number of realizations number of realizations

FIG. 11: Prediction of mean and variance of ultimate stress by stochastic collocation using sparse grid for problem 4.
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Polymer clay nanocomposites (PCNs) synthesized using different organic modifiers show enhanced nanomechanical
properties and difference in percentage crystallinity of polymer in the PCN. It appears that organic modifiers have
an influence on the nanomechanical properties and crystallinity of PCNs. Tailoring crystallinity and nanomechanical
properties of PCNs to required mechanical behavior of PCN is a promising technology. In addition, this is essential
for robust multiscale modeling of nanocomposites through a hierarchical modeling approach, wherein nanomechani-
cal behavior from experiments and molecular simulations are incorporated into finite element models. To evaluate the
influence of molecular structure of organic modifiers on the crystallinity and nanomechanical properties of PCN, five
organic modifiers have been selected in this study in such a way that either they have identical end functional groups
but different backbone chain lengths or identical backbone chain length with different functional groups. The PCNs
synthesized with the same polymer (polyamide 6) and clay (sodium montmorillonite) but different organic modifiers
show significant difference in the crystallinity and nanomechanical properties. In this work molecular models of PCNs
based on these organic modifiers have been built and interaction energies between different constituents of PCNs have
been evaluated using molecular dynamics simulation. By comparing the interaction energies with experimental results,
important insight is obtained regarding the crystallinity and nanomechanical properties of PCNs. It is observed that in-
teractions between the polymer and the organic modifier are key to controlling the nanomechanical properties of PCNs,
and by varying the backbone chain length of the organic modifiers, the nanomechanical properties and crystallinity
of a particular polymer-based PCN can be tailored to a significant extent. Also by changing the functional groups of
modifiers, the crystallinity and nanomechanical properties of PCNs can be altered.

KEY WORDS: polymer-clay nanocomposite, molecular dynamics, molecular modeling

1. INTRODUCTION Since the development of PCN in 1990 by Toyota Re-
search Laboratory, almost all common varieties of poly-
Polymer clay nanocomposites (PCNs) show enhanagedr have been undertaken by the researchers for synthe-
mechanical (Okada et al., 1990; Ray and Okamoto, 2088 of PCNs (Ray and Okamoto, 2003). Sodium mont-
Ma et al., 2003; Vaia et al., 2002; Sikdar et al., 200Torillonite (MMT) is most commonly used as clay for
and thermal properties (Hsueh and Chen, 2003; Zhasymthesis of PCN, which is hydrophilic in nature. To en-
and Wilkie, 2003; Meneghetti and Qutubuddin, 2006) imance the miscibility of hydrophobic polymer with MMT,
comparison to pristine polymer. However, the mechanissrganic modifiers are usually used for treating MMT,
for enhancement of physical properties (mechanical which transforms MMT from hydrophilic into hydropho-
thermal) of PCNs in comparison to pristine polymer isic and organically modified montmorillonite (OMMT)
not well understood. This knowledge is important for tais obtained. Hence it appears that the primary function
loring the properties of PCNs into desired specificatioaf organic modifiers is to enhance the miscibility of hy-
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drophilic MMT with hydrophobic polymer. From our pre-dynamics and interactions between different constituents
vious work (Sikdar et al., 2007) it is found that PCNef PCNs (Vaia et al., 2002; Ginzburg et al., 2000; Vaia
synthesized with the same polymer and MMT but witAnd Giannelis, 1997). Thus, in this work to address the
three different organic modifiers results in different elagsues regarding tailoring the structure and nanomechani-
tic modulus and dynamic mechanical properties in tleal properties of PCNs and the influence of organic mod-
nanometer length scale. Ma et al. (2003) in a separd#ters on the structure and nanomechanical properties of
work showed that PCNs synthesized with the same sefR§Ns, using MD, we have studied interactions between
polymers (polyamide 6), clay, and three different organilce constituents of typical PCNs synthesized with identi-
modifiers resulted in different improvements of bulk scatal polymer (polyamide 6) and clay (sodium montmoril-
properties (mechanical and thermal) in comparison ltmite) but different organic modifiers. Our previous work
pristine polymer. Thus, in addition to the enhancememsing multiscale modeling and experiments (Sikdar et al.,
of miscibility of hydrophilic clay with hydrophobic poly- 2008b, 2009) has clearly shown the role of molecular in-
mer, organic modifiers have a significant role in the eteractions between clay—modifier—polymer systems on al-
hancement of physical properties of PCNSs. In our prevering the polymer and clay phases to a very large extent,
ous work (Sikdar et al., 2008b) multiscale modeling dhus significantly impacting the mechanical properties. In
PCNs was carried out using steered molecular dynathis work, we further investigate the effectiveness of this
ics, atomic force microscopy imaging, nanoindentatioopncept by changing the clay—polymer—modifier interac-
and finite element analysis. Our previous work indicatésns by varying the modifier chain length and functional
that there exists an altered phase region in the polyngeoup.
around individual clay particles resulting from nonbonded In this work, for constructing the molecular model of
interactions (van der Waals, electrostatic interactions) mélyamide 6 (PA6)-based PCNs, we have chosen five typ-
about 2504 (Sikdar et al., 2008b). Thus, in PCNs, wherizal organic modifiersi(-dodecylamine, hexadecylamine,
nanosized clay particles are uniformly dispersed, a swmgtadecylamine, dodecyl trimethyl ammonium bromide,
nificant volume of polymer is influenced by clay. Hencend hexadecyl trimethyl ammonium bromide), similar to
the enhanced (altered) mechanical behavior of polymeimse of our previous experimental work (Sikdar et al.,
as a result of molecular interactions between differeP®09). For the convenience of representation, the organic
constituents (clay—modifier—polymer), is key to modelingodifiers in this work have been named dodecyl, hex-
the mechanical behavior of PCNs. Based on this muléidecyl, octadecyl, dodecyl-Br, and hexadecyl-Br, respec-
scale approach, we vary molecular interactions by chattigely. The molecule of organic modifier has two parts
ing both the length and functional group of the modin its structure: {) backbone chain andi) end func-
fier, since the multiscale approach clearly indicates thienal groups. The molecular structure of organic modi-
large impact of the molecular interactions on macroscdiers showing backbone chain length and end functional
properties. Researchers have also used Monte Carlo mgtbups is given in Table 1(a). To evaluate the influence of
ods to model inclusions as spherical entities and stud@dianic modifiers on the crystallinity and nanomechanical
the interactions between inclusions and polymers, as wadhavior of PCNs more precisely, we have grouped the
as physical characteristics of the polymer (Dionne et ahodifiers into two different sets as follows)) n the first
2005, 2006). set only the backbone chain length of modifiers varies,
Our previous molecular dynamics study (Sikdar et akeeping the end functional group the same as shown in
2008a) shows that in the crystallinity and enhancemérable 1(b), andi{) in the second set, only one end func-
of nanomechanical properties of PCNs, interactions h@nal group of modifier varies, keeping the backbone
tween polymers and modifiers are the key. The study fehain identical as shown in Table 1(c).
ther showed that backbone chains as well as functionalThe properties of composites are largely influenced
groups of organic modifiers both have a specific role witly the interactions between constituents (Sikdar et al.,
regard to crystallinity and enhancement of nanomech&909). Interaction energy is a measure of interactions be-
ical properties of PCNs. However, knowledge regarditgeen different constituents of PCNs. Hence, in this pa-
controlling the crystallinity and nanomechanical propeper, using MD, we have constructed the representative
ties of particular polymer-based PCNs and the influeng®lecular model of five different PCNs and have calcu-
of organic modifiers on the structure and nanomechanitated interaction energies between different constituents
properties of PCNs is not well understood. Molecular dgf PCNs in order to evaluate interactions between differ-
namics (MD) is a useful technique for studying structurent constituents of PCNs. By comparing the results ob-
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TABLE 1(a): Molecular structure of organic modifiers showing backbone chain length, end
functional group, and partial charges on the atoms of the amine functional group.

. - . Partial charges of atoms

Organic modifiers | Backbone | Functional groups of amine fur?ctional groups
N C H

Dodecyl (CHz)11 | (CHs) (NH3) -0.051 - +0.176
DOdecyI-Br (CH2)11 (CH3) N(CH3)3 +0.206 | -0.285 +0.133
Hexadecyl (CHz)15 | (CHs) (NH3) -0.193 - +0.235
Hexadecyl-Br (CHy)15 | (CH3) | N(CH3); | -0.055| -0.180| +0.113
Octadecyl (CHz)17 | (CHs) (NHs) -0.204 - +0.227

TABLE 1(b): Comparison of the molecular structure of
organic modifiers with increasing backbone chain length.

Organic modifiers | Backbone | Functional groups
Dodecyl (CHz)11 | (CH3) | (NH3)
Hexadecyl (CHz)15 | (CH3) | (NHs)
Octadecyl (CHz)1z | (CH3) | (NH3)

TABLE 1(c): Comparison of molecular structure of or-
ganic modifiers with identical backbone but different func-

tional groups.

Organic modifiers | Backbone | Functional groups
Dodecyl-Br (CH2)11 | (CH3) | N(CH3)s
Dodecyl (CHz)11 | (CH3) |  (NH3)
Hexadecyl-Br (CHz)15 | (CHs) | N(CHs)s
Hexadecyl (CHz)15 | (CH3) | (NH3)

tained from MD simulations of these PCNs with the crysized with organic modifiers dodecyl, hexadecyl, oc-
tallinity and nanomechanical properties of the same satlecyl, dodecyl-Br, and hexadecyl-Br are named in
of PCNs obtained from previous experimental work (Sikthis work OMMT-dodecyl, OMMT-hexadecyl, OMMT-
dar et al., 2009), we get valuable information about tleetadecyl, OMMT-dodecyl-Br, and OMMT-hexadecyl-
role of organic modifiers with regard to the structure arigf, respectively, and PCNs synthesized using organi-
nanomechanical properties of PCNs. Our study furtheally modified montmorillonite OMMT-dodecyl, OMMT-
shows that through the selection of an appropriate orgah&xadecyl, OMMT-octadecyl, OMMT-dodecyl-Br, and
moadifier, the structure and nanomechanical properties@fMT-hexadecyl-Br are named PCN-dodecyl, PCN-
PCNs containing specific polymers can be tailored tohexadecyl, PCN-octadecyl, PCN-dodecyl-Br, and PCN-
significant extent by controlling interactions between thexadecyl-Br, respectively. By comparing the results ob-

constituents of PCNs.

2. COMPUTATIONAL METHODOLOGY

tained from PCN-dodecyl, PCN-hexadecyl, and PCN-
octadecyl, the effect of the backbone chain of the mod-
ifier on the crystallinity and nanomechanical behavior of
PCNs can be obtained. By comparing the results of PCN-
dodecyl with PCN-dodecyl-Br, and PCN-hexadecy! with

The polymer and clay used for synthesis of PCNs dCN-hexadecyl-Br, the effect of the functional group of
polyamide 6 (PA6) and MMT, respectively. The orthe modifier on the crystallinity and nanomechanical be-
ganically modified montmorillonite (OMMTS) synthe-havior of the PCNs can be obtained.
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The structure of the polymer, clay, and organic modin order to calculate the charges on the atoms of the
fiers used in this paper were constructed using the madelecules of organic modifiers used for synthesizing
ule Builde™ of Insightll 2005 of Biosym Technolo- organically modified montmorillonite and polymer clay
gies, Inc. (San Diego, CA, USA). The force field paaanocomposites. The structures used for the charge cal-
rameters used in polymer and organic modifiers were ahHations were dodecylamine, hexadecylamine, and oc-
tained from CHARMmM 27 (Brooks et al., 1983). For théadecylamine with hydrochloric acid (HCI), and dode-
atoms of the polymer, the standard partial charges alylamine and hexadecylamine with tri methyl bromide.
tained from the library of CHARMm 27 were used. Thall the structures were first minimized with the Hartree—
partial charges on the polymer atoms are shown in Fig.Fack method with 6-31 G** basis set (HF/6—-31 G**).
The chemical structure of a unit cell of isomorphicallAfter minimization, the first three structures with HCI
ion substituted MMT is [NaSk(AlsFeMg)QO,(OH)s]. form protonated dodecylamine, hexadecylamine, and oc-
In the MMT unit cell, an aluminum octahedral layer isadecylamine, whereas the last two structures form do-
sandwiched between two silica tetrahedra layer. The d®cyl trimethyl ammonium and hexadecyl trimethyl am-
ordinates of atoms lying in the MMT unit cell were obmonium. The final minimized structures of organic mod-
tained from the work of Skipper et al. (1995a, 1995bifiers are shown in Fig. 2, which shows that organic mod-
The partial charges on the atoms of the MMT unit cefiers maintain almost linear structure. Snapshots of the
were obtained from the work of Teppen et al. (1997). knd functional group (amine and trimethyl amine) of oc-
our earlier work (Katti et al., 2005), the CHARMm forcdadecylamine and hexadecyl trimethyl ammonium bro-
field parameters of MMT were derived using the stamide before and after minimization are shown in Fig. 3.
dard parameters of clay in consistent force field (CFFjom Figs. 2 and 3 it is observed that dodecyl, hexadecyl,
and those derived parameters were used in the presamt octadecyl form (R-N&*CIl—, whereas dodecyl-Br
work for clay. The molecular structure of the polymeand hexadecyl-Br form [R—-N(CHs]"Br—. Here R rep-
and organic modifiers was minimized initially using Inresents the alkyl groups which depend upon the starting
sightll. Using these energy-minimized structures of polyaolecular structures of organic modifiers.
mer and organic modifiers, the initial models of OMMT The atom-centered charges were calculated using
and PCN were constructed using visual molecular dynamerz—Singh—Kollman method (Singh and Kollman,
ics (VMD) (Humphrey et al., 1996). The synthesis proc&984; Besler et al., 1990). In this method, atomic charges
dure of different OMMTs and PCNs is described in oure fitted to reproduce the molecular electrostatic poten-
earlier work (Sikdar et al., 2007, 2009; Katti et al., 2006jial at several points around the calculated molecule. The

atomic charges are calculated in such a way that the to-

3. CALCULATION OF PARTIAL CHARGES ON tal charge equals the molecular charge. In our work, the
' THE ATOMS OF ORGANIC MODIEIERS UusiNGg  ©verall charge on a molecule of each organic modifier was
THE AB INITIO METHOD considered as 0. The Merz—Singh—Kollman method has

been used with B3LYP/cc-pVDZ electric potential. The
Ab initio calculations were conducted using the quasehematic diagrams of the organic modifiers are shown in
tum chemistry program Gaussian98 (Frisch et al., 1995y. 4. The partial charges on the atoms of organic modi-

+0.09+0.09+0.09-0.51 +0.09+0.09-0.51 +0.09+0.09-0.53+0.31
(8] H H O H H O H

H H H
-0.27|-O.18|-0.02| I -0.47 -0.0Z'-0.0Z' Il -0.47 -0.0zl -0,02| ”-0.62'
H—(C— (- C—= C—N-C-C—= C—= N C-C— C =N
+0.09 | TOSL, | 051 | 0S8
H H H H H H H H H H

+0.094+0.094+0.09  +0.31 +0.09+0.09  +0.31 +0.09+0.09 +0.31
End | Intermediate als End
|(_ [monomer] [monomer f monomer _)l

FIG. 1: Partial charges on the atoms of a polymer (polyamide 6).
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(@)
(b)

(@

(O]

FIG. 2: Snapshots showing minimized structures of different organic modif{@jsn-dodecylamine,(b) do-
decyl trimethyl ammonium bromiddc) n-hexadecylamine(d) hexadecyl trimethyl ammonium bromidég) n-
octadecylamine (C = grey, H = white, N = blue, orange = CI/Br).

° C
R © cko
(@ )
(i) Octadecylamine
©
& o L
(@) (b)

(ii) Hexadecyl trimethyl ammonium bromide

FIG. 3: The amine groups in the molecules of octadecylamine and hexadecyl trimethyl ammonium Kejrbefere
minimization andb) after minimization. (For (i): N = black, H = white, Cl = gray. For (ii): N = dark gray, C = light
gray, Br = black, H = white.)
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FIG. 4. Schematic diagrams showing the molecular structure of different organic modgfigrs:dodecylamine,
(b) hexadecylamine(c) octadecylamine(d) dodecyl trimethyl ammonium bromide, arfd) hexadecyl trimethyl

ammonium bromide.

fiers are shown in Table 2. The serial number of differeBivald simulation method was used for electrostatic in-
atoms (C, H, and N) of modifiers used in Table 2 weteractions between the atoms of OMMT and PCN mod-
taken from the atom serial as shown in the schematic dids (Karasawa and Goddard, 1989). The Nose'-Hoover
gram of modifiers in Fig. 4. From ab initio charge calculd-angevin piston and Langevin dynamics were used in
tion, the net partial charge on the molecule of protonatéte simulation for controlling model pressure and tem-
organic modifiers was found to be +0.70 in all the caseperature, respectively (Martyna et al., 1994; Feller et al.,

4. SIMULATION DETAILS OF THE OMMT AND
PCN MODELS

1995). A time step of 0.5 femtosecond was used in the
simulation. The change of temperature during MD sim-
ulation was maintained following the synthesis route of
OMMT and PCN. For OMMT, first, the model is mini-

Molecular dynamics (MD) software, NAMD 2.%K@lé mized for a duration of 5 picoseconds (ps) (18 sec-

et al., 1999), was used for conducting MD of OMMTnd) at O K temperature and O bar pressure. Then MD

and PCN. The Varlet algorithm was applied for runningf OMMT was conducted by increasing the temperature

MD. The isothermal-isobaric ensemble, constant numbef,the system to 300 K while keeping the pressure at 0

pressure, and temperature (NPT) simulation was usedar. By keeping the temperature at 300 K, the pressure of
the MD simulation. For van der Waals interaction, switcie system increased to 1 atmospheric (1.013 bar) pres-
and cutoff distances applied were 20 and&Zespec- sure in four equal steps in order to bring the tempera-

tively, in all OMMT and PCN models. The particle meskure and pressure of the OMMT model to ambient con-

Journal for Multiscale Computational Engineering



Tailoring Crystallinity and Nanomechanical Properties 567

TABLE 2: The partial charge on each atom of different organic modifier molecules (here numbering of differ-
ent atoms of modifiers is taken from Fig. 4).

Atom type Partial charge on the atoms of different organic modifier molecules
Terminal and n-Dodecyl | Hexadecylamine| Octadecylamine | Dodecyl Hexadecyl
backbone carbon amine trimethyl trimethyl
atoms ammonium | ammonium
bromide bromide
C1 -0.212 -0.200 -0.210 -0.203 -0.228
Cc2 +0.186 +0.179 +0.191 +0.182 +0.175
C3 -0.004 +0.002 +0.029 +0.003 +0.044
C4 +0.012 -0.017 -0.008 +0.016 -0.069
C5 +0.081 +0.129 +0.072 +0.061 +0.201
C6 -0.004 -0.049 +0.078 +0.006 -0.090
Cc7 +0.066 +0.046 +0.027 +0.028 +0.061
C8 -0.110 -0.018 +0.000 +0.040 -0.028
C9 -0.027 -0.030 +0.085 -0.002 -0.050
C10 +0.148 +0.074 -0.047 -0.108 +0.078
Cl1 -0.177 -0.019 -0.029 +0.204 -0.063
C12 +0.167 +0.027 +0.074 -0.174 +0.061
C13 +0.099 -0.052 +0.044
Cl4 -0.101 +0.028 +0.066
C15 +0.131 +0.121 -0.239
C16 -0.057 -0.111 +0.354
C17 +0.152
C18 -0.055
Backbone
hydrogen atoms
H4 -0.038 -0.036 -0.041 -0.041 -0.035
H5 -0.038 -0.037 -0.042 -0.038 -0.036
H6 -0.007 -0.010 -0.016 -0.011 -0.019
H7 -0.007 -0.007 -0.016 -0.008 -0.015
H8 -0.016 -0.010 -0.015 -0.018 -0.004
H9 -0.016 -0.010 -0.016 -0.016 -0.004
H10 -0.023 -0.033 -0.030 -0.022 -0.046
H11 -0.030 -0.038 -0.025 -0.021 -0.054
H12 -0.005 +0.002 -0.027 -0.014 +0.008
H13 -0.004 +0.004 -0.028 -0.003 +0.009
H14 -0.017 -0.014 -0.016 -0.019 -0.015
H15 -0.005 -0.002 -0.023 0.000 -0.015
H16 +0.026 +0.003 -0.011 -0.017 0.006
H17 +0.032 +0.004 -0.009 -0.012 +0.008
H18 +0.018 +0.002 -0.027 +0.032 +0.011
H19 +0.014 +0.005 -0.008 0.000 +0.069
H20 -0.023 -0.024 -0.006 +0.032 -0.013
H21 -0.005 -0.006 +0.008 +0.012 -0.004
H22 +0.022 -0.003 +0.007 -0.002 +0.008
H23 +0.022 -0.001 +0.004 -0.029 +0.004
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TABLE 2: (Continued) The partial charge on each atom of different organic modifier molecules (here num-
bering of different atoms of modifiers is taken from Fig. 4).

Atom type Partial charge on the atoms of different organic modifier molecules

Backbone n-Dodecyl | Hexadecylamine| Octadecylamine | Dodecyl Hexadecyl

hydrogen atoms | amine trimethyl trimethyl
ammonium | ammonium
bromide bromide

H24 +0.036 -0.012 -0.015 +0.082 -0.010

H25 +0.029 -0.014 -0.006 +0.094 -0.025

H26 -0.031 +0.004 -0.017

H27 -0.003 +0.006 -0.010

H28 +0.031 -0.018 -0.018

H29 +0.009 -0.005 +0.027

H30 -0.007 -0.035 +0.094

H31 -0.002 -0.009 +0.037

H32 +0.100 +0.011 +0.021

H33 +0.042 +0.027 -0.093

H34 -0.005

H35 -0.016

H36 +0.041

H37 +0.099

Methyl hydrogen

atoms

H1 +0.044 +0.040 +0.041 +0.041 +0.047

H2 +0.044 +0.040 +0.041 +0.041 +0.047

H3 +0.044 +0.040 +0.041 +0.041 +0.047

Nitrogen atom| -0.051 -0.193 -0.204 +0.206 -0.055

(N1)

Hydrogen atoms

of protonated

amine group

H1 +0.175 +0.220 +0.223

H2 +0.175 +0.220 +0.223

H3 +0.175 +0.220 +0.223

Trimethyl amine

group atoms

C +0.285 -0.180

H2 +0.136 +0.113

H3 +0.136 +0.113

H4 +0.136 +0.113

dition. In the final heating cycle, by keeping the pressu®0 ps at room temperature and pressure. The energy ver-
at 1 atmosphere, the temperature of the OMMT modgls time plot of the OMMT model shows that the simula-
was further raised to 313 K and was subsequently lotien time of 200 ps is sufficient to equilibrate the model.
ered to 300 K. In each step of temperature and pressieepingz-direction movement of MMT free from exter-
change, the simulation was run for 25 ps. To equilibratally applied constraint, a force-constraint of 1 Kcal/mol-
the OMMT model, the model was run for a duration ok was applied to all the atoms of MMT in theandy di-
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rections. No constraining force was applied on the atomallery. Therefore, in our model the organic modifiers are
of organic modifiers. initially placed parallel to the clay gallery. From the PA-
The simulation procedure of the PCN model was doR€d IR study (Sikdar et al., 2009; Katti et al., 2006), it was
following the synthesis route of PCNs as described in ofmund that organic modifiers have only nonbonded inter-
previous work (Sikdar et al., 2007, 2009; Katti et algctions with clay in the OMMT, and therefore no bond
2006). The variation of temperature and pressure in tiseformed between the clay and the modifier in OMMT
PCN model is similar to the OMMT model except thenodels. The PA-FTIR study of OMMT shows that there
maximum temperature which is used in the simulation afe no water molecules in the OMMT interlayer (Katti
the PCN model is 300 K, following its synthesis routeet al., 2006; Sikdar et al., 2008c) and hence, no water
MD simulation is started for the PCN model with energgnolecules are incorporated in our initial OMMT model.
minimization at O bar pressure, and 0 K temperature. Tine OMMT model is periodically replicated in the y,
the beginning, keeping the pressure at 0 bar, the temparez direction by applying periodic boundary conditions
ature of the model is increased to 300 K, followed by irte replicate the periodic structure of clay in all directions.
creasing the pressure to 1 atmospheric level in four eqiifike initial d-spacings of OMMT models are selected as
steps, keeping the temperature constant at 300 K. In edelscribed in our earlier work (Sikdar et al., 2006a). For
step of change in pressure and temperature during sirabtaining the final OMMT model, the MD simulation of
lation of the PCN models, MD simulation is run for a duthe initial OMMT model is conducted following the syn-
ration of 25 ps. Finally, the whole PCN model is run fothesis route of OMMT (Sikdar et al., 2007; Katti et al.,
a duration of 200 ps to equilibrate the model. As befor2D06). The following conditions were applied for select-
the energy versus time plot shows that the 200 ps duirzg a representative OMMT model (Sikdar et al., 2006a,
tion of simulation is sufficient for convergence of energg008b):
of the PCN model. Similar to the OMMT model, a force
constraint of 1 Kcal/molA is applied to all the atoms (1) The final d-spacing of OMMT models obtained after
of MMT only in the z andy axis directions. The atoms of ~ running MD simulations matches with experimen-
polymer and organic modifiers are kept free from any con- tally observed d-spacing of respective OMMT ob-
straint in all directions. Additional details about the com-  tained from XRD results.
putational methodology and simulation procedure can be
found in our earlier work (Sikdar et al., 2006a, 2006b(2) The OMMT model satisfies the minimum energy

2008). conformation.
) » The final models of OMMT-octadecyl and OMMT-
4.1 Model of.Org.amcaIIy Modified hexadecyl-Br obtained after applying these above two cri-
Montmorillonite (OMMT) teria are shown in Fig. 5. The d-spacings of the final mod-

By comparing the experimental (X-ray diffraction [XRD]elS of OMMTs obtained from XRD and MD simulation
and photoacoustic Fourier transform infrared spe@® Shown in Table 3, showing good agreement in terms

troscopy [PA-FTIR]) and modeling (d-spacing and mirRf d-spacing between modeling and experimental results.

imum energy conformation) results, the OMMT models

were fprmed. The_z constructipn details of the OMMTs algs nodel of Polymer Clay Nanocomposites

given in our earlier work (Sikdar et al., 2006a, 2008a). (PCNs)

In the intercalated OMMT model there are two layers of

clay. In each layer of clay, 18 unit cells of MMT are peThe PCN models were constructed by comparing the re-
riodically replicated, out of which 6 unit cells are in theults obtained from experiments (XRD and PA-FTIR)
x direction and 3 are in thg direction. The net chargeand MD simulation, as done in our earlier work (Sik-
of each layer of clay is-9. The net charge for eachdar et al., 2006a). A globally minimized polymer struc-
molecule of organic modifiers found from ab initio calcuture was obtained by annealing the polymer at high tem-
lation is +0.70. To make the whole OMMT model chargperature (700 K), as described in detail in our previous
neutral, we placed 13 organic modifiers in the interlayaork (Sikdar et al., 2006a). The initial models of PCNs
clay gallery of the OMMT model. From our earlier MDcontaining five different OMMTSs were constructed by in-
study (Katti et al., 2006; Sikdar et al., 2006b) it was fourngerting the annealed polymer chains inside the interlayer
that orientation of organic modifiers is parallel to the claglay gallery of the final model of the respective OMMT.
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FIG. 5: Molecular model of OMMT showing organic modifiers intercalated inside the interlayer clay gairy:
OMMT-octadecyl andb) OMMT-hexadecyl-Br. Clay is in VDW rendering form and the organic modifier is in licorice
rendering form.

TABLE 3: d-Spacing of OMMTs obtained from XRD and MD simulation.

OMMT Sample d-spacing from XRD (A) | d-spacing from MD simulation (A)
OMMT-dodecyl 14.18 14.78
OMMT-dodecyl-Br 15.46 15.70
OMMT-hexadecyl 20.63 20.56
OMMT-hexadecyl-Br 18.55 19.30
OMMT-octadecyl 22.29 21.87

PA-FTIR study of PCNs showed that there are only noRCN model. Similar to OMMT models, the PCN mod-
bonded interactions between the different constituentset$ are replicated in the, y, andz direction to replicate
PCNs, and hence, in the PCN model no bond is betwaée periodic structure of clay in all directions. The size
clay, organic modifier, or polymer. For obtaining the fief the PCN model in the: andy directions is 33.55 and
nal OMMT model, the following conditions were applied28.902,&, respectively, and the cellBasisVector applied to
similar to the previous work (Sikdar et al., 2006a): the simulation in ther andy directions is 40 and 34,
respectively. The cellBasisVector of the PCN models in
(1) The energy-minimized conformation of the annealdte z direction is kept twice the d-spacing of the respec-
polymer fits perfectly in the interlayer clay spacingve initial PCN model. For Van der Waals interaction, the
of the final OMMT model while making the initial switch and cutoff distance used for the models are 14 and
PCN model. 16 A, respectively. The representative molecular models
of PCN-octadecyl and PCN-hexadecyl-Br obtained af-
(2) The final d-spacing of the PCN model obtained froner MD simulation are shown in Fig. 6. The represen-
MD simulation matches with the d-spacing of th&ative model of PCN-dodecyl and PCN-dodecyl-Br con-
PCN sample observed from XRD. tain an 8-monomer chain intercalated polymer, whereas
the representative model of PCN-hexadecyl and PCN-
(3) The representative model of the PCN sample satisexadecyl-Br contains a 12-monomer-chain polymer. The
fies the minimum energy conformation. largest polymer chain is found in the representative model
of PCN-octadecyl, the length of which is 18 monomers
The PCN model which has the largest polymer chaiong. The final models of PCNs are used for studying
in the interlayer clay gallery and satisfies the above thréee interactions between different constituents of PCNs.
conditions is considered the representative intercalafBue d-spacing of PCNs obtained from modeling and XRD
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FIG. 6: The molecular model of polymer clay nanocomposites showing polymer and organic modifiers intercalated
inside the interlayer clay gallerya) PCN-octadecyl an@b) PCN-hexadecyl-Br. Clay is in VDW rendering form,
polymer is in line rendering form, and the organic modifier is in licorice rendering form.

TABLE 4: d-Spacing of PCNs obtained from XRD and MD simulation.

PCN Sample d-spacing from XRD (A) | d-spacing from MD simulation (A)
PCN-dodecyl 14.52 14.62
PCN—dodecyl-Br 14.08 15.49
PCN-hexadecyl 17.48 19.68
PCN-hexadecyl-Br 17.35 18.36
PCN-octadecyl 18.06 20.77

are given in Table 4, which shows good agreement laf-any given set of atoms or between two given sets of
tween the modeling and experimental results. From latoms for a particular time span can be calculated us-
erature (Zin et al., 2005; Mitsunaga et al., 2003) it iag the trajectory file of the molecular system knowing
seen that the d-spacing of PCN can be smaller than ttredir structural information, interaction parameters, cut-
of OMMT. Furthermore, from modulus mapping experieff, and switch distance. The interaction energies for any
ments the elastic modulus of PCNs are found significanthyolecular system can be calculated for bonded and non-
higher than that of pristine polymer in nanometer lenghionded energies separately. Furthermore, the bonded en-
scale, and the crystallinity percent of PCN is found to gy terms include bond, angle, and dihedral energies cor-
significantly lower than that of pure polymer (Sikdar eesponding to the atoms under consideration within the
al., 2009). The significant improvement of nanomechamiolecular system. Similarly, the nonbonded energy can
cal properties and reduction in crystallinity % of PCN ibe calculated in the van der Waals category and electro-
comparison to pristine polymer indicates the formation efatic energies for any given set of atoms or between two
polymer clay nanocomposite. Transformation of the crysets of interacting atoms. To equilibrate the models, MD
talline form of polymer froma-crystalline form in pure simulations of all OMMT and PCN models were run for
polymer intoy-crystalline form in PCN is also indicativea duration of 200 ps in the final stage, and the average of
of formation of PCN (Vaia et al., 2002). results for the last 25 ps was considered for calculating
the interaction energy of the molecular models.

5. CALCULATION OF INTERACTION ENERGY

o 6. RESULTS AND DISCUSSION
MDEnergy"™ of NAMD was used for studying interac-

tion energies between different constituents of PCNs. Thie properties of the composites largely depend on the in-
trajectory file of the whole molecular model is directlyeractions between constituents (Brooks et al., 1983). In-
obtained from MD simulation. The interaction energiggraction energies are the measure of interactions between
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different constituents of composites. The negative enetiggl properties of PCNs, the PCNs are synthesized in that
indicates attractive interaction, and positive energy reperk (Sikdar et al., 2009) with same polymer and clay
resents repulsive interaction between two constituentsbot with different organic modifiers, similar to the set of
composites. To estimate the interactions between differemtdifiers used in our current MD work. The compari-
constituents of composites, the interaction energies lsen of crystallinity and elastic modulus of PCNs synthe-
tween different constituents of PCNs were evaluated. Téiged with identical functional groups but varying back-
PCNs in this study were synthesized with the same polyene chain length are shown in Table 5. From Table 5 it
mer (PA6) and clay (MMT) but with five different organids evident that with the increase of backbone chain length
modifiers. The organic modifiers are categorized into tvad modifiers, the crystallinity of PCNs decreases and the
types as mentioned earlier) (nodifiers having identical elastic modulus increases. Thus, it is evident from the
functional groups but different lengths of backbone chairgsults of Table 5 that for particular polymer- and clay-
a comparison of molecular structures of which is shovwrased PCNs, by changing the backbone chain length of
in Table 1(b), andi{) modifiers having different end func-the organic modifier, the nanoscale structure and nanome-
tional groups with the same backbone length, a compasfanical properties of PCNs can be varied to a significant
son between the molecular structure of which is presentedent, and this gives important insight regarding tailor-
in Table 1(c). To study the effect of organic modifierig the properties of particular PCNs. Fourier transform
on the properties of PCN, the study was constructediitirared spectroscopy of PCNs shows that there are only
two ways: ¢) comparing the results of simulation and exaonbonded interactions between different constituents of
periments between the PCNs synthesized with modifi@€Ns (Sikdar et al., 2009). MD simulation has been used
containing different backbone chain lengths but idente evaluate the nonbonded interactions between different
cal end functional groups, and)(comparing simulation constituents of PCNs and their probable correlations with
and experimental results between the PCNs synthesisteg crystallinity and elastic modulus of PCNs.

with modifiers having different end functional groups but
identical backbone chains. This comparison gives valy- . -
able insight regarding the influence of organic modifie S2 (E:ffect ﬁf Functgrgl G.rOlK/FI) |(\j/|0|dlflel’ on PCN
on the structure and nanomechanical properties of PCNs, rystallinity and Elastic Modulus

and tailoring the structure and nanomechanical propertigge crystallinity and elastic modulus of PCNs synthe-
of particular polymer-based PCNs by selecting a certajiyed with organic modifiers having the same backbone
type of organic modifier. chain but different end functional groups are shown in
Table 6. Here also we observe that by changing the
functional group from a protonated amine f(N3) to
trimethyl amine [NF(CHjs)3] the crystallinity of PCNs
and elastic modulus changes, indicating the significant
influence of the modifier’s functional group on the crys-

The crystallinity of PCNs was evaluated in our earlid@llinity and elastic modulus of the PCN.

work using differential scanning calorimetry (Sikdar et

al., 2_009). In the same st_udy (Sikdar et al., 2009), tge3 |nteractions in PCN-Dodecyl

elastic modulus of PCNs in the nanometer length scale

was evaluated using nanoindentation. To study the eff@tte interphasial nonbonded interactions between differ-
of organic modifiers on the crystallinity and nanomechaant constituents (polymer, clay, and organic modifiers)

6.1 Effect of Modifier Backbone Chain Length
on Crystallinity and the Elastic Modulus of
PCNs

TABLE 5: Effect of backbone chain length of the organic modifier on the crystallinity and elastic
modulus of polyamide 6—-based PCNs.

Structural difference

PCN Samples Backbone | Functional group % Crystallinity from DSC | E (GPa)
PCN-dodecyl | (CHa)1: NIL 27.78 4.77

PCN-hexadecy| (CHy)is NIL 20.81 4.81
PCN-octadecyl| (CHs)17 NIL 19.81 5.06
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TABLE 6: Effect of functional group of organic modifier on the crystallinity and elastic modulus of
polyamide 6—-based PCNSs.

PCN Samples Backb Oﬁgzﬁ;rﬂal dFlflj(ra]rCetir;cneal group % Crystallinity from DSC | E (GPa)
PCN-dodecyl-Br NIL N(CHs)3 27.95 4.36
PCN-dodecyl NIL (NH3) 27.78 477
PCN-hexadecyl-Br NIL N(CHs)3 28.05 4.84
PCN-hexadecyl NIL (NH3) 20.81 4.81

in polymer clay nanocomposites synthesized with an @éhan the interactions coming from the functional group
ganic modifierp-dodecylamine, are shown in Fig. 7. Thef modifiers. As seen from Table 2, although the partial
attractive interactions are represented by the solid line arfthrges on the atoms of the modifier backbone are much
the repulsive interactions are represented by the dottesss than the partial charges on the atoms of the end func-
line. The highest nonbonded interactions are observed tieral group of the organic modifier, the larger number of
tween the clay and the organic modifie596 Kcal/mol, atoms presentin the backbone of the modifier makes their
followed by interactions between the clay and the polyetal contribution high. Between the clay and the poly-
mer (-193 Kcal/mol) and the polymer and the organimer, major interactions are observed between the clay
modifier (=85 Kcal/mol). From Fig. 7 it is further ob- and backbone of the polymer, which-sl23 Kcal/mol.
served that the functional group as well as the backboFieere is relatively feeble interactionr-{0 Kcal/mol) be-
chain of the organic modifier both have significant attratween the clay and the functional group of the polymer.
tive interactions with the clay. The contribution of interBetween the polymer and the organic modifiers, the func-
actions coming from the modifier backbone is even largéonal group of polymer has attractive interactions with
the functional group as well as the backbone of the or-
ganic modifiers, whereas the polymer backbone has re-
pulsive interactions with the backbone and functional

(-70) groups of the organic modifier. The largest attractive in-
teractions between the polymer and the organic modi-

‘ fier are observed between the functional group of the

(-123) polymer and organic modifier functional group, which

is —98 Kcal/mol, followed by attractive interactions be-
tween the functional group of the polymer and the modi-
fier backbone-{55 Kcal/mol). The largest repulsive inter-
actions are observed between the polymer backbone and
the modifier backbone{47 Kcal/mol), followed by inter-
actions between the polymer backbone and the functional
group of organic modifiers{21 Kcal/mol).

(-324)1 I{-272)

(+47)

(-98)

6.4 Interactions in PCN-Hexadecy!

The nonbonded interactions between different con-
stituents of PCN-hexadecyl are shown in Fig. 8. Similar
to PCN-dodecyl, the largest interactions between the dif-
(-55KCal/mol) ferent constituents are observed between the clay and the
modifier (—600 Kcal/mol), followed by the clay and the
polymer (-162 Kcal/mol), and the polymer and organic
FIG. 7: Energy diagram showing nonbonded interactianodifier (—156 Kcal/mol). For interactions between the
energies between polymer, clay, and organic modifierdtay and the organic modifier, the end functional group
PCN synthesized with organic modifierdodecylamine. and backbone of organic modifiers both have significant

LEEETERRY ATy

(+21)
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(-131) : (-160) :
¢ (+54) : i (+21) -
(-154KCal/mol) (-139KCal/mol)

FIG. 8: Energy diagram showing nonbonded interactiddlG. 9: Energy diagram showing nonbonded interaction
energies between polymer, clay, and organic modifierenergies between polymer, clay, and organic modifier in
PCN synthesized with organic modifier, hexadecylamineCN synthesized with organic modifier, octadecylamine.

interactions with clay;-252 and—348 Kcal/mol, respec- sive only in nature, which has a magnitude of +21 and
tively. The interactions between the clay and the poly76 Kcal/mol, respectively, and these repulsive interac-
mer are dominant through the backbone of the polym#gns are represented by a dotted line in the interaction
which is —128 Kcal/mol; the functional group of poly- diagrams. Between the polymer and the modifier, the at-
mer has relatively weaker attractive interactions with cldsactive interactions are observed between the polymer
(—34 Kcal/mol). Between the polymer and modifier, th&unctional group with the modifier functional group and
backbone of polymer has repulsive interactions with ttackbone,—160 and —139 Kcal/mol, respectively. All
backbone as well as functional groups of the organic maattractive interactions between different constituents of
ifiers, which have magnitudes af87 and+76 Kcal/mol, PCN are represented by the solid lines in the interaction
respectively. These interactions are represented by dotleayram. Between clay and the modifier, backbones as
lines in the diagram. The polymer functional groups hawveell as the functional group of the modifier both have
significantly strong attractive interactions with the baclsignificant attractive interactions with clay;300 and
bone and functional groups of the modifier, which are176 Kcal/mol, respectively. On the other hand, between

—173 and—146 Kcal/mol, respectively. clay and polymer, significant interactions are found be-
tween the polymer backbone and clayl{8 Kcal/mol);
6.5 Interactions in PCN-Octadecyl relatively weaker interactions—38 Kcal/mol) are ob-

served between the polymer functional group and clay.
The nonbonded interactions between the different con-

stituents (clay, polym_er, gnd organic modifier) of PC,:NS'.6 Interactions in PCN-Dodecyl-Br

octadecyl are shown in Fig. 9. The nature of interactions

observed in PCN-octadecyl are similar to PCN-dodecyhe interaction energies between different phases of
and PCN-hexadecyl, where the largest attractive ndPcN-dodecyl-Br are shown in Fig. 10. As seen from Ta-
bonded interactions are observed between the clay &hel 1(c), the difference between PCN-dodecyl and PCN-
the organic modifier{476 Kcal/mol), followed by inter- dodecyl-Br is the presence of end functional groups in
actions between the polymer and clayl®6 Kcal/mol), the organic modifiers, which is protonated amine in PCN-
and polymer and organic modifiers {02 Kcal/mol). The dodecyl and trimethyl amine in PCN-dodecyl-Br. The na-
interactions of polymer backbone with the backbone atute of interactions found in PCN-dodecyl-Br is similar
functional groups of organic modifiers are found repule that of PCN-dodecyl, where it is observed that the
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FIG. 10: Energy diagram showing nonbonded interaé!G. 11: Energy diagram showing nonbonded interac-
tion energies between polymer, clay, and organic motien energies between polymer, clay, and organic modi-
fier in PCN synthesized with organic modifier, dodecyier in PCN synthesized with organic modifier, hexadecyl
trimethyl ammonium bromide. trimethyl ammonium bromide.

highest attractive interactions are between the clay dmhded interactions observed between different con-
the modifier (557 Kcal/mol), followed by interactions stituents of PCN-hexadecyl-Br is similar to those of other
between clay and polymer-(148 Kcal/mol) and poly- PCNs. The magnitude of attractive interactions between
mer and modifier £51 Kcal/mol). Here also we find different constituents of PCN from higher to lower mag-
that clay has attractive interactions with the backbon#ude are in the order of clay—modifier, clay—polymer,
(=308 Kcal/mol) and functional groups-249 Kcal/mol) and polymer—-modifier, and these have the magnitude of
of the modifier, whereas clay has significant interactiors$s51, —184, and —156 Kcal/mol, respectively. All the
with the backbone of polymer{(101 Kcal/mol) and rel- interactions are attractive in nature, except the interac-
atively weaker interactions with the polymer functiondlons of backbone of polymer with backbone and func-
group (47 Kcal/mol). Between the polymer and organitional group of polymer. All the attractive and repul-
modifier, the repulsive as well as attractive, both typsgre interactions are represented in solid and dotted lines,
of interactions exist which are represented by dashespectively, in the interaction diagram. As seen from
and solid lines, respectively, in the interaction diagranfsig. 11, the backbone of polymer has repulsive interac-
The polymer backbone has repulsive interactions with ttiens of+75 and+54 Kcal/mol, with the functional group
modifier backbone and functional group, which aré4 and backbone of organic modifiers, respectively, in PCN-
and+46 Kcal/mol, respectively, in PCN-dodecyl-Br. Théhexadecyl-Br. The functional group of polymer has at-
polymer functional group has significant stable interatractive interactions with the functional group and back-
tions with the functional group and backbone of modifiétone of organic modifier, having magnitudes -e131
which are—75 and—36 Kcal/mol, respectively. and—154 Kcal/mol, respectively. Between all the interac-
tions, the highest attractive interactions are observed be-
tween the clay and modifier backbone3t4 Kcal/mol)
6.7 Interactions in PCN-Hexadecyl-Br followed by the interactions between clay and the organic
modifier functional group-£197 Kcal/mol). Between the
The nonbonded interactions between different coday and polymer, the significantly stronger attractive in-
stituents (polymer, clay, and organic modifier) of PCNeractions are observed between the backbone of polymer
hexadecyl-Br are shown in Fig. 11. The nature of noand clay (139 Kcal/mol), and relatively weaker interac-

Volume 8, Number 6, 2010



576

Sikdar et al.

tions are observed between the polymer functional grotipns between the polymer and organic modifier are im-

and clay (45 Kcal/mol).

6.8 Comparison of Interactions between
Polymer and Modifier in PCNs

portant for the structure and nanomechanical properties
of PCNs. The interphasial interactions between the back-
bone and functional groups of polymer and organic mod-
ifiers present in PCNs are presented in Table 7(a), where
it is observed that the presence of different organic mod-

Polymer is the most abundant constituent of PCNs ifiers results in different amounts of interactions between
which nanoclay inclusions are dispersed in the polymie polymers and organic modifiers in PCNs. Again from

matrix. Being a major constituent of PCNSs, the structufi@bles 5 and 6 it is observed that the presence of different
and properties of polymer must have significant impact amodifiers in PCNs results in different amounts of crys-

the overall structure and properties of nanocompositestafiinity of polymers in PCNSs, indicating that interactions

composite material the interactions between the differdrgtween polymers and organic modifiers have a signif-
constituents play a major role in the structure and projant influence on the crystalline structure and nanome-
erties of composites. Thus, the interphasial interactiocisanical properties of PCNs. For studying the effect of
of polymer with other constituents (modifier and clay)ackbone chain length of the modifier on interphasial in-
must have a significant role in the structure and nanonteractions between the polymer and modifier and evaluat-
chanical properties of PCN. Furthermore, from Fig. 6iihg its effect on the structure and nanomechanical prop-
is evident that in intercalated PCNs, the polymer and a@rties of PCNSs, in Table 7(b) we have furnished the inter-
ganic modifier enter into the interlayer clay spacing @aictions between different parts of the modifier and poly-
MMT and lie in close association, indicating that interaener of three PCNs (PCN-dodecyl, PCN-hexadecyl, and

TABLE 7(a): Nonbonded interaction energies between the backbone and functional groups of the polymer and

modifier in different PCNs.

Sample Modi function—poly function | Modi back—poly back | Modi function—poly back
(Kcal/mol) (Kcal/mol) (Kcal/mol)

PCN-dodecyl -98 +21 +47

PCN—-dodecyl-Br | -75 +14 +46

PCN-hexadecyl -146 +87 +76

PCN-hexadecyl-Br -131 +54 +75

PCN-octadecyl -160 +21 +76

TABLE 7(b): Effect of chain length of modifier on the interactions between polymer and modifier in PCNSs.

Sample Modi function—poly function | Modi back—poly back | Modi function—poly back
(Kcal/mol) (Kcal/mol) (Kcal/mol)

PCN-dodecyl -98 +21 +47

PCN-hexadecyl -146 +87 +76

PCN-octadecyl -160 +21 +76

TABLE 7(c): Effect of functional group of modifier on the interactions between polymer and modifier in PCNs.

Sample Modi function—poly function | Modi back—poly back | Modi function—poly back
(Kcal/mol) (Kcal/mol) (Kcal/mol)

PCN-dodecyl-Br | -75 +14 +46

PCN-dodecy!l -98 +21 +47

PCN-hexadecyl-Br -131 +54 +75

PCN-hexadecyl -146 +87 +76
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PCN-octadecyl). These PCNs are synthesized with thraer functional group with the modifier functional group
different organic modifiers (dodecyl, hexadecyl, and osignificantly increase and subsequently, repulsive inter-
tadecyl) having identical end functional groups but difctions of polymer backbone with the modifier back-
ferent backbone chain lengths, which are 11, 15, abhdne and functional group also increase considerably.
17 methylene units in dodecyl, hexadecyl, and octadBhe same trend is observed in PCN-hexadecyl and PCN-
cyl, respectively. From Table 7(b) it is observed that withexadecyl-Br, where due to changing the functional group
the increase of the backbone chain length of the moftiem protonated amine in hexadecyl into the trimethyl
fier, attractive nonbonded interactions between the pofmine functional group in hexadecyl-Br, the attractive in-
mer functional group and the modifier increase. It aperactions between the polymer functional group with the
pears that the polymer functional group anchors on thedifier functional group as well as the repulsive inter-
functional group of the organic modifiers and with the iractions of polymer backbone with the modifier backbone
crease of modifier backbone chain length the anchoriagd functional group significantly increase. As seen from
strength increases. On the other hand, the polymer batible 1(a), because the partial charges on the atoms of
bone has repulsive interactions with the modifier funthe amine and trimethyl amine functional groups of the
tional group and backbone, and with the increase of thespective modifiers are different, they result in a differ-
modifier backbone chain length, the repulsive interactioast amount of interactions in these PCNs. Now from Ta-
between the polymer backbone and modifier functionialk 6, it is observed that the crystallinity in PCN-dodecyl
group increase. From Table 5 it is observed that with thad PCN-hexadecyl is lower with respect to that of PCN-
increase in modifier backbone chain length the PCN crgodecyl-Br and PCN-hexadecyl-Br, respectively. Com-
tallinity decreases. Thus, in comparing the results of Tparing the results of Tables 6 and 7(c), it appears that
bles 5 and 7(b), it appears that combination of attradue to larger attractive interactions between the polymer
tive and repulsive interactions between polymer and dunctional group and the modifier functional group, as
ganic modifiers results in the disruption of normal perwell as larger repulsive interactions of polymer backbone
odic conformations of polymer and subsequently dimimvith the functional group and backbone of the modifier
ishes the crystallinity of polymer in PCNs. As seen froim PCN-dodecyl and PCN-hexadecyl, there is relatively
Table 7(b), the higher the backbone chain length of tigeeater disruption in the normal conformation of polymer
modifier, the higher are the intensities of attractive amhd a subsequent reduction in the crystallinity of polymer
repulsive interactions between selected parts of the pdly-comparison to PCN-dodecyl-Br and PCN-hexadecyl-
mer and organic modifier, resulting in a higher disruptidBr, respectively. Thus, by changing only the functional
of the periodic structure of the polymer in PCNs and subroup of the modifier the interactions between the differ-
sequently, reduction in the crystallinity of the PCN. ent constituents of PCNs can be changed considerably,
In studying the effect of modifier functional groups omhich seemingly results in differing amounts of polymer
the crystallinity and nanomechanical properties of PCNsystallinity in PCNs. This is further evidence that by
the interphasial interactions between different parts sélecting a suitable modifier functional group, the crys-
polymer and organic modifiers lying in four typicatallinity of PCNs can be tailored to a significant extent.
PCNs (PCN-dodecyl with PCN-dodecyl-Br, and PCN- Modulus mapping images of PCN-octadecyl and PCN-
hexadecyl with PCN-hexadecyl-Br) are compared in Thexadecyl-Br are shown in Fig. 12, in which lighter
ble 7(c). The differences in constituents in these PCHisades represent polymer and darker shades represent the
are due to the presence of organic modifiers, and as selay plates in PCNs. From the figure it is observed that
from Table 1(c), the difference in the molecular structuday platelets are uniformly dispersed in the polymer ma-
of the organic modifiers is due to the different end funtrix. The localized interactions between the nanoclay par-
tional group. Between these organic modifiers, dodedidles and polymer also result in the disruption of crys-
and hexadecyl have protonated amine, whereas dodetaflinity of polymer in PCNs.
Br and hexadecyl-Br have trimethyl amine as the func- The mechanical properties of composite materials
tional group of one end of the modifier. In comparintargely depend on their interphasial interactions. Nega-
the interactions between PCN-dodecyl and PCN-dodedye interactions indicate attractive or stable interactions
Br from Tables 1(c) and 7(c), it is observed that due tietween the constituents of composite. As seen from
the change of the amine (Nkfunctional group in dode- Table 7(b), the highest attractive interactions between
cyl into a trimethyl amine [N(CHl)3] functional group in polymer and modifier functional groups are observed in
dodecyl-Br, the attractive interactions between the polpCN-octadecyl, followed by PCN-hexadecyl and PCN-
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Modulus (GPa) Modulus (GPa) tively. However, it appears that the effect of modifier func-
- Faee 7 & T 7 tional groups on the PCN elastic modulus is not as promi-
| ¥ LN ! LN nent as the change in backbone chain length of modifiers.
L P S VRS W Dy e
2. ¢ s} » x D, 3} » X 6.9 Comparison of Interactions between Clay
W R W i and Polymer in PCNs
[ e, S i % > = . . )
i ; 7 g‘“‘ '? g i ; S g‘“‘ i - The !nteract|ons between different pgrts (backbone and
Vﬁ"?:ﬂ" 2 ) %f?}x/'. 2 ) functional group) of polymer and clay in PCNs are shown

in Table 8(a). To evaluate the effect of backbone chain
R UUmmmmmmmmcolength of the polymer on the crystallinity and nanome-
0 50 100 150 0 50 100 150 chanical properties of PCNs, in Table 8(b) the polymer—
(@) (b) clay interaction energies between PCN-dodecyl, PCN-
. hexadecyl, and PCN-octadecyl are compared. As seen
FIG. 12: Modulus mapping image (ﬂf”‘) PQN-octgde- from Table 8(b) it is evident that both the backbone and
cyl ar_ld (0) PCN-hexade_cyI-Br_ showing d|sper3|or_1 O_ltunctional group of polymer have dominantly van der
submicron-size clay part|cl_es in the polymer matrix 'Waals interaction with clay. The differences in interac-
ponmer clay .nanocomposnes. Dark shades ghow C'l?@/n energies between the clay and polymer in PCNs are
particles and lighter shades show polymer matrix.  inarily due to the difference in van der Waals interac-
tion. The van der Waals interaction energy solely depends

dodecyl. On the other hand, from Table 5, the highe%? the distance b'etweep.inte.racting atoms. The presence
elastic modulus of PCN is observed in PCN-octadecy! it different organic mOd'f'erS in PCNs results_ in different
lowed by PCN-hexadecyl and PCN-dodecyl. Thus, Cor,:a[nounts of mteractl_ons be_tyveen the constltgents (clay,
paring the results of Tables 5 and Table 7(b), it seelp]glymer,. anq organic modifier) of PCNs, which seems
that with an increase in modifier backbone chain Ieng{E, resultin (_j|fferent @s;ances petween glay and polymer.
the attractive interactions between the polymer function rllus' the d|ffe_rence n |.nteract|on energies betvvee.n poly-
group and the modifier functional group increase, whiche" apd clay n PCNs is due to the presence of different
results in stronger docking between the polymer fungfganic modifiers. -
tional group and the modifier functional group, and sub- In order 1o evaluat_e the e_ffect of the modifier func-
sequently results in the higher elastic modulus of PCRPnal group on the interactions be_tween t_he polymer
From the above discussion it is further observed th@?d the clay n PCN.S and evaluating the influence of
by changing the backbone chain length or function%l?lymer_day mtgracﬂons on the strgcture :?md nanome-
group of the modifier, the elastic modulus of a particy- anical properties of PCN_S’ the interaction energies
lar polymer-based PCN can be changed, which is are gween polymer and clay in PCN-dodecyl and PCN-
of change in attractive interactions between the the fu decyl-Br, and PCN-hexadecyl and PCN-hexadecyl-Br
tional group of the polymer and the functional group re cqmpared n Tgble 8(0.)' From Table 8(c) we o.bserve
the modifier present in PCNs. that differences in mteract'lon energies between different
Comparing results in Tables 6 and 7(c), it is Okp_arts_(backbone an_d functional group) of the p_olymer and
claey in corresponding PCNs are due to the difference in
served that due to the presence of a protonated amin

group instead of a trimethyl amine group in the mod\/_an der Waals energies, which essentially occurs due to

fier, the relatively larger attractive interactions betwe he presence of different organic modifiers in the PCNs.

. . us, the differences in structure and nanomechanical
the functional group of polymer and the functional grou roperties observed in different PCNs are the result of
of the modifier are observed in PCN-dodecyl and PCN- P

hexadecyl in comparison to those in PCN-dodecyI-éﬂteraCtlons between the backbone chain and functional

and PCN-hexadecyl-Br, respectively. These larger attraeoUPS of polymer and organic modifiers presentin PCNSs.

tive interactions result in_greater docking strength_lj.)g_—10 Comparison of Interactions between Clay
tween the polymer fu_nctlonal group and the modlﬁer and Organic Modifiers in PCNs
functional group, causing a change in the elastic modu-
lus in PCN-dodecyl and PCN-hexadecyl in comparison e interaction energies between clay and different parts
that of PCN-dodecyl-Br and PCN-hexadecyl-Br, respeaf organic modifiers in PCNs are shown in Table 9. As
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TABLE 8(a): Nonbonded interaction energies between different parts of polymer and clay in PCNs.

Sample Clay—poly back Clay—poly function Clay—poly (Kcal/mol)

(Kcal/mol) (Kcal/mol)

VDW | Elec | Total VDW | Elec | Total VDW | Elec | Total

non-bond non-bond non-bond

PCN-dodecyl -125 | +2 -123 -70 0 -70 -195 | +2 -193
PCN-dodecyl-Br | -97 -4 -101 -40 -7 -47 -137 | -11 | -148
PCN-hexadecyl -112 | -16 | -128 -52 +18 | -34 -164 | +2 -162
PCN-hexadecyl-Br -121 | -18 | -139 -55 +10 | -45 -176 | -8 -184
PCN-octadecyl -127 | -21 | -148 -57 +19 | -38 -184 | -2 -186

TABLE 8(b): Effect of modifier backbone chain length on the interactions between clay and polymer in PCNs.

Sample

Clay—poly back

Clay—poly function

Clay—poly (Kcal/mol)

(Kcal/mol) (Kcal/mol)
VDW | Elec | Total VDW | Elec | Total VDW | Elec | Total
non-bond non-bond non-bond
PCN—dodecyl -125 | +2 -123 -70 0 -70 -195 | +2 -193
PCN-hexadecyl -112 | -16 | -128 -52 +18 | -34 -164 | +2 -162
PCN-octadecyl -127 | -21 | -148 -57 +19 | -38 -184 | -2 -186

TABLE 8(c): Effect of modifier functional group on the interactions between clay and polymer in PCNs.

Sample Clay-poly back Clay—poly function Clay—poly (Kcal/mol)
(Kcal/mol) (Kcal/mol)
VDW | Elec | Total VDW | Elec | Total VDW | Elec | Total
non-bond non-bond non-bond
PCN-dodecyl-Br | -97 -4 -101 -40 -7 -47 -137 | -11 | -148
PCN-dodecyl -125 | +2 -123 -70 0 -70 -195 | +2 -193

TABLE 9: Nonbonded interaction energies between clay and organic modifier in different PCNs.

Clay—modi back

Clay—modi function

Clay—modi (Kcal/mol)

Sample (Kcal/mol) (Kcal/mol)

VDW | Elec | Total VDW | Elec | Total VDW | Elec | Total

non-bond non-bond non-bond

PCN-dodecyl -270 | -54 | -324 -58 -214 | -272 -328 | -268 | -596
PCN-dodecyl-Br | -259 | -49 | -308 -122 | -127 | -249 -381 | -176 | -557
PCN-hexadecyl -251 | -97 | -348 -35 -217 | -252 -286 | -314 | -600
PCN-hexadecyl-Br -255 | -99 | -354 -85 -112 | -197 -340 | -211| -551
PCN-octadecyl -238 | -62 | -300 -33 -143 | -176 -271 | -205 | -476

Volume 8, Number 6, 2010



580 Sikdar et al.

seen from Table 9, between the modifier backbone ahldus, PCN-hexadecyl and PCN-octadecyl have respec-
the clay, the interaction is dominantly van der Waals tively 1.5 and 2.25 times the intercalated polymer inside
nature, whereas between the modifier functional grotige clay gallery than that of PCN-dodecyl. The larger the
and clay, the interaction is dominantly electrostatic in namount of polymer inside the clay gallery, the larger the
ture. From Table 9 and interaction energy diagrams direct interaction of polymer with the modifier and subse-
Figs. 7-11, it is observed that attractive interactions bguently, the larger the disruption of polymer crystallinity
tween the modifier and clay are much stronger than timethe PCN, which is also evidenced from Table 10(b).
interaction between the clay and polymer or polymer aia Table 10(b) we provide the relative amount of interac-
modifier in PCNs. The failure of composite materials otion energies between the polymer and modifier in PCN-
curs through the weakest interface of their constituentexadecyl and PCN-octadecyl with respect to the amount
The interface between clay and modifier is the strongesdtintercalated polymer in PCN-dodecyl. In column 8 of
among the three interfaces in PCNs. Hence the interdeble 10(b) the differences in repulsive and attractive in-
tions between the polymer and modifier have the most teractions between the polymer and modifier in different
fluence on nanomechanical properties of PCNs. PCNs is computed. As seen previously, repulsive as well
as attractive interactions between polymer and modifier
both contribute to disruption of polymer crystallinity in
PCNs. Thus, the difference in repulsive and attractive in-
teraction energies between the polymer and modifier is
largest in PCN-octadecyl, and the lowest crystallinity is
observed in PCN-octadecyl, followed by PCN-hexadecyl

The interaction energies, percentage of crystallinity, apd PCN-dodecyl.

nanomechanical properties of PCNs containing organic The differences in the relative amount of repulsive and
modifiers with dissimilar backbone chain lengths amdtractive interaction energies, percentage of crystallinity,
summarized in Table 10(a), where we see that an increase the elastic modulus of different PCNs containing
in the backbone chain length of the modifier results modifiers with varying backbone chain lengths are plotted
higher attractive interactions between the modifier amiFig. 13. From Fig. 13 itis evident that with the increase
polymer functional groups,,as well as higher repulsive im backbone chain length of the modifier, the difference in
teractions between the polymer backbone and the madtiie relative interaction energies in PCNs increases, which
fier functional group. The combination of attractive aneesults in a reduction of polymer crystallinity in PCNs in
repulsive interactions between the polymer and orgaie order of PCN-octadecyl, PCN-hexadecyl, and PCN-
modifier results in a reduction in crystallinity of the PCNdodecyl. Furthermore, attractive interaction energies be-
whereas the attractive interactions between the functionaéen polymer and modifier functional groups increases
group of the polymer and the modifier results in an inith increasing backbone chain length of the modifier,
crease in the elastic modulus of PCNs. From the reprhich results in a gradual increase in the elastic modulus
sentative molecular model of PCNs we see that the sizéd?CNs in the sequence PCN-dodecyl, PCN-hexadecyl,
of the polymer chain intercalated inside the clay gallery and PCN-octadecyl. Thus, it is observed that with in-
PCN-dodecyl, PCN-hexadecyl, and PCN-octadecyl arecBeasing backbone chain length of the modifier, the crys-
12, and 18 monomer units of polymer (PAB), respectivelgallinity (structure) and nanomechanical properties of par-

6.11 Summary of Results of PCNs Containing
Organic Modifiers with Identical Functional
Groups and Different Backbone Chain
Lengths

TABLE 10(a): Summary of interactions between polymer and modifier and their relation with crystallinity and
elastic modulus of PCN containing modifiers with increasing backbone chain length.

PCN Samples | Structural difference Modi Modi Modi % E
func—poly | back—poly | func-poly | Crystallinity | (GPa)
Backbone | Functional | func back back from DSC
group (Kcal/mol) | (Kcal/mol) | (Kcal/mol)
PCN-dodecyl | (CH2)11 NIL -98 +21 +47 27.78 4,77
PCN-hexadecyl (CHz)15 NIL -146 +87 +76 20.81 481
PCN-octadecyl| (CHz)17 NIL -160 +21 +76 19.81 5.06
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TABLE 10(b): Summary of relative interaction energies between polymer and modifier equivalent to amount of
intercalated polymer in PCN, and its relation with crystallinity and elastic modulus of PCNs containing modifiers
with increasing backbone chain length.

PCN Structural difference Relative estimation of interaction % E
samples energies equivalent to amount of (GPa)
(col.1) intercalated polymer in PCN
Organic modifier No. of Modi | Modi | Modi Difference | Crystal- | Between
Backbone| Functional | monomers | func- | back- | function- | in linity polymer
(col. 2) group in poly poly poly back | energies from and
(Col.3) intercalated | func- | back (Col.7) between DSC modifier
polymer tion (Col.6) posi- (col. 9) | (col.
lying in (Col.5) tive and 10)
PCN negative
(col. 4) part
(Col.8)=
(Col.7)
+(Col.6)
-(Col.5)
PCN- (CHz)11 | NIL 8 -98 +21 +47 166 27.78 | 4.77
dodecyl
PCN- (CHz)15 | NIL 12 -219 | +131 | +114 464 20.81 | 481
hexadecyl
PCN- (CHz)17 | NIL 18 -360 | +47 +171 578 19.81 5.06
octadecyl
700 - T30
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FIG. 13: Plot shows the relation between modifier backbone chain length with the differences in attractive and
repulsive interaction energies, crystallinity, and elastic modulus of different PCNs.
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TABLE 11: Summary of interactions between polymer and modifier and their relation with crystallinity and elastic
modulus of PCN containing modifiers with different functional groups.

PCN samples Structural difference Modi Modi Modi % Crystallinity E (GPa)
func- back- func- from DSC
Backbone | Functional | poly poly poly
group func back back
PCN-dodecyl-Br | NIL N(CHzs)3 -75 +14 +46 27.95 4.36
PCN-dodecyl NIL (NH3) -98 +21 +47 27.78 4.77
PCN-hexadecyl-Bri NIL N(CHjs)s3 -131 +54 +75 28.05 4.84
PCN-hexadecyl NIL (NH3) -146 +87 +76 20.81 481

ticular polymer-based PCNs can be tailored to a signifiteractions between the functional groups of the poly-
cant extent by controlling the interaction between the imer and modifier. Thus, through the selection of an ap-
tercalated polymer and the modifier in PCNs. propriate modifier backbone chain length during synthe-
sis of PCNs, interfacial interactions between the interca-
lated polymer and the organic modifier in PCNs can be
controlled, which in turn helps in tailoring the percentage
crystallinity and nanomechanical properties (elastic mod-
ulus in nanometer length scale) of particular polymer-
The interaction energies, percentage of crystallinity, ahdsed PCNs to a considerable extent.

nanomechanical properties of PCNs containing organicThe modifier functional group also has an influence
modifiers with different end functional groups are sunon the percentage of crystallinity and elastic modulus of
marized in Table 11. Here it is observed that by sele®CNs in the nanometer length scale. By incorporating an
ing an appropriate functional group in the modifier (iappropriate functional group in the modifier, the inter-
this case protonated amine in place of trimethyl aminghasial interactions between the intercalated polymer and
the attractive interactions between the polymer functiortak organic modifier can be controlled to a great extent,
group and the modifier functional group, and repulsiwehich in turn can alter the percentage crystallinity and
interactions between the polymer backbone and the métak elastic modulus of particular polymer-based PCNSs.
ifier functional group can be changed significantly, which

in effect changes the crystallinity and elastic modulus

of PCNs. However, the effect of the modifier functiongl CKNOWLEDGEMENTS
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A multiscale modeling methodology that relates the nanostructure of concrete to its micro and macro properties is
presented. This work attempts to establish a framework for understanding the relations among chemical composition,
microstructure morphology, and the macroscale mechanical properties of concrete constituents. The simulation is based
on four levels of a hierarchal structural model, starting from the molecular dynamics simulation of hydrated cement
solid nanoparticles (e.g., C-S—H, and calcium hydroxide), all the way up to concrete. To validate the theoretical model,
a nondestructive testing technique, resonant ultrasound spectroscopy (RUS), is used to measure the elastic constants of
hydrated cement paste. The results showed good agreement between theoretically predicted and experimentally measured
properties.

KEY WORDS: multiscale, concrete simulation, mechanical properties, C—S—H, molecular dynamics, mi-
croporomechanics

1. INTRODUCTION opens the door for a “green concrete” that can cut glo-
bal CO, emission. Therefore, a basic understanding of
Cement concrete is one of the world’s most widely usdige nano/micro structure of concrete constituents and how
materials. Unfortunately, the production of cement irthis relates to the macroscopic mechanical properties is
volves a thermal process that accounts for 5-10 percessential to the design of a new class of concrete that
of the world’s total CQ emissions. Constantinides ands high strength, yet green. Macroscopic properties of
Ulm (2007) studied the cement paste and found that tt@ncrete essentially depend on the nanostructure of con-
macroscopic strength of concrete appears to be linkecttete’s major constituent, that is, C-S—H, and how C-S—
the nano-granular structure of its constituents, partidd-nanoparticles are organized (stacked). Studying macro-
larly the calcium—silicate—hydrate (C—S—H) units and nstopic properties of concrete based on nanoscale con-
to its chemistry. They argued that if one can replace thtuent properties and the sub-micro and micro structure
constituents of conventional Portland cement with matef major strength contribution may show how nanoscale
rials of the same or similar nanostructure, which can benstituents link to the macroscale materials. Another
produced without an intensive thermal process, themwiay to “green-up” is to study how to improve the nanos-
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tructure of the constituents, especially for C-S—-H, to e(GH), and capillary cavities and voids, form an even
hance the macro properties of concrete. higher level: microscale cement paste. For a microstruc-
Many materials, including advanced nanocompositisal model of a well-hydrated Portland cement paste see
as well as concrete, may be studied as multiscale mdtehta (1986). Modeling of concrete mechanical proper-
rials. This has been the focus of many researchers. Ees is given afterward.
example, Fish et al. (2000, 2002, 2010), Yuan and FishThere have been only a few successful attempts to
(2009), and Li et al. (2008) employed multiscale modnodel the macroscopic mechanical properties of cement
eling techniques to study advanced materials, and Jagialste and concrete from their microstructure, as reported
(2005) characterized and modeled trabecular bone a& ¢he literature. The challenges in simulation stem from
five-structural-level hierarchical random composite méie complex nanoporous structures, limited knowledge
terial. Gates et al. (2005) outlined multiscale modeliraf the individual constituent properties, and the large
methods used in simulating nanostructured materials. variation in curing conditions. Among the few avail-
Concrete may be considered as a composite mateable research reports on concrete simulation, Bentz et
at a range of levels (scales). The lowest level is the @k (1995) developed a multiscale cement-based material
S—H solids. Several microstructural models of the C—-%odel which consists of individual digital-image-based
H gels have been proposed (Aligizaki, 2005). The milstructural models for C—S—H at the nanometer level, ce-
stone work for the C—S—H gel structure is credited toent paste at the micrometer level, and a mortar or con-
Powers and Brownyard (1948, 1960), where they prorete at millimeter level. Bernard et al. (2003) employed
posed cement paste as a colloid composed of sphexesultiscale micromechanics hydration model, combined
where each sphere represents gel substance with itswai: intrinsic material properties, to predict the early
sociated gel pores; in between the spheres are capillage elastic properties of cement-based materials. In an-
pores outside the C-S—H gel. The C-S—H gel is cowther study, UIm et al. (2004) treated concrete as a mul-
posed of particles. The particles have a layered striiscale poroelastic material. Feng and Christian (2007)
ture which is made up of two to three layers. Taylorgroposed a three-phase micromechanics model of cement
C-S-H gel model (Taylor, 1986, 1993) claimed that Qsaste using theories of composite and poromechanics to
S—H has a disordered layer structure, mainly composwedict the properties of hardened cement pastes. They
of structurally imperfect jennite and 1.4 nm tobermorit@dopted existing literature values of solid phases, C-S—
Feldman and Sereda (1970) proposed a model simitgrCH (calcium hydroxide), and cement. However, LD
to the Powers—Brownyard model. The difference lies and HD C-S—H were not distinguished and cement paste
that C—S—H sheets in the Feldman-Sereda model do wes treated only as a three-phase composite (C—S—H, CH,
have an ordered layered structure; they are an irregud unreacted cement). Haecker et al. (2005) predicted
lar array of single layers. Both the Powers—Brownyardastic modulus as a function of degree of hydration us-
and Feldman—Sereda models essentially describe a iag-a finite-element-based “microstructure development
ered structure for the C—-S—H gel. However, the C-S—+hbdel”.
gel in models proposed by Wittmann (1979) and JenningsResearch from this current study developed a multi-
and Tennis (2000, 2004, 1994) has a colloid structuszale modeling methodology to relate the nanostructural
The Wittmann C—S—H model has a three-dimensional npteperties to the micro and macro performance of con-
work of amorphous colloid gel particles forming a xercerete. This study is built on a four-level microstructural
gel, and the C—S—H gel particles are separated by strongigdel. At the molecular and nano scale, fundamental me-
absorbed thin films of water. Jennings’ recent C—S-gthanical properties of constitutive mineral crystals of ce-
model (Tennis and Jennings, 2000; Jennings, 2000, 206¥ent, hydrated cement paste (C—S-H globules), sand, and
proposed a new concept, “globules”, which is the basaggregate are calculated by molecular dynamics (MD)
building block with structural water. C—S—H solid withsimulation. These nanoscale properties are used as the in-
different gel porosity forms two types of C—S—H: lowput for the computation of sub-microscale LD and HD C—
density (LD) and high-density (HD) C—S—H. In this pape8—H mechanical properties. At microscale, the effective
we distinguish the “globules” and LD/HD C-S-H by twa@roperties of cement paste and mortar are predicted with
levels: a globules scale, i.e., nanoscale in this reseaittig, help of micromechanics of composite theory and the
and an LD/HD C-S-H gel scale, i.e., sub-microscale microstructural model of hydrated cement paste (HCP)
this work. LD/HD C-S-H particles, unreacted cemenleveloped by the authors as shown in Section 3. A void
clinkers, large hexagonal crystalline calcium hydroxidsffect is introduced by an empirical porosity—elastic prop-
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erty relation. To validate the model, resonant ultrasouadd Ulm, 2005). Level 1 represents the nanoscale C—S—
spectroscopy (RUS) is used to measure the elastic prbpsolid phase which includes globules and nanopores.
erties, which are then compared to the simulation resuttvel 2 includes LD and HD C-S—H and the gel pores,
for HCP. Finally, at macro (continuum) scale, both th@hich have a dimension of roughly larger than 16.6 nm
lattice model and the generalized method of cells (GM@Jameter. Level is cement paste which is composed of
are employed to compute the effective properties of coB—S—H matrix, residual cement clinkers, CH, and macro-
crete. The multiscale input and output for each scale grares. Monosulfate hydrate (AFm phase) has a minor ef-
illustrated in Fig. 1. fect on the structural properties of cement paste, and for
simplicity it was replaced with CH in this study. Level 4
2 MULTISCALE APPROACH FOR CEMENT is a composite which can be mortar or co_ncrete.
CONCRETE Level 1 C-S—H pl_ays a ceqtral role_ in the study of
cement-based material properties. A widely accepted C—
Figure 1 illustrates a four-level model to obtain macr&—H colloidal model is by Jennings and co-worker (Ten-
scale properties for cement-based materials (Dormietis and Jennings, 2000; Jennings, 2000; 2004), in which
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FIG. 1: Diagram of the multiscales, input and output.
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they assumed that two types of C-S—H, LD and HD, eX- gan
ist in cement gel. LD and HD C-S—H have 37% and B
24% gel porosity, respectively. Both LD and HD C-S-H i~
are formed by the basic building blocks called globules, | :
having a dimension of 5.6 nm and nanoporosity of 18%,
which is usually filled with structural water.

Gel porosities of C—S—H and nanoporosity of glob- .
ules are intrinsic properties of concrete. The volumetric?
proportion of LD C-S—H and HD C-S—H changes from | §l
one cement paste to another, depending on the Water-t% :
cement ratio and curing condition. In the development of . ;
the microstructure of cement, HD C—S—H usually forms
around residual cement clinkers while CH is generally ' g
formed in between LD C—S—H and is adjacent to macro- ;
pores (Dormieux and Ulm, 2005).

There are two types of multiscale modeling tech-
niques: hierarchical and concurrent. Hierarchical mod-
eling starts the computation from lower level materials,
such as the crystalline structure of C—S—H, and these com v, S
puted lower level properties are used as input data for
the next level computation, and so on. In the concurrent Level1: C-S-H Globules
modeling, various methods, such as finite element (FE), @ Solids
molecular dynamics (MD), etc., are applied to regions of
different scales of the material at the same time. Reseapg{s. 2: Multilevel microstructure images of cement-
for this paper employs the hierarchical modeling methegsed materials.
to simulate cement-based materials (concrete and mortar)
as shown in Fig. 2.

Level4: Mortar
or Concrete

Level 3: HCP

Level 2: LDHD
C-SH

HD C-S—H gels are calculated using microporomechan-
ics theories (Wu et al., 2008). Next, the effective prop-
3. HYDRATED CEMENT PASTE AND MORTAR erties of two-level composites—composite 1 (1-1, and

MODEL 1-2) and composite 2—are calculated using the Mori-

The micromechanics model for cement paste and mdanaka method (M-T). Finally M-T theory was applied
tar discussed in this paper is based on the following t#@obtain the homogenized properties of mortar (compos-
observations (Dormieux and Ulm, 2005): (1) unreactd@ 3)- In order to account for the presence of voids in
cement is generally rimmed by HD C—S—H; and (2) CHpe mortar (mortar porosity), empirical elastic properties—
tends to grow in between LD C—S—H sheets. The scheRfd0sity relations are used to calculate the effective prop-
for this proposed hydrated cement model is illustrated §fties of mortar. However, the volumes of major phases in
Fig. 3. In this model, LD C-S—H and CH are assumdfie cement paste model need to be determined prior to the
to form a LD/CH composite, which can then be the iflomogenization process.
clusion of the next level of hydrated cement composite The volume of major hydrated cement phases was pre-
(composite 2). Unreacted cement is enclosed by HD €ented by Powers and Brownyard (1948, 1960) and Jen-
S—H to form a HD/cement composite (composite 1-1)ings and Tennis (1994). Whereas Powers’ model can
which can be the matrix of composite 2. Mortar (compo8nly predict the volume of unreacted cement, Jennings’
ite 3) is considered to be composed of sand particles dRadel can estimate the relative amount of unreacted C—
composite 2. S—H and CH. Highlights of the Jennings model are sum-
For the multiscale computation, MD is utilized to simmarized as Egs. (1)—(4):
ulate the mechanical properties of nanoscale solid phase 1
C-S—H (C-S-H structural related mineral crystals to-  Vunreactedcement = ¢ (1 — Octotal)< > (1)
bermorite 14A and jennite), calcium hydroxide (CH), Peement
and sand (alpha quartz). Then the properties of LD and Ven = ¢(0.189x;1p1 + 0.0580t2p2) (2)
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Sand
1
< o
o o ,,ic
LD C-5H 7
= - g Capillary
porosity
Microporomechanics + Mori-Tanaka Mon-Tanaka
Mori-Tanaka Porosity-elasteity relation

FIG. 3: Proposed cement paste and mortar model for w/c of 0.4.

Varm = ¢(0.84903ps + 0.4720¢4p4) ) TABLE 1: Composition of cement constituents.
Vst Solid = ¢(0.2780t1p1 + 0.369x9p2)  (4) Phases WP (%) VP (%)

C3S 73.9 73

where Vinreacted cement, Ver, Varm, and Vesnsolia are C,S 12.3 10

the volumes of unreacted cement, CH, AFm, and solid C:A 63 388

_C—S—I_-| _njaterie_ll in 1 g of cement past_e, respectively, and; C.AF 75 82
is the initial weight of the cement, defined by WP: weight percentage
1 VP: volume percentage

(5)

‘= 1+ wp/c

4. NANOSCALE: MD SIMULATION OF
NANOPARTICLES

wherep; is the percent oith phase (¢S:i =1, GS:i =
2, GA: i =3, and GAF: i = 4) in the unreacted cement,

ando; is the degree of hydration of the four cement con- _ _ . _
stituents, expressed as Understanding the properties of basic constituents of ma-

terials is the first step in multiscale modeling. With the
recent advancement in experimental techniques, more in-
sight has been gained into concrete’s nanostructure.

In the aboveg;, b;, andc; are constants determined by At nanoscale (see level 1 in Fig. 1), the mechanical
Taylor (1987), and is the age of the hydrated cemenproperties of nanoparticles of C—-S—H, CH, cement con-
The composition of cement used in this paper is showttuents, and sand are calculated using MD simulations.
in Table 1. The water-to-cement ratia,/c used is 0.4. The corresponding crystalline structures of these materi-
Two types of C—S—Hs can be distinguished with the ratids are shown in Fig. 4.

1:1, based on Dormieux and Ulm (2005). The calculated MD is a computational technique that models the be-
volume fractions of different components using Jenningsavior of molecules. The force fields of computational
model are shown in Fig. 3. chemistry and materials science are applied for studying

X; = 1-— exp (—ai (t — bz)ci) (6)
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properties of C-S—H gels are computed using microp-
oromechanics. C—S-H gel is a porous material with 37%
(LD) and 24% (HD) porosity (Jennings, 2000). According
to Dormieux and Ulm (2005) the poroelastic properties of
LD and HD C-S-H can be calculated using the following

relations:
_ 4(1 — o)
K= O e + 4G/ K @
G=0aG (1 - d)O) (8Gs + QKS) (8)

"6¢o(2Gs + Ks) + 8G + 9K

whereK and G are effective bulk and shear modulk,

and K, are shear and bulk modulus of the solids obtained
from MD simulation; andd, is the porosity. The prop-
erties of LD and HD C-S—H are estimated in Wu et al.
(2008a,b).

FIG. 4: Unit cell of crystalline structure ofa) jennite
(C—=S-H),(b) calcium hydroxide (CH)(c) alpha quartz
(sand), andqd) C3S (cement).

6. MICROSCALE: HOMOGENIZATION OF HD

small chemical molecular systems and material assem-C—S—H WITH RESIDUAL CEMENT AND LD
blies. The common feature of molecular modeling tech- C-S-H WITH CH

niques is that the system is at the atomistic level; thj i . . :
is in contrast to quantum chemistry which applies qu%rfe two-phase sphere micromechanics model (Abudi,

. ! 991) is utilized to estimate the effective properties of
tum mechanics and quantum field theory (Lowe, 199 vel 3 composites: composite 1 (1-1, and 1-2). The vol-

The main benefit to molecular modeling is in aIIowin% . . . .
X me fraction of unreacted cement in the composite 1-1 is
more atoms to be considered compared to quantum chem-

istry during the simulation. This is accomplished by starfven by
ing with a small number of molecules and persistently
increasing the unit cell size until a periodic system iSV Fy,eacted cem =
reached, which represents the full-scale material prop- V Funreacted cem + VFHD csH (9)
erties. The procedure recommends simulating unit cells. % — 0.981
with 3000 atoms or more in order to reach the periodic 9% + 23%
unit cell that represents the infinite system. . )

For MD simulation, commercially available softwar&Ptainéd resuits for composite 1 (1-1, and 1-2) are
Materials Studio (Accelrys, Inc., 2008) was utilized to eg_hown in Table 2. ) )
timate the mechanical properties of nanoparticles of Port-In order to compute the effective properties of cement
land cement and hydrated cement nanoparticles. More B@ste, the M-T micromechanics model is used to homog-

tail on MD simulations are reported in Wu et al. (2010§ize two composites: unreacted cement-HD C-S—H and
b). CH-LD CSH shown in Table 2. The volume fraction of

inclusion (CH-LD CSH) in this modeVF CH—-LDCSH is
taken as 0.68, sincéFcp=45% andVFr,p_csy = 23%.

VFunreacted cem

5. SUB-MICROSCALE: Therefore, the effective properties of cement paste with
MICROPOROMECHANICS CALCULATION OF  zero porosity (e.g., Young’s modulus,, Poisson’s ratio,
EFFECTIVE PROPERTIES OF LD AND HD V,, bulk modulusK,, and shear modulus,) are calcu-
C-S-H lated as

Mlcroporomgchanlcs is a useful tool to study the mechan- Fy—431GPa vy =03 K,—35.9GPa
ics and physics of multiphase porous materials (Dormieux
et al., 2006). At the second level of this study (see Fig. 1), Go = 16.6 GPa
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TABLE 2: Computation of mechanical properties of composites: unreacted cement/HD
CSH, and CH/LD C-S-H.

Composite (inclusion/matrix) | VF; E; V; E,. | vin Eeg | Ve
Unreacted cement/HD CSH| 0.281 | 56. 0.29| 41 0.3 | 44.87| 0.3
CH/LD CSH 0.662 | 50.02| 0.31| 30.8| 0.29 | 42.31| 0.3

* The unit in this table is GPa except fdF andv.
§ Cement particles porosity effect consideredfas: Ege™24% = 137¢34(026) — 56.6 GPa.

7. MACROSCALE: EFFECTIVE PROPERTIES OF in the range of 15.4-23.7 GPa. Poisson’s ratio computed

MORTAR AND CONCRETE by Egs. (3) and (4) is 0.27. The results in Table 4 are used
i _ _ _ as the input parameters for next-level computation to ob-
7.1 Elastic Properties—Porosity Relation tain properties of mortar.

Porosity is one of the most important factors which affect
the strength of cement paste. Many analytical or semiany Effective Properties of Mortar
alytical equations may be used to describe the moduli-
porosity relation of a porous material. A good summafiy-T micromechanics theory is used to compute the ef-
of these equations is given by Yoshimura et al. (2007). Hective properties of composite mortar (composite 3 in
reference, selected relations are listed in Table 3. Fig. 3) in which sand (alpha quartz) is considered the in-
Knudsen (1959) proposed an empirical equation to ddusion and cement paste is the matrix. The volume frac-
fine the relation between mechanical strength and porﬂgn of the sand used in the calculation is 1/3 of the total
ity. Relation no. 1 in Table 3 is the Knudsen law, which j¢olume of mortar. The homogenization results for mortar
the one most widely used. Porosity has a great influer@f€ given in Table 5.
on the effective properties of concrete, as stated by Mehta
(1986). , . 7.3 Effective Properties of Concrete
The effective properties of hydrated cement paste cal-
culated using Egs. (1)—(4) in Table 3 are given in Table wo micromechanics models are used to calculate the ef-
The Young's moduli of hydrated cement paste (HCP) fdlictive properties of concrete: generalized method of cell

TABLE 3: Selected elastic constants-porosity relations (after Yoshimura et al. 2007).

Eq. Author (year) Elastic constants—porosity relation
1 Knudsen (1959) E = Ege(=F0)
2 | Helmuth and Turk (1966 E=Ey(1— o)k =3

G = Go(1 — $o)(7T—5v0)/[Ppo(8 — 10vo) + 7 — 5vo]

K =4KyGo(1 — o)/ (4Go + 3do Kop)
E = Eo(1 — o) /{1 + (1 +v0)(13 = 15vq)dbo/[2(7 — 5vo)]}
4 Hashin (1962) G = Go(1— do)/[1+2(4 = 5vo)do /(7 — V)]
K = Ko(1 = $o)/{1 + (1 +vo)do/[2(1 = 2vo)]}
*Constank in Eqg. (1) follows Velez et al. (2001) ard= 3.4. — Ky, Go, andv, are from the calculated results of
cement paste in Section 6. Porosity in this stydy= 8.1%

3 Kerner (1952)

TABLE 4: Effective properties of hydrated cement paste.

No. | Eo(GPa) | Eq. in Table 3 | Eyp,(GPa) | Vhep
1 1 16.1 -
2 2 15.4 -
3 | 431 3 23.7 | 0.27
4 4 23.7 0.27
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TABLE 5: Effective properties of mortar.

Case | Matrix (Cement paste) Inclusion (sand) Mortar
E K G E K G E v
1 23.7| 17.17| 9.33 98.66 | 42.05| 44.48| 47.4| 0.21
2 23.7| 17.17| 9.33 62.5 | 42.05| 44.48| 39 | 0.24
Unit in this table is GPa, except for Poisson’s ratio.

(GMC) (NASA, 2002; Aboudi, 1989; Aboudi, 1996) andonding spring connecting both phases, it is assigned a
the lattice model. Both methods may be applied to comstiffnessk,. The values ok; andk,, are calculated ac-
posites with irregular shape inclusions and different paakerding to the individual phase’s elastic properties ac-

ing arrangements. cording to Eq. (12):
The lattice model (spring network) has been utilized to
compute effective elastic moduli and simulate crack for- 3v3 V3
A - o : . Ciin =Cn = —/—«&, Crze =Ci2 = —q,
mation in materials (Ostoja-Starzewski, 2002; Alkateb et 8 8 (11)
al., 2009). In this paper, regular triangular lattices with V3

linear central springs (Fig. 5) are adopted. Elastic mod-Ciz12 = Ces = §°‘
uli of individual phases are mapped into spring stiffness
according to the formula A lattice used in the computation is shown in Fig. 6.
The effective properties of concrete are computed by
o O o GMC and the lattice model, and are given in Table 6. The
Cijrr = 2/3 Z L5 0 (10) Young’s moduli given by GMC and the lattice model are
n=1 42 GPa and 36.3 GPa, respectively.

wherel; = cos9, I, = sin© are the direction of the
spring, andx is the spring constant. 8. RESULTS VALIDATION

The springs’ stiffnesses are assigned according to the
following criteria: if the spring falls within the inclusionTo validate the numerical results of this study, RUS is
boundary it is assigned a stiffnelss if it falls within the employed to measure the elastic constants of hydrated
matrix boundaries it is assigned a stiffndss; for any cement paste. RUS is a modern nondestructive acoustic

o 9 J ai=ad

a2=a3=ab=ab
B1=B82= 4=p6
B2=83

For interface springs:
ko= (171 o+ I/ 1 R

FIG. 5: Fine mesh spring network with a zoom-in for a
unit cell. FIG. 6: Spring network mesh of concrete.
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TABLE 6: Effective elastic moduli of concrete by GMC The elastic constants measured by RUS for a hydrated

and lattice model. specimen with water-to-cement ratio of 0.4 and poros-
ity of 8.1% are an elastic modulus E of 21.55 GPa, and
Emortar 39 the Poisson’s ratio of 0.22, which agree quite well with
Eagg 46.6 the computed results in Table 3. More details on the RUS
Econett: GMC 42 measurement of hydrated cement paste are reported in the
Econ e lattice 36.3 authors’ recent paper (Wu et al., 2009).

*Properties of concrete estimated from elastic-porosity rela- The Young’s modulus of concrete was obtained by the
tion E = Egel"*%0) = 98.66e(~3)(0-25) = 46.6, whereE, ASTM C469 standard test method for static modulus of
is the modulus of quartal, is the porosity of aggregate, and elasticity and Poisson’s ratio of concrete in compression
Econcr is the effective Young’s modulus of concrete. Theusing a concrete compression machine. The volume of
unit in this table is GPa. aggregate in unit volume of concrete is 0.72. Laboratory
tests give the results of Young's modulus for concrete as
38.2 GPa, which matches the values given by GMC and
technique which can be used to measure the elastic preg@ice model: 42 and 36.3 GPa.
erties of solids with high precision (Migliori et al., 1993,
1990). RUS measures the eigenmodes of vibration of pgr-conCcLUSIONS
allelepiped, spherical, or cylindrical samples. An RUS in-
strument is shown in Fig. 7. A multiscale simulation methodology was developed to
RUS test samples were prepared and cured accordi@lgte the nanoscale constituent properties of cement con-
to ASTM standard C192. The water-to-cement ratjp Crete to its micro- and macroscale properties. Nanoscale
cis 0.4. The amount of cement used in each cubic meRspperties were obtained using MD simulation; micro-
cement paste is 325 kg. Although the samples can besg@pic properties were obtained using microporomechan-
different shapes, this research used an accurately shdpedheory; and macroscopic properties were obtained
parallelepiped sample. The water-to-cement ratio for tHging M-T composite theory. Concrete properties were
samples is the same as used in the concrete specimehtined using GMC/HFGMC approaches. Throughout
0.4. these simulations, lower scale results were used as the
To perform the test, the two corners of the test saffput data for higher scale simulations. The input param-
ple were carefully placed between two transducers. Negters for MD simulation were obtained from the funda-
one of the two transducers applied the vibrations to tAgental physical-chemical properties of constituting ele-
sample using the frequency sweeping technique and f@nts. The simulated results are compared with experi-
other recorded the frequency amplitude of the sampl&®¥ntal results and showed quite good agreement at each
response in terms of the natural frequencies. Finally, telculation level. Therefore, itis demonstrated that the hi-

elastic constants were determined (Maynard, 1996). erarchical approach used in this study can be a powerful
tool to investigate the properties of cement concrete from

nanoscale to macroscale. Ultimately, the goal is to utilize
such tools for the design of concrete that is stronger and
more environmentally friendly.
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An extended multiscale finite element method (EMsFEM) is developed to study the equivalent mechanical properties of
periodic lattice truss materials. The underlying idea is to construct the numerical multiscale base functions to reflect
the heterogeneity of the unit cell of periodic truss materials. To consider the coupled effect among different directions in
the multidimensional problems, the coupled additional terms of base functions for the interpolation of the vector fields
are introduced. Numerical results show that the base functions constructed by linear boundary conditions will induce
nonequilibrium of the boundary nodal forces and thus lead to a strong scale effect of the unit cell in the multiscale com-
putation. Thus, more reasonable oscillatory boundary conditions are introduced by using the oversampling technique
in the construction of the multiscale base functions of the unit cell. A special algorithm is introduced to improve the
properties of the equivalent stiffness matrix of the unit cell to make the numerical results more accurate. The advantage
of the developed method is that the downscaling computation could be realized easily and the stress and strain in the unit
cell can be obtained simultaneously in the multiscale computation. Therefore, the developed method has great potential
for strength analysis of heterogeneous materials.

KEY WORDS: multiscale finite element method, truss material, homogenization method, downscaling
computation, base function

1. INTRODUCTION on mechanical properties of lattice truss materials. Desh-
pande et al. (2001) investigated the effective mechani-
Motivated by recent advances in manufacturing tectal properties of the octet-truss lattice structured mate-
niques, ultralight materials are becoming an essential pdat, both experimentally and theoretically. They found
of present engineered materials, because they offer tdit the strength and stiffness of the octet-truss mate-
vantages such as light weight, ease of construction, higgil are stretching-dominated and compare favorably with
stiffness, and high strength (Evans et al. 2001). As onetb&é corresponding properties of metallic foams; thus,
the most attractive ultralight materials, lattice truss m#iis material may become a substitute metallic foams in
terial has received more and more attention for its hidjghtweight structures.
stiffness-to-weight and strength-to-weight ratios in the When a direct numerical method such as the finite el-
past few years (Brittain et al., 2001; Wadley, 2006) areient method (FEM) is used to solve large lattice truss
has been widely used in aeronautic engineering structusasicture problems, the degrees of freedom of the result-
(Huybrechts et al., 2002). A lattice truss structure consistg discrete system will be too large to be managed, even
of only two force members which are connected togethsith the help of high-speed modern computers. It will
at their ends by pin joints [Fig. 1(a)]. It is composed afeed a tremendous amount of memory storage and com-
many periodic cells which can be decomposed in elemgniing time. On the other hand, in engineering practice, it
tary bars [Fig. 1(b)]. Much research has already been das®ften sufficient to predict the averaged effect of small
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FIG. 1: (a) Photograph of the octet-truss lattice structuge) A unit cell of the octet-truss lattice structure. The
darkened rods represent an octahedral cell while the nodes labeled p1-p4 form a tetrahedral cell (Deshpande et al.,
2001).

scales on large scales for mechanical analysis of complas developed for solving the coupling problems of con-
cated materials. Noor (1988) has summarized some c@uhdation of heterogeneous saturated porous media under
monly used approaches on continuum modeling of repegkternal loading conditions. The main idea of the MSFEM
tive lattice structures. In recent decades, the homogenizato construct finite element base functions numerically
tion method based on double-scale asymptotic expansiadsch can capture the small-scale information in each
has been developed and widely used in multiscale compoarse-scale element by locally solving Dirichlet bound-
tation of periodic materials (Benssousan et al., 1978; Hasy value problems. The effect of small-scale properties
sani and Hinton, 1998; Yan et al., 2006; Fish et al., 1998;correctly captured via these base functions. Thus, the
Yu and Fish, 2002). However, these methods have somethod provides an effective way to capture the large-
limitations. Besides the local periodicity hypothesis, theseale solutions on a coarse-scale mesh without resolving
methods request that the ratio between the small-scallethe small-scale features. However, it seems that the
length and the large-scale length be very small. method will face some difficulties when it is extended to
The multiscale finite element method (MsFEM) hadeal with the problems in solid mechanics where the bulk
been widely used for numerically solving second-ordekpansion/contraction phenomena need to be considered
elliptic boundary value problems with high oscillating coin the construction of the base functions.
efficients since it was proposed and improved by Hou andlIn this paper, the extended multiscale finite element
Wu (1997), Hou et al. (1999), Chen and Hou (2003nethod (EMsFEM) is developed for numerical homoge-
Efendiev and Hou (2007), and Chu et al. (2008). Faization of lattice truss materials. To consider the coupled
example, the method has been generalized and succeffset among different directions in the multidimensional
fully used for numerical simulation of two-phase flovwproblems, the coupled additional terms of base function
in heterogeneous porous media (Hou, 2005; Efendievfet the interpolation of the displacement field are intro-
al., 2006; Aarnes, 2004; Aarnes et al., 2006). Recentliyced. We demonstrate, through extensive numerical ex-
Dostert et al. (2008) investigated the MSFEM for theeriments, that the small-scale features induced by het-
stochastic permeability field as well as application to uerogeneities of truss stiffness can be well captured via this
certainty quantification. Moreover, several similar multtechnique. However, from our computational experience,
scale methods have been developed, such as the miiltan also be observed that the construction of base func-
scale finite volume method (Jenny et al., 2003) and ttiens with linear boundary conditions will lead to scale
finite volume multiscale finite element method (He areffects in some cases. This is induced by nonequilibrium
Ren, 2005). However, fewer works discuss vector fietid the boundary nodal forces of the unit cells. To over-
problems of computational solid mechanics. Zhang et abme this difficulty, an adaptive oversampling technique
(2009) seems to be the first work in which the MsFEN4 proposed to construct more accurate boundary condi-
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tions for unit cells in the construction of the multiscalstandard multiscale finite element method. Then the con-
base functions. struction processes of the multiscale base functions for
Different from other homogenization methods, the réhe unit cell of periodic truss materials are presented. Fi-
sults obtained from the EMSFEM can not only repraxally, the equivalent stiffness matrix of the unit cell is de-
sent the mean field solution of the heterogeneous maiged with the use of the base functions.
rials in homogeneous level, but also reflect well the local
mechanical behavior of the materials in the microl_ev%_l Overview of MSFEM
That is to say, the method developed here can be directly
used for downscaling computation, and the real stress dree MSFEM was first developed by Hou and Wu (1997)
strain within the unit cell can be obtained simultaneousiy solve the elliptic equations with multiscale coefficients.
in the multiscale computation. Thus, the EMsFEM devdl-provides an effective way to capture the large-scale so-
oped here has great potential for strength analysis of Hations on a coarse-scale mesh without resolving all the
erogeneous materials and is applicable to general nonmall-scale features. This is accomplished by construct-
ear problems. ing the multiscale base functions that are adaptive to the
Our method can also be extended to solve nonperiotfical property of the differential operator. The small-scale
solid materials. However, for simplicity and as the firdnformation is then brought to the large scales through
step of the research work of the EMSFEM, only 2D péhe coupling of the global stiffness matrix, and the ef-
riodic truss materials are considered in this paper, so tfegt of small scales on the coarse scales is correctly cap-
some basic properties of the method could be explorégred. Thus, the finite element method needs only to be
The numerical experiments show that the results obtairfeahdled on the coarse-scale meshes. It greatly reduces the
by the EMSFEM agree well with the reference solutiongdegrees of freedom. The method is applicable to the gen-
Moreover, it reduces the computational cost and mema@sal multiple-scale problems without restrictive assump-
storage drastically. tions. The construction of base functions is fully devel-
This paper is organized as follows: In the next sectiopped from element to element. Thus, the method is per-
a brief overview of the multiscale finite element is prefectly parallel and is naturally adapted to massively paral-
sented first, and then in Section 2 the construction procégsomputers. Motivated by previous works, in this paper
of the base functions with a linear boundary condition fée original MSFEM is extended to the mechanical analy-
the unit cell of lattice truss materials is discussed in dgis of truss materials.
tail, from which the unit cell's equivalent stiffness matrix
is deduced. In Sectiqn 3,_the representative volume &> The Base Functions of Unit Cell of Periodic
ment (RVE) method is briefly introduced. In Section 4, 1,55 Materials
four representative numerical examples are carried out for
the comparison of our multiscale method with the RvBince the solid deformation is cross-coupling among dif-
method and standard finite element method. In Sectiofesent spatial directions for the influence of Poisson’s ef-
we analyze the scale effect and source of error of the EMigct, the main difficulty of the EMSFEM is how to con-
FEM with linear boundary conditions. Then more reasoftruct finite element base functions which can accurately
able oscillating boundary conditions are constructed @&pture the small-scale heterogeneities of the unit cell.
ing the oversampling technique in Section 6, and a sger the displacement field of the truss unit cell, in or-
cial numerical algorithm is applied to modify the equivader to consider the heterogeneity in the unit cell, the
lent stiffness matrix obtained with the oscillatory boundsase functions must be constructed separately for each
ary conditions. In Section 7, downscaling computation @oordinate direction. In two-dimensional problems (2D),
carried out to get internal forces of truss elements in fingvo kinds of base functions for interpolation of the dis-
scale mesh. Finally, some discussion is presented.  placement field of the 2D truss structures are constructed
in which one is used for the displacement interpolation
2 EXTENDED MULTISCALE FINITE ELEMENT in x-direction and the other is used fgidirection. The
METHOD (EMSFEM) base fungtlons are constructed by spl\(mg the egmhbngm
equation in each fine-scale mesh within the unit cell with
In this section, the numerical procedure of the EMsFEBbme specified boundary conditions. Hou and Wu et al.
for mechanical analysis of periodic truss materials is d@-997, 1999) demonstrated that the boundary conditions
scribed. We first briefly review the principle idea of thef the base functions have a big influence on the accu-
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racy of the multiscale method. This is also suitable for the 4 3
computation of vector fields. Thus, the linear boundary ; 7 7 L'Q;
conditions which were generally used in the standard Ms- J J 4
FEM are studied here first, and then more accurate bound-
ary conditions, i.e., oscillatory boundary conditions, are 1 3|2
proposed to construct the base functions in Section 6.

Without loss of generality, take a truss unit cell as an | 3|2
example (see Fig. 2), wheré; denotes the base function
of nodei, which satisfiesNi|j = 0, (4,4 = 1,2,3,4),
where? is the Kronecker delta. In the two-dimensional P °|2
vector field,V;, andN,, are constructed numerically and
independently. First, let us consider the construction of unitdisplacement r\,{g
N1, as shown in Fig. 3. Our earlier research (Zhang et
al., 2009) has introduced a simple method for the con- 1 2
struction of base functions of a solid skeleton. As shown (a)
in Fig. 3(a), the displacements at all boundary nodes are 4 3
not constraint in the-axis direction except node 3, for Lj’:&%/ ‘E IZ
which the displacements are fixed to zero in both coordi- [
nate directions in order to avoid rigid displacement. For
the linear boundary conditions, a unit displacement is ap- b d?
plied on node 1 irx-positive direction, and the values vary 7;, L—
linearly along boundaries 12 and 14, just as in the stan- I
dard bilinear (linear) base functions. At the same time, the 7;7 7(;7_0?
nodes on boundary 34 and boundary 23 are constraint in
thex-direction. Using the boundary conditions mentioned b 3[2
above, the internal displacement field of the unit cell can 7}, 7‘L
be solved directly by standard finite element analysis in unit displacement
fine-scale mesh, and the base functi¥p, can be ob- :j}_ 7»_ ﬁ
tained. The rest of the base functions of the truss cell can 1 2
be constructed in a similar way:. It is easy to verify that the (b)

base functions constructed above sat@ﬁ?:l Nz =1

FIG. 2: Atruss unit cell.

FIG. 3: The construction of base functions for a truss
cell: (a) boundary constraints in literature (Zhang et al.,
2009) andb) boundary constraints in this paper.

andY}_, N;, = 1 in the unit cell. In particular, for the
homogeneous cell, the values of constructed base func-
tions are equal to those of the standard bilinear base func-
tions of a four-node rectangular element, i.e., for the co-
ordinate system shown in Fig. 4, we have the following
relationship when the unit cell is homogeneous

(a+0)(b+ yo)

1)
wherezy = z;x/a, yo = y;y/b, and N; is the bilinear
base function of nodé

From our computational results, it can be seen that
the construction method mentioned above cannot capture
well the small-scale deformation information in the unit
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YA Once the base functions are constructed, the displace-
a a ment fields within the unit cell can be expressed as
te 0 g 4 4
4 3 u = Z Nixuli + Z lemvé (3)
T i=1 i=1
4 4
b v=" " Nyv'i+ Y Nigyu] (4)
=1 =1
| Equations (3) and (4) can be given in a unified form
X /
u=Nu'g (5)
b whereN is the base function matrix of the unit ceill,
is the displacement vector of the nodes in the fine-scale
mesh, andr'g is the displacement vector of the unit cell
’ 5 X in macro level. They can be expressed as
T
.. U:[Ul V1 U V2 -+ - Up ’Un]
FIG. 4: Bilinear rectangular element.
N= R R R(2)" Ry(2)"
cell due to Poisson’s effect, especially for a heterogeneous - (6)
unit cell. So in the present study, a new method for the ... ... Rz(n)T Ry(n)T
construction of base functions is introduced. In order to
consider the coupled effect among different directions in v/ = [ uh v ouh vh b v ouh v }T
multidimensional problems, the coupled additional term
of base functions are introduced for the interpolation
the vector fields. Different from the previous boundary . [ ) . . .
constraints, the boundary nodes of the cell are all con- =) 12(0) - Niya (@) Noz(i) - Naya (i)
straint in they—_dlrectlon in the new construction met_h_od, Nso(i) Niye(i) Nia(i) N4ym(i)}
as shown in Fig. 3(b). For the linear boundary conditions, 7)
a unit displacement is applied on node Ixipositive di- R, (i) = |:N1my(i) Niy(i)  Nogy(i) Noy(i)

rection, and the values vary linearly along boundaries 12

and 14, just the same as the steps mentioned above. Thus, Nigy (i) Nsy(i)  Nagy(d) N4y(z‘)}

the base function#v,, and N., can be obtained. Un-

like the original MSFEM,N;,,,, is proposed here, whichand n is the total node number of the fine-scale mesh
is a coupled additional term and means the displacemetithin a unit cell.

field in y-direction within the unit cell induced by unit We will demonstrate through extensive numerical ex-

displacement of nodein the x-direction. amples that the new method is superior to the previous
It can been verified that the base functions constructeitie for constructing base functions of a truss cell and can
above satisfy capture well the small-scale information within the unit
cells.
4 4
N, =1 Ny =1 . . . .
; e ; W 2.3 Equivalent Stiffness Matrix of the Truss Unit
4 4 () Cell
N, = N. == . . -
Z; izy =0, z; iye =0 The multiscale base functions are utilized to construct the
1= 1=

equivalent stiffness matrix of the truss unit cell. Consid-
which ensures the rigid displacement of the unit cell arding an arbitrary truss element within the unit cell shown
the compatibility between the neighboring unit cells.  in Fig. 5, in the local numbering scheme, the two nodes
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X Substituting Egs. (11) and (12) into Eq. (8), we get

1
/ T, = 5ugc;eTkec;euiE (13)

n
Adding up the strain energy of all the elements within the
unit cell, the total strain energy is obtained as follows

v Mo 1 M o

o np =) m = up [Z Ge‘Tk;Ge‘] u's  (14)
=1 =1
m
where)M is the total number of truss elements within the
unit cell. It is obvious that the strain energy of the unit cell
X can be expressed by a displacement vector of four corner

nodes, as shown in Eqg. (14).
As mentioned above, the equivalent stiffness matrix of

FIG. 5: A two-dimensional truss element. :
the truss unit cell can be expressed as

M
Kg=>)» GTkG (15)

i=1

of the element are numberedandn. The globalX, Y-
coordinate system is fixed and does not depend on the
orientation of the truss element. The element strain en-

ergy in local coordinate is given by Once the equivalent stiffness matrix is obtained, the stan-
1 5 dard FEM is then able to be implemented on the coarse-
Tle = §k’eAl (8) scale mesh, which clearly reduces the degrees of free-
dom in macro-level computation. In particular, for peri-
odic materials, the equivalent stiffness matrix of the unit
cell needs only to be solved one time.

whereAl is the length change of the element dnds the
elastic coefficient. Both of them can be expressed as

Um
Al=[ —cos® —sin® cos® sind ] Um 3. REPRESENTATIVE VOLUME ELEMENT (RVE)
Unf" (9 ~ METHOD
Un
EA As a classical homogenization method, the representative
ke = e volume element method has been widely used to predict

the effective macroscopic property of the heterogeneous
. materials because of its clear mechanical conception and
secthnal area, anids the length of the element. simplicity. In this paper, the numerical results obtained by
Using Egs. (5), (6), and (7), we get the developed method are compared with those obtained
U R,(m) by the RVE method. The RVE method has three types of
v | | Ry(m) , classical boundary conditions: the uniform displacement
U, " | Ri(n) {up} (10) boundary conditions (Dirichlet type), the uniform trac-
Un, R,(n) tion boundary conditions (Neumann type), and the peri-
odic boundary conditions. Many authors (Yan et al., 2006;
Kouznetsova, 2002; Terada et al., 2000; Pecullan et al.,

where E is Young’s modulus,A is the element cross-

By using Eq. (10), we find that Eq. (9) yields

Al = [G¢] {uy} (11) 1999) have demonstrated that the apparent properties ob-
tained by application of uniform displacement boundary
where conditions on a microstructural cell usually overestimate
R, (m) the effective properties, while the uniform traction bound-
o ) ) R,(m) ary conditions lead to underestimation. Compared with
[G]=[—cos8 —sin® cos® sin] R.(n) (12)  the above two conditions, the periodic boundary condi-
R,(n) tions provide a better estimation of the overall properties;
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therefore, the periodic boundary conditions are adoptelément solution, which are regarded as reference val-
in this work. ues. Moreover, the problems are also solved by the RVE
The periodic conditions can be expressed as followsnethod with periodic boundary conditions for compari-
. . son, noting that the unit cells used in the EMSFEM and
-7 =Fy-(XT-X") (16) the RVE method are the same. For the EMSFEM, the base
functions of the unit cell with linear boundary conditions
whereFy is the macroscopic deformation (gradient) teRye constructed by two kinds of methods mentioned in
sor, X is the initial position vector (in the reference dosection 2.2, respectively. Numerical results obtained by
mainVy), 7 is the actual position vector (in the current dohese numerical methods are designated as EMSFEM-L1,
mainV’), index “+" means along the positivédirection, EmsFEM-L2, FEM-F, and RVE-P, respectively. Further-
and “-" means along the negatiXedirection, as shown in more, all these numerical experiments are dimensionless.
Fig. 6. . ) Example 1.For the first numerical example, we con-
In the RVE method, the strain energy of effective hegqer a truss structure which is composedhgfx n, =
mogeneous material of the unit ce®,,qcro, is defined 3 . g ynit cells, wheren, and n, denote the number

as ! of unit cells in theX and directions, respectively. The
D acro = = / 0:edQ=-2:C:¢ (17) internal elements of the unit cell have the same material
2 & properties and cross-sectional areas; thus, the unit cell is
homogeneous. The sizes of truss elements in the unit cell
are shown in Fig. 7(a). Young’s modulus is used as the

DN | =

whereC is the effective elastic tensor almds the macro-
strain of the unit cell.

At the same time, the strain energy of the correspond-
ing truss unit cell is calculated by accumulating the en- —_— O Vo)

ergy of all the truss elements within the unit cell; thus,
the equivalent elastic tens@ can be obtained under the
conception of equivalence of strain energy.
C )
o
4. NUMERICAL EXAMPLES M
™
In this section, four representative numerical examples C >
are presented. The numerical results obtained by the EMs-
FEM are compared with those obtained by direct finite
(o U O O
4 + 3 o >
3*10
(@)
Y
RVE + A—X 1000
/]
(b)
1 - 2 FIG. 7: Atruss structure composed of periodic unit cells.

(a) Homogeneous unit cell. Cross-sectional areas of the
FIG. 6: A typical 2D representative volume elemenbuter elements are 0.5, while for internal elements, they
(RVE). are 1.0.(b) The loading and constraint conditions.
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same in all these examples with a magnitude of 1.0B8ed additional terms for construction of base functions
The left side of the truss structure is fixed in the two axis very effective. For the homogeneous unit cell, the base
directions, and a uniformly distributed load is applied dinnctions constructed by EMSFEM-L1 are equal to stan-
the right side, as illustrated in Fig. 7(b). Figure 8 showdard bilinear base functions of a four-node rectangular el-
the true truss structure and the coarse-scale mesh thanient. That is to say, for standard FEM, more accurate
used by the EMSFEM and the RVE method. Figure r@sults will be obtained if the coupled additional terms
shows the results of th¥-direction displacement of thecan be considered in base functions.
points on the centroidal plane of the cantilever beam. ForExample 2. In this example, we consider the same
the EMSFEM-L2, the maximum relative error is 0.79%nodel as example 1, just with the unit cell changed by
compared to the FEM-F. It is superior to the EMSFEMa new one as illustrated in Fig. 10. The unit cell has only
L1 and the RVE-P, whose errors are 1.90 and 1.80%, te&t0 nodes at each boundary. The numerical results are
spectively, illustrating that the introduction of the coushown in Fig. 11. It shows that both the EMSFEM-L2
and the RVE-P method give identical results compared
to those of the FEM-F, while the EMSFEM-L1 has some
A0 errors. For the unit cell with two nodes at each bound-
ary, the boundary conditions do not affect the construc-
tion of base functions. So the displacement field within
the unit cell is effectively captured by the new construc-

+— Q 0
00 ! 1 1 1 1 1 1 1 1
u] 100 200 300 400 500 E00 700 800 900
(a) fine-scale mesh
300p
(a\]
200F , B
“A
100k
ot \ 4
A d el
-100 1 1 1 ! 1 1 ! 1 1
0 100 200 300 400 500 600 700 800 900
(b) coarse-scale mesh 2
FIG. 8: The fine- and coarse-scale meshes of the trdgd§. 10: Heterogeneous unit cell with two nodes at each
structure. boundary. Cross-sectional areas of the thinner truss ele-
ments are 0.2, while for the thicker ones they are 1.0.
0 200 400 600 800 1000
g OO | | g5 o 20 40 60 80
§ 05 | ”\’N:!;"'i.;\” X -ta 0,0 " :-’;'"-‘v'!*ﬁﬁ | I 1 ]
= -1.0 - '-5"\._,\‘ g 'ﬁm X
e ey S -04 k
; 1.5 e, ES ®
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% '!)\’i‘ E
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(=] 4.0 —— FEM-F —— EMSFEM-L1 —— EMSFEM-L2 RVE-P é’ ’ — FEM-F —— EMsFEM-L1 —— EMsFEM-L2 RVE-P

FIG. 9: Y-direction displacement of the points on th€lG. 11: Y-direction displacement of the points on the
centroidal plane of cantilever beams. centroidal plane of cantilever beams.
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tion method. It further illustrates that the instruction ¢
coupled additional terms is more reasonable.

Example 3.In this example we investigate the unit cel
with a hole in the center (see Fig. 12). The unit cell can |
seen as a heterogeneous unit cell. The truss structure ¢ &
sidered here is composedf x n, = 24 x 8 unit cells.

The corresponding truss structure and coarse-scale mo_=
are shown in Fig. 13. The constraint and loading condi- (@)
tions are the same as example 1. Figure 14 illustrates *55
relative numerical results. The maximum relative error f g5l
the EMSFEM-L2 is 1.60% compared to the FEM-F, whil , .|
for the EMSFEM-L1 it is 5.89%. The results obtained b
the EMSFEM-L2 are fairly good and meet the accurac ,
requirement.

Example 4. For the truss structure considered in e» b
ample 3, different loading and constraint conditions a
applied in this example. As shown in Fig. 15, the left an™™; P 1000 1500
right sides of the structure are fixed in the two axis direc- (b)
tions, and a uniformly distributed load of 10,000 is ap-
plied on the top side. The results are shown in Fig. 16lG. 13: The fine- and coarse-scale meshes of the truss
Since the deformation within the unit cells is more constructure.
plicated in this example than the previous ones, it can be
seen that the structural stiffness values obtained by both
the EMsFEM-L1 and EI\_/IsF!EM-LZ are overestlmgte_d. On 0 300 600 900 1200 1500
the other hand, by taking into account the periodic d ¢ (o . .. } ‘ ‘ ‘
formation in the boundary conditions, good results a3 s
achieved in the RVE-P. -

From the four numerical examples given we can sic 04 -
that all the results obtained by EMSFEM-L2 are bettt§ 4
than those of EMSFEM-L1, demonstrating that the CO|§ 05
c Vo

struction method developed in this paper is more reas(S N
(2]

a -1.0 ~—FEM-F ——EMSFEM-L1 —%—EMsFEM-L2 FEVE-P

00

Ire:

-02

d

I v’e"e"é'é’é Centroidal plane of cantiever beams,
%?1"‘“?}?1

2 NN NN F_10000

o XX XX 4wy h
OO0 Nl

o DDA 7 NE
p .

610 ) /F 1440 =i\

FIG. 12: Unit cell with a hole in the center. The outer
element areas are 0.5 and internal element areas are 1.  FIG. 15:; The loading and constraint conditions.

Volume 8, Number 6, 2010



606 Zhang, Wu, & Fu
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(@

FIG. 16: Y-direction displacement of the points on the
centroidal plane of the cantilever beam. FIG. 17: Truss structure mode(a) truss structure and
boundary conditions an() the unit cell.

able. Thus, in the rest of this article, we only use the new
construction method and denote it as EMSFEM-L for sim-5—
plicity. The source of error of the EMSFEM-L is analyzed
in the next section, and then a special numerical technique
is introduced to reduce the error. 2

(b)

R

K

XX

5. SCALE EFFECT AND ERROR ANALYSIS e
As shown in Figs. 9, 11, and 14, it is evident that the 2
results obtained by the EMsFEM-L fit well with the ref-
erence results and the results of the RVE-P in the first @
three numerical examples. However, it is also observ
that the stiffness of the structure can be overestimat ©<>
by the EMSFEM-L under special constraints and loac
ing conditions, such as the case in example 4. This O<>
because the multiscale base functions in the EMSFEN
L are constructed with linear boundary conditions, whici <><>
are dependent only on the boundary node coordinates an
are independent of the stiffness distribution within th@<><>
truss cell. That imposes a strong restriction for the bound
ary nodes and induces nonequilibrium nodal force on the © «@
boundary, especially for anisotropic truss cells. It is rea-
sonable to believe that for a unit cell with more elemeiG. 18: Truss unit cell samples with different scale fac-
tary cells, the boundary layers will have relative mindors n: (a) the elementary cell with scale factor = 1;
influences for the whole cell properties. So the error céo), (c), and (d) unit cells composed of? elementary
be reduced by increasing the number of the elementaslls, withn = 2, 4, and 8, respectively.
cells in the unit cell, as shown in the following example.

Example 5. The truss structure shown in Fig. 17 is
composed of., x n, = 24 x 8 unit cells. A uniformly Fig. 18(a) is considered as an elementary cell. This cell
distributed load of 10,000 is applied on the top side of tis¢ructure is then repeated to form a series of unit cells
structure. To illustrate the scale effect, four kinds of unitith a scale factorn. equal to 2, 4, and 8, respectively, as
cells are adopted, respectively, as shown in Fig. 18. Fgfrown in Figs. 18(b)—(d). Also, in these figures we scale
ure 18(a) shows a unit cell in which the cross-sectional #ite elementary cell by the factdyn, i.e., both the length
eas of the truss elements are 0.2, except two thicker oned cross section of the truss elements in the elementary
have areas of 1.0. The Young's modulus of all the trussll are scaled by the factdyn. Thus, the size of the unit
elements in the unit cell is 1.0E6. The unit cell shown icell remains unchanged.

Journal for Multiscale Computational Engineering



Extended Multiscale Finite Element Method 607

The displacements in thé-direction on the top side ST R S
of the structure with four different unit cells are showi}]
in Figs. 19-22 in comparison with the reference solutioz%
obtained by the FEM-F. It is obvious that the relative ef
rors tend to decrease monotonically with the increasi
scale factor, as shown in Fig. 23. 5005
For a strong heterogeneous unit cell, the nonequilib- -0.06
rium nodal forces, which is a key factor of errors in thE
EMSFEM-L, occur only at boundary nodes, and internal

——FEM-F —%—EMsFEM-L X

-0.01

-0.02

n y-direction

-0.03

acement

-0.04

Dis

G. 22: Displacement iny-direction on the top side of
S

; Hjcture with scale factor = 8. The maximum relative
nodal forces are balanced automatically. It has been fouenr d s 5 300
in the RVE method with the Dirichlet-type boundary con- O

ditions (Yan et al., 2006; Pecullan et al., 1999; Huet, _

1990; Hazanov and Huet, 1994; Ostoja-Starzewski, 199¢2 gg
Kanit et al., 2003) that the influence of this nonequilib- 5 30
25 |-
20 |
15
10
5 L
0

0 5 10 15 20 25 30
0.00 %

I F—%— -
0.01 FEM-F EMsFEM-L X

-0.02

direction

Maximum relative err

-0.03
0 2 4 6

Scale factor n

(o]
_
o

0.04
-0.05
0.0 FIG. 23: Convergence of the maximum relative error
with increasing scale factar.

Displacement in y-

FIG. 19: Displacement iny-direction on the top side of

structure with scale factor = 1. The maximum relative
error is 36.75%. rium will become smaller and smaller with successively

increasing scale factor. Based on this, it is easy to under-
5 10 15 20 2 3 stand why the results obtained from the EMSFEM-L con-
~rewr v~ x  verge toward the reference solutions with increasing the
scale factom. This phenomenon can also be rechecked
when the stiffness distribution within the unit cell tends
to homogenous and the nonequilibrium nodal forces at
boundary nodes will generally be decreased. For instance,
if all the truss elements within the unit cell shown in
Fig. 19 have the same cross-sectional area, then the dis-
FIG. 20: Displacement inY-direction on the top side of placements obtained i¥-direction on the top surface of
structure with scale factor = 2. The maximum relative the structure, as illustrated in Fig. 24, are of little differ-
error is 17.43%.

o

0.00 %
-0.01

direction

-0.02
-0.03
-0.04
-0.05

Displacement in y-

-0.06
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FIG. 21: Displacement iny-direction on the top side of FIG. 24: Displacement inY-direction on the top surface
structure with scale factor = 4. The maximum relative of structure with scale factor = 1. The elements within
error is 9.70%. the unit cell have the same cross-sectional areas 0.2.
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ence in comparison with the results of the FEM-F. For g4 3
the unit cell with only two nodes at each boundary,the ~ ~ =~~~ ~ — =~~~ = =7 7
nodal force equilibrium at cell boundaries is always sat-
isfied and the errors are very small (see the results in ex-
ample 2). To reduce the errors of the EMSFEM-L, in the
following section an adaptive oversampling technique is
adopted in the construction of the base functions.

6. THE OVERSAMPLING TECHNIQUE

6.1 Construction of Base Functions with the

s i sampling element
Oversampling Technique

I |
I |
I |
I |
I |
I original element I
I |
I |
I |
I |
From the above discussion we can see that the multiscale 1' 2'
base functions constructed by linear boundary conditions

impose too strong restrictions for the deformation of nearFIG. 25: lllustration of the oversampling technique.
boundary regions. Here the oversampling technique is

adopted to generate more flexible oscillatory boundal .
P 9 y 1y @re not used in the next step). Then the temporary

conditions. The oversampling technique is proposed py . . :
Hou and Wu et al. (1997, 1999) for constructing more r _Xse functionsp are constructed from the linear combi-

liable base functions for the MSFEM. It uses the fine—scarftgi‘t'On ofy as follows:

solutions of a larger domain with specified boundary con- 4
ditions to construct the base functions directly. By doing i = Z cij b}, (i = 1,2,3,4) (18)
this, the influences of the boundary layers are greatly re- j=1

duced in the constructed base functions. The ”“me”ﬁiﬂerecij are the constants determined by the condition
results (Hou and Wu et al., 1997, 1999) show that ”Ebeib = &,; and? is the Kronecker delta. Then we obtain

oversampling techniqug does work ngl in the multisca{[g-Ie temporary base functions;, and ¢, respectively.
computatlons and provides an effective approach for Fse yalues okp, at the unit cell's boundary are used as
moving the resonance effect between the mesh scale gpd oscillatory boundary conditions to construct the ac-

the physical scale. In this section we inherit the basic idga| pase functionaN for the unit cell. In practice, the
of the oversampling technique and adopt it to Constructyiing domain should be large enough to avoid the in-
the base functions for unit cells of periodic truss matefjyence of boundary layers. It is found that the final base
als. Note that the adoptive oversampling technique hefgtions, i.e. N, , Nigy, Niy, and Ny, (i = 1,2,3,4)
is different from th_e standard ove_rsampling technique. Ybtained by this Way also satisfied Eq. (2). From the
our method, we simply use the fine-scale solution of thg,ye analysis one can find that the oscillatory bound-
oversampling region to form the boundary conditions fgfy conditions fully consider the heterogeneity of the unit
the base functions of the unit cells. cell's stiffness distribution. Thus, the nonequilibrium of
Consider a larger domain that covers the truss unit cglk poundary nodal forces is reduced drastically. More
as illustrate in Fig. 25, in whicl\1234 is the unit cell accyrate numerical results can be obtained with these
(original element) and\1'2'3'4" is the sampling element.p5se functions, as is seen in the next section. We denote

Denote the temporary base functions for the original elgre results obtained by the EMSFEM with the oscillatory
ment asd; (i = 1,2,3,4) and the temporary base functoyndary conditions as EMSFEM-O.

tions for the sampling element ab; (i' = 1,2,3,4).

Note_ that we u_tilize the oversampling_t_echnique only @.2 Modification of Stiffness Matrix

obtain the oscillatory boundary conditions; the tempo-

rary base functiong and¢ are constructed here withoufThe equivalent stiffness matrix derived by the EMsFEM-
consideration of the coupled additional terms. First, ter® cannot satisfy rigid-body displacement completely. A
porary base functiong are constructed with the seconciumerical technique is applied to deal with this problem.
method presented in Section 2.2. However, ap}y, and In general, an element stiffness matik is symmetric
1V, are used (i.e., the coupled additional tenins,, and and singular, i.e., it can be expressed as
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K = [X][A][X]" (19) Fig. 26. Figure 27 shows the new numerical results of ex-

where [X] is the orthogonal matrix formed by theample 4. Improved accuracy is obtained by the EMSFEM-

columns of eigenvectors dK. For a 2D four-node ele- Oh'n cqm;l)zqusgg }N'th tﬂe EMSFEM-L. qu rclelsglts &:Le
ment it can be written as shown in Fig. or a homogeneous unit cell, i.e., the

numerical example shown in Fig. 9. It shows that the re-

X] =] {X1} {Xo} - {Xs}] sults obtained by the EMSFEM-O and the EMSFEM-L
Xy X - Xis are almost the same. Under this condition, the oscillatory
Xip Xoy - Xog (20) boundaries obtained by the oversampling technique are
= ) almost linear and coincide with those of the EMSFEM-L.
Xig Xog -or Xag 0 5 10 15 20 25 30
and[A] is the diagonal matrix which is composed of th § %% ‘ ‘ ‘ ‘ P
corresponding eigenvalues Kf as follows: g 001 ¢
5002 -
)\1 ; -0.03
Ag € 004 |
[A] = ’ (@) § 005 |
' A 2006 |
8 2 007 | — FEMF —*—EMSFEM-L —EMSFEM-O
assuming thah; > A, > --- > Ag. In order to sat-

FlG. 26: Comparison between the EMSFEM-O and other

isfy singularity (i.e., one element can have arbitrary rigi SV
iy sing Y Y1 ethods shown in Fig. 21.

body displacements), eigenvalues must have three z
values, i.e.A\s = A7 = Az = 0. (Take a 2D plane ele-
ment, for example; it contains two linear and one rotatic 0 300 600 900 1200 1500
displacements.) By observing the calculation results, g %% ‘ ‘ ‘ ‘ ‘
find that the eigenvalues of the equivalent stiffness mat’s o5 |
obtained by the EMSFEM-O have only two zero value'é
i.e.,Ag # 0. Further investigation shows that the situatio.c
occurs because the rotation displacement cannot sat5 15 |
rigid-body displacement. The stiffness matik should
be modified. o 0-20 7
Ye et al. (2009) developed two methods to modifS ) ,5 | ——FEM-F - EMSFEM-L = RVE-P ——EMsFEM-O
the stiffness matrix. They are the eigenvalues modified
method (EMM) and the eigenvalues and eigenvectdfs. 27: Comparison between the EMSFEM-O and other
modified method (EEMM). Numerical experiments shomethods shown in Fig. 16.
that application of the EMM and EEMM gives similar re-
sults for the situations considered here, so we chose 0 200 400 600 800 1000
more convenient EMM to modify our stiffness matrix. Ir 0.0 + ‘
EMM, the nonzero eigenvalue; is set to zero with other 2 o5 - X
eigenvalues and the eigenvector ma{¥ remains un- 4.0 1
changed. Then the modified stiffness matrix can be €x ;5 |
pressed as 20 |

2.5 4

X

-0.10 A

placem

on

K’ = [X] [A] [X]” (22)

where[A’] is the revised eigenvalue matrix in whidl -3.0 1

equals 0. 35
For the numerical example shown in Fig. 21, we soh® _4 g ] — FEM-F = EMSFEM-L ——EMSsFEM-O

it again with the EMSFEM-O and compare it with previ-

ous results. It is obvious that the results obtained by tRéG. 28: Comparison between the EMsFEM-O and other

EMsFEM-O fit fairly well with the FEM-F as shown inmethods shown in Fig. 9.

isplacement in y-direct
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7. DOWNSCALING COMPUTATION Q Q Q 0
od )

Different from the general homogenization methods, the % &

EMSFEM constructs base functions to form the equivacess )

lent stiffness matrix of unit cells. These base functions re g g

flect local fluctuations within unit cells and in return, can ! '

be used to construct the fine-scale solutions. Therefor( q 2 A )

the EMSFEM is able to perform the downscaling compu- 9 g

tations. That is to say, the displacement solutions for th '

fine-scale structures can be obtained through macroscopcu’u © ©

results and then the stress and strain solutions in the unit (a) EMSFEM-L (b) FEM-F

cells are obtained. These results are important and canﬁ& 30- Internal forces of truss elements of unit cell B
used for further investigations, i.e., for the nonlinear situ- —" =" '

ations.

(a) As for the EMSFEM-L, the base functions are con-(b) As for the EMSFEM-O, the base functions are con-
structed with linear b,oundary conditions and the structed with oscillatory boundary conditions which
downscaling computations can be carried out di- are obtained by the oversampling technique. As the
rectly. The internal force of théth truss element equivalent stiffness matrix has been modified, we as-
Withi)lfll the unit cell can be written as sume that the modified stiffness matrix and the orig-

inal one have the following relationship:
F; = kAL 23
Lo (23) K’ = SKS™ (25)
Using Eq. (11), we get
whereS is a8 x 8 matrix and can be obtained by
Ff _ Eidi [G], {uf} (24) solying 64 noqlinear equatiqns iteratively. Also for
l; periodic materials, the matri® needs to be solved

where{u; } are the macroscopic results obtained by ~ Only one time.
the EMSFEM-L.

Take unit cell A and unit cell B shown in Fig. 8(b),

for example. The internal forces of truss elements in_, M s 1,7 M 6iT 14 reiaT
the unit cells are computed by both the EMSFEM- Tp=) M =5UE > _SGTEGeS
L and the FEM-F. The results are shown in Figs. 29

and 30, respectively. Note that a positive value inffwe denoteGe = G°ST, we get

plies tension and a negative value implies compres-

By taking into account Eq. (25), Eq. (14) yields

]u’E (26)

=1 i=1

sion. It shows that the internal forces obtained by the M P M S Trieir |
EMSFEM-L fit well with those of the FEM-F ingen- 75 = ) _ 7T = SUE D> GTEGY [u's  (27)
eral. i=1 i=1

By comparing Eq. (27) with Eqg. (14), we can find that
the mapping relations between internal nodes and cor-
ner nodes have been changed. The new mapping relations
are used to calculate the internal forces of truss elements
within unit cells.

Here we take unit cell A and unit cell B shown in
Fig. 17 as examples and consider the unit cell shown in
Fig. 18(c). The results obtained by the EMSFEM-O and
the FEM-F are shown in Figs. 31 and 32.

For the numerical results presented above, one can

(a) EMSFEM-L (b) FEM-F find that: (1) relatively small relative errors are generated
for the truss elements whose internal forces are relatively
FIG. 29: Internal forces of truss elements of unit cell Alarge; and (2) relatively large relative error is generated
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FIG. 31: Internal forces of truss elements of unit cell AFIG. 33: The errors of internal forces of truss elements
(%).

ically for unit cells of different types to form the equiva-
lent stiffness matrices. In order to deal with the coupled
effects among different directions in the multidimensional
problems, the coupled additional terms are introduced
in the multiscale base functions. The base functions are
constructed with both the linear and oscillatory boundary
conditions. The oversampling technique is introduced in
the generation of the oscillatory boundary conditions. It
(a) EMSFEM-O (b) FEM-F shows that for heterogeneous unit cells, the use of base
FIG. 32: Internal forces of truss elements of unit cell BT'“.".]Ctions constructed with the oscillato_ry boundary con-
ditions generates more accurate numerical results in com-
parison with that of linear ones, for it can reduce the

for the truss elements with small internal forces. It is offonequilibrium nodal forces of the boundary nodes. Nu-
vious that the truss elements having large internal ford8grical experiments are carried out to examine the accu-
play an important role for the performance of the trugacy of the newly developed method, showing that for the
structure, while those having small internal forces makéimerical examples presented in this paper the numeri-
small contributions. So the errors induced by relativefigl results obtained by the EMsFEM fit fairly well with
small internal forces can be ignored in strength analysige reference solutions. At the same time the developed
If the error formula (28) is used, the error distribution@ethod reduces the computational cost and memory stor-
corresponding to Figs. 31 and 32 are shown in Fig. 33ge drastically.
The results show that the errors of the internal forces in The EMSFEM can be used to perform downscaling
most of the elements are less than 10%: computations which are superior to other homogenization
methods. The actual stress and strain information in mi-
(28) croscopic level can be obtained easily, which is important
| Finax| in engineering applications, especially for the nonlinear
cases. Meanwhile, in our method the construction of base
functions and downscaling computations are performed in

ith truss element obtained by the EMSFEM, &t | each unit cell independently, that is to say, the method de-

is the absolute value of maximal internal force of all truélfloﬁed here %ar? be extc—:ndfd igrlparallelhcomplljtlngIln .a
elements within the unit cell. simple way and has great potential in mechanical analysis

of nonperiodic continuum problems.
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where Fy; is the internal force of théth truss element
obtained by the FEM-FF,; is the internal force of the

8. CONCLUSIONS
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The manuscript focuses on the computational aspects of the eigendeformation-based, reduced-order homogenization de-
veloped in Fish and Yuan (2008), Oskay and Fish (2007), and Yuan and Fish (2009) with regard to its compatibility
to commercial finite element code architecture and on standard user-defined material interfaces. Most commercial fi-
nite element software codes provide functionality for adding user-defined material models. The eigendeformation-based
homogenization formulation has a lot of specificity that limits its flexibility to add user-defined material models. In
the present manuscript we recast the original formulation referred to above into a more transparent and flexible form
that enables easy addition of new material models of microconstituents. Several nonlinear examples, including dam-
age, plasticity, and viscoplasticity, are used to demonstrate the canonical structure of the proposed formulation and its
verification against the direct computational homogenization method.

KEY WORDS: reduced order homogenization, composite material design system, material inelasticities

1. INTRODUCTION Adoption of computational homogenization methods
in commercial finite element packages has been very
Due to their light weight, high specific strength/stiffnessjow, primarily due to their cumbersome code architec-
and resistance to corrosion, composite materials hauee that requires nested structure (Yuan and Fish, 2008).
been increasingly attracting attention since the middle dirthermore, while the computational cost of the com-
the last century, yet the supporting modeling techniquestational homogenization approaches is a small frac-
are by and large limited to various effective mediurtion compared to the direct numerical simulation, where
models, such the Mori-Tanaka (1973) and self-consistentharacteristic mesh size is of the heterogeneity order,
(Hill, 1965) approaches. Most finite element commercitley remain computationally prohibitive for complex mi-
software packages for composites house simplistic effecestructures. This is because a nonlinear unit cell prob-
tive medium-like models, which tend to oversimplify théem for a two-scale problem has to be solved for a num-
microstructural details and thus limit their full potentialber of times equal to the product of number of quadrature
On the other hand, in the academic community, computaints at a macroscale and the number of load increments
tional homogenization methods that explicitly account fand iterations at the macroscale.
complex material microstructure have been widely used The primary objective of the present manuscript is to
for both linear (Guedes and Kikuchi, 1990) and nonlineartegrate a computationally efficient method, such as the
(Terada and Kikuchi, 1995; Fish et al., 1997; Yu et akeduced-order homogenization method (Fish and Yuan,
1999; Fish and Yu, 2001) problems. Despite this progre2608; Oskay and Fish, 2007; and Yuan and Fish, 2009),
a cost-effective and flexible multiscale methodology that a conventional finite element code architecture. The
can be seamlessly integrated into commercial finite eteduced-order homogenization approach (Fish and Yuan,
ment codes does not exist. 2008; Oskay and Fish, 2007; and Yuan and Fish, 2009)
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constructs a unit cell problem in terms of eigendeforma- gfjnj
tion modes, which a priori satisfy equilibrium equations

at the microscale and therefore eliminate the need {grere the superscript denotes dependence of the
costly solution of discretized nonlinear equilibrium. Thgesponse fields on the microstructural heterogeneities.
challenge is to reformulate the reduced-order homogeguation (2) describes the constitutive relation which as-
nization in terms of the conventional single-scale buildingmes an additive decomposition of total strajp into
blocks for each micro phase and micro interface, such agastic and inelastic components, more generally referred
stress update and consistent tangent operator. In the g eigenstrainﬁxgl, where the left superscriptstands
posed canonical structure, the user is required to SUPRYY various eigenstrain types, such as inelastic deforma-
only a conventional stress update and consistent tanggsi, thermal change, moisture effects, etc. Equations (5)—
routines for each micro phase and micro interface, from) govern the traction continuity along the interface of
which the backend programs of the reduced-order homegicroconstituents denoted I5if; the +/— signs indicate
enization formulation construct the overall stress updafts two sides of the interfacg! is the displacement jump
and the overall consistent tangent operator. Finally, i so-called eigenseparation) along the interface(and
demonstrate a seamless integration of the reduced-oigdehe jump operator.

homogenization approach in a commercial finite elementy/arioys fields are assumed to depend on the macro-
code by providing a sample of the user-defined materiglopic coordinatex and microscopic coordinatg =
model that employs the same structure as the UMAT #y¢_ They are expressed in terms of the two-scale asymp-

ABAQUS- ) ) ) _ totic expansion as
This paper is organized as follows. Section 2 gives

a brief introduction to eigendeformation-based homog- v, (x,y) = u?(x) 4+ Cul(x,y) + - --
enization. Section 3 describes the canonical framework 0 1
starting from the formulation of the unit cell problem, 8ij(x,y) = &i;(x, ) + Ceyy (xy) + -+
followed by the consistent tangent, the user-defined ma- 0i;(X,y) = 0y;(x,y) + Coj;(x,y) + -+,
terial model, and the nested Newton method for solving 7y, (x y) = 10, (x, y) + Cyil, (x,y) + -+ -
the two-scale problem. In Section 4, several nonlinear
examples, including, damage, plasticity, and viscoplagserting the asymptotic expansions into the governing
ticity, are used to demonstrate the canonical structuremjs. (1)—(7) yields the microscale unit cell problem

the method and its verification against the direct compu-

=0, (7

e
=t 5¢

. ¢
s + 0551y ¢ st + 1

)

(8)

tational homogenization method. - . I o
Liji(y)|Eri(®) +up (%, y) =Y T, 6, y)| ¢ =0(9)
2. REVIEW OF REDUCED-ORDER ! Y
HOMOGENIZATION from which the macroscopic stress can be computed by

2.1 Mathematical Homogenization

_ 1., , )
Following Yuan and Fish (2009), the strong form of the %i7(X) = @é ikt (Y) | k1(%) + gy, (X, )

boundary value problem is stated at the microscale: (10)
= ui(x, y)> dy
I

ij’j(x) + bf(x) =0 xeQ, 1)
¢ . . e where®© is the unit cell domain, and;; ande;; are the
05 (x) =L, (%) |ef,(x) =Y 'ug(x)| x €9, (2) macroscale stress and strain, respectively.

1 : .
£5;(x) = “fi,j)(x) =3 (Ufj + ujéz) x e, (3) 2.2 Reduced-Order Two-Scale Formulation

uS(x) = @i(x) x €Ty, (4) The sqlien_t feature of the _eigendeformation—based _ho—
c B mogenization is that the microscale displacement field
05 (x)n;(x) = ti(x) x €Ty, (5) u!(x,y) is constructed so that the stress field in the unit
' cell automatically satisfies the equilibrium equations for
Cig) = /00 _ . e
87 (x) = <u7 (X)> T Uilge T Yilge ¥ €5% 0 amitrary eigenstrain§u?; and eigenseparations:
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ul (x,y) = Ufl(& y)+ Z IU?(X, y)+ uf (x,¥) Reduced-order microscale unit cell problem:
I
mic- AN 7 Ip(B)I
= HipiEp(x +Z/ "R (v, 9) (%, §)d (11) ZZ Py gy ()
I=1 x=1
QBB (B)
- / B (y, §)84 (%, 9)dg =D QUS () = AfEn ()
s £=1
(15)
The resulting microscale displacement gradients are (o) (cx) )
given by - Z Z Tomr Ty (%) + 13V (%)
=1a=1
o3 = GiiEu+ 3 [ it 9) ng;;;w = Beu(x)
(12)
10 (x, §)d§ + / gmc 5(y, §)64(x,§)d§ Reduced-order macroscale stress update:

nr

— 04 &

where G?ﬁﬁi IQ;?;Z?”: and gmw 5 are influence func- O'z'j(X) = z]klﬁkl + 1221 zzllEl(jklluél) )

tions for macroscale strain, e|genstra|n, and eigensepa- * (16)

ration, respectively, which can be computed by solving+ Z P& 5(5

a sequence of elastic boundary value problems prior to e

nonlinear macroanalysis. The reduced-order model is ob-

tained by discretizing the eigenstrain and eigenseparatigieret, = G(5;) represents the traction along interface.

fields as All the coefficient tensors in the reduced-order system,

SUCh a-SIP’ijll ngnv ijkly Ianjy Dnma an]u ngkl:
E”kl, and F;;5, are determined in the preprocessing

&=1

1,0 _ Iar(x I=(e)
wi (% y) = Z N (y) i (x) stage prior to nonlinear macroanalysis. A detailed formu-
a=l (13) lation can be found in Fish and Yuan (2008), and Yuan
m (z and Fish (2009).
8a(x,§) = 3 N ()57 (x)
&=1

3. THE CANONICAL STRUCTURE

wheren; andm are the number of partitions of phaseg, the present manuscript we focus on the computational
and interfaces, respectively, ahﬁi(“) ands" are the av- aspects of the eigendeformation-based reduced-order ho-
erage eigenstrain and elgenseparat|on in the phase paitigenization, its compatibility to the commercial finite
tion oc and the interface partitiod), respectivelyN(®)(y) element software, and on a standard user-defined mate-
is a piecewise constant shape function definedas  rjal interface. Most conventional finite element software
packages provide functionality to add a user-defined ma-
1 yeo terial model. The eigendeformation formulation outlined
N (y) = { 0 o) (14) " in the previous section has a nonconventional data struc-
y & ture that complicates the task of adding user-defined ma-
terial models. In this section we recast the original formu-
whereasN (%) (3) is a linear combination of piecewisgation (Fish and Yuan, 2008; and Yuan and Fish, 2009)
linear finite element shape functions defined over the Sifto a form that provides a conventional hookup to add
face partitiont. new materials models.
Combining the governing equations for the unit cell
problem (9) with the decomposition (12) and the dig.1 Reformulation of the Unit Cell Problem
cretization (13) yields the reduced-order system of equa-
tions: To solve for Eq. (15), we define the following function:
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P (Aﬁ(-c-x), ASQ&)) For convenience, we adopt the Einstein summation con-
vention over eigenstrain typdsvolume partitionsx, and
AelP) Z S PES AT interface partitions.. Taking the derivative oA\G;; with
(éa)l 0‘7(15) ® respect taA gy, yields
_az Qun” 8007 = Ayt D oas 9" AR DAS
= - 0 7 I () HWmn =(&) 7
N g o) AT M) 0AEy =Lijt Eifmn 5 Rz, OAE i OAE (20)
- L oAy - Af . .
I=1 x=1 . .
m Using the chain rule, Eq. (20) can be expressed as
_ Y DUEIAGE) B(n ) Ag. 9 a- (20) P

&=1

[ i) 0AGi; _ Loy + 1B AT AL | OAeLy)
The unknowns are thejncrements of phase stteaf.}. FINTT ikl i 6A£§)‘Z;) DA
and phase Separatiaﬁég"), whereas the macro strain

(21)

Agy is prescribed by the macro problem. The goal is | p(e) aAs
to solve the nonlinear equations(As,E;‘),ASf)) -0 9 AER

for the U”k”OW”A_Ez('('X) and A5Y". The above equa-The unknown quantities in the boxes are obtained as fol-
tion is solved using the Newton method, which rgows. Recall the reduced-order unit cell problem:
quires function derivatives with respect to variables-

{Aak‘;‘),mﬁ;?} AelP) TP _QBLINFE — 4P Ag, .
22
N ng TN+ ALY — DUPASE = BIY Agy
Sy — 1 p(Be) (BE)
Pocight ;; mn ;Q”m Taking the derivative of (22) with respect %, gives
9" Afiis) (8) _
EYWC OAE; | (pey 0T Aliln
@: Ekl (18) aAgkl ijmn 8A€kl
x (©) NS
(BE B
*ZZIC‘%Z Bue St - oG
=1 =1 ) aAérm (23)
T o
Xwiltm)n _Z D(ATIAE) IC(ﬂDc)a Au(“) 8At£{1)
x nm
8Aekl =1 nmn 8A£kl /AN )
where 6;; is the Kronecker delta. Aftery = _D(ﬁfﬂ)aAém — M
nm 6‘A€kl nkl

{Aak(zx),Aé(‘i)} is calculated, the eigenstraifmz(,]‘,x)

m
subsequently computed froms("‘) whereas the macro-
scopic stress follows from Eq. (16).

By the chain rule we have

LN dAeX
<6f50c1iqu I p(Pe) ”m"> Epq

3.2 Consistent Tangent Operator T DA OAER
Consistent tangent is critical for rapid convergence of (BE) BASg‘ _A®
the Newton method at the macroscale. Recall the macro- — @ijn O ONEy, | ik
scopic stress is given by (24)
d Au("‘) DALY
( ( (ne) Pq
AGLJ - Lz]klAEkl + Z Z IEUO;;)[IAH « Cnnm 8A€ 8A€kl
I=1 x=1 Pq
(19) (&) 2(&)
At OAS .
FEA5E 9AL,”  Hme) a |_ g
+ Z ijn + 6“5 SE:;') Dn'm OAER Bnkl
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The unknown quantities in the boxes can be expressedsag standard building block in any implicit finite ele-
ment code. Given théaAomn)/(aAsEj‘)) the eigen-

OAefy strain derivative 9’ Apg;" )/ (04 can be found from
OAEy (27). Consequently, the nonlinear unit cell problem can
be solved (see Section 3.1) and the macroscopic consis-
6ASE§") tent tangent stiffnes@)Ac;;)/(0Agy;) can be obtained
OAEL as described in Section 3.2. Figure 1 depicts the canoni-
. cal structure of the reduced-order homogenization and its
dpalijpq —QE%) implementation in the commercial finite element code.
(B GIAEL%)L (25) Note that in general, the unit cell problem is solved
|~ ijmnm for the internal variables in addition to eigenstrains and
: f’z’a) ©) eigenseparations. In the following, we present a nested
() 9" Afimn . ALy~ (&) Newton method that can handle various material models
P oA in the context of ABAQUS code.
AB) Letn = 1 — npax D€ the iteration count for the
s | Tk macro problem and denote it by the right subscript. Let
<Bf:,‘€)l ) iter = 1 — itermax b€ the iteration count for the unit

cell problem and denote it by the left superscript.

Finally, the macroscopic consistent tangeittAc;;) Given: &.. B { NONRG! } o ()

/(0AE},) follows from Eq. (21). »Eij(n)r X(n) = Eij(n) Oan) [ ij(n) YA
YE:)) wherevy is an internal variablex the o** phase

3.3 Canonical Structure of the Unit Cell Problem partition, £ the £ interface partition, and\g; ;1) the

Consider the remaining unknowns denoted in the prewo@éicro strain increment. ( (&)
Find: AO-ZJ(nJrl) AX(”JFl) - {Aazj(n-i-l)’ Aén(n-i—l)}

sectlons(ﬁfAu(“))/(aAskl ) and(9AH) /(0455

Note that these derivatives are taken with respect to mfg nt1)? tfgﬁl YEZL)-

increment of strain or eigenseparation in the correspond- Recallmg the functionp from Eq. (17), we have the
ing phasex or interface&. These quantities can be defollowing stress update algorithm:

rived from a single-scale constitutive model or cohe- Algorithm 1 Stress update procedure

sive law (see Appendix for various material models).

(8At§f))/(8AS$)) is the relation between the traction 1 |njtialize °Ax N { Ael® 0A5E) }—O
and displacement jump, which can be specified by the co- () W)y TR+

hesive law. 2. Compute

We now focus on the derivative of the eigenstrain. By
definition, the eigenstrain is given as e Ax (1) = @D AX (1)

) B -1
IAu(“) As(“) ]V[z(Jo;)lAO'(“) (26) L (=D AX (ns1), AEij(nt1))

here () is the el i for ph Q=D AX (n)

where M i i mplian nsor for iter— —
ere M;;,; is the elastic compliance tensor for phase P (=D Ax (s 1)) AEijna1))

partltlonoc The derivative of the eigenstrain is given by

BIAFLZ(';‘X) __ 0 (A (@ (0 Agla ) 3. Use (M Ay, cz(.;‘&), tELE(L), YE:)) in Newton
8A£I(:lX) OAe (cx) rymn e mn method to solve for the material internal variable
(27) (””)y( ,, for microscopic phases.
N () 6A07r1,n
A Mijmn 8Ag(“) zter) (0‘) (zter) f (iter) (o)
ki 4. Get! 1i(nt 1) t rom Y(nt1):
where (9Aa\)/(0Ae(™) is a single-scale consistent ,
- (iter) A () _ (iter) A () _
tangent stiffness for the corresponding phase. Formula® Compute A”ij(nﬂ) - ‘ Aeu(nﬂ)

tion of the consistent tangent operator for each phase Ml(ﬁc)l (itET)AUJ(j()n+1)-
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7 Macroscopic Model Problem Layer N
Maero | |
Problem k ‘ ABAQUS Standard lteration Scheme ﬁ
=, 25,
/" Encapsulated Micrascapic Unit Cell Problem Layer | - A&y
UMAT Subrauting
—compute A"ﬁi‘x’ from Eq.(26)
Backend g
/ Single Scale Madel Problem Layer \\ AN
i f -compute e from Eq.(27),
Problem ‘ ABAQUS Standard Iteration Scheme SAES aA 5[’3
IAE, A G
O3 8% trom Eq.(25)
SAE, 1 dAE,
_ _ 3, L
AE) 4 7y OAE, AT ,[“ GLYAN
c"\_\b‘;) H r?.“\:;:'
{ Single|Scale Material Model|Layer e
f Single|Scale Material Model|Layer
User | UMAT Subroutine I User
Defined Defined | MDS UMAT Subroutine l
A

Framework of Single Scale Analysis

Unified Framework of Multiscale Analysis

FIG. 1: Canonical structure of the unit cell problem.

O () A (ng1)s AEijnr1))

6. Compute -
p Oiter) AX(n—Q—l)

7. Check whether (") Ax 11y, AEij(nt1))
tol; if yes, go to step 9; if no, go to step 8.

A

8. Letiter = iter + 1. Go to step 2.
(iter) O.(‘X) t(}v)

) ij(n?rl))' a(n+1)
iter _ (iter x _
it )tﬁ(nJrl)’ Yt = it )V(n+1)' AX(nt1) =

; a0 (iter) Ag(®)
(ter)AX(er), and AH‘;‘(nH = (it T)A“i;‘(nﬂ)’
updateAs;;,+ 1y from Eq. (19).

() —
9. Let Oii(ns1) =
()

10. Check the residual in macroanalysisilf,ocro(n+1)
< tolmaero 90 to the next time intervalt’; other-
wise, letn = n + 1, calculate newAg;;(,,+1), and

go to step 1.
In step 10, once the strain increment,;, 1) has

been updated, the consistent tangeMAG;;(,+1))
/(0AEg(n+1)) is computed based on Section 3.2.

4. EXAMPLES

material models without familiarity with the formulation.
The user-defined routine “MDS UMAT” in Fig. 1 follows
the same syntax as the standard UMAT function in
ABAQUS (ABAQUS 6.8 documentation). In this section
and in the Appendix we consider three material models of
microconstituents to demonstrate the implementation of
the formulation. In all examples we consider the fibrous
composite unit cell shown in Fig. 2. The elastic proper-
ties of microconstituents are given in Table 1. Numerical

FIG. 2: Fibrous composite unit cell.

From the user’s perspective, the canonical structure of th@e user can define any shape of unit cell. Here we give an
reduced-order homogenization allows addition of nesxample which is also the most common one.
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TABLE 1: Elastic properties of micro unit cell. [

swop [ Seshemsenzaten, ., | /|
Vol. Frac.=22% Poisson | /o
ratio / / 1‘ \ ;,’/
0.36 / 5
0.36

unit cell

Young's
modulus
1.31E+5 MPa
2.62E+5 MPa

IN)
a
=]

Matrix
Fiber

macro model

)
S
3

™

Stress (MPa)
o 2

results are compared against the direct homogenizatic | / | ‘

for verification purposes. For simplicity, the superscripts ™| / \
denoting partition number are omitted. Constitutive mod |/ | T

els of continuum damage mechanics, plasticity, and vis ™| /
coplasticity are detailed in the Appendix. o/

0.0 05 1.0 15 20 25 30 35 = 40[x1E3]

Strain

=)

S
~

.

4.1 Continuum Damage Mechanics Example

The damage parameters considered in this study are skif. 4. Tension test under damage law (orthogonal to
marized in Table 2. Two tension tests are performed. THiger direction).

first is loading along the fiber direction; the second is

loading orthogonal to the fibers. Figures 3 and 4 depict

the strain/stress responses for the two cases, respectifailre stress than the direct homogenization. To alleviate
For the first case, there is almost no difference betwe®§ pProblem one can either increase the number of parti-
the reduced-order homogenization and direct homog@ns or calibrate the phase partition properties [see Fish
nization. For the second case, the reduced-order homajed Yuan (2008), Oskay and Fish (2007), and Yuan and
nization with one partition per phase gives rise to highktsh (2009) for details].

TABLE 2: Damage parameters for the fiber and matr

phases.
S (MPa) G (MJ/m?3) c
Matrix 300 0.1 0
Fiber 600 0.2 0
350
[ ---direct homogenization | F
——reduced order (f"partion per phase)|  / |
300
— unit cell
@ 250 =
o |
= S
\;200 &
3 macro model
5 150
n f
100
50 |
ol/ T P s
0.0 05 1.0 15 2.0 25 30 35 40[x.1E-3]
Strain

FIG. 3: Tension test under damage law (along fiber di:

rection).
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&2 Plasticity Example

We use the same tension tests as in the previous example.
Plasticity parameters for the matrix phase are given in Ta-
ble 3. Simulation results are shown in Figs. 5 and 6. It can
be seen that as in the previous example, in the orthogonal
to the fibers loading case the results are less accurate.

4.3 Viscoplasticity Example

In this example we consider the viscoplasticity law based
on the overstress (VBO) (Tachibana and Krempl, 1995,
1997, 1998). The VBO parameters for the fiber and ma-
trix phases are listed in Table 4. Creep simulation is per-
formed with a constant stress loa20( MPa) applied

in the orthogonal fiber direction. Figure 7 compares the
reduced-order homogenization against the direct homog-
enization. Thex-axis is the elapsed time and theaxis
denotes the strain evolution in the loading direction.

TABLE 3: Plasticity parameters for the matrix phase.

oy (MPa)
Matrix 50

I (MPa) 0
1000 1.0
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1.0[x.1E-3]

— direct homogenization e ”)ﬁ:f’y
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e a5 rny
& F'V“PW.EJ "w;’y’:
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= # -
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n,,:.a»""“ e
se”"”w
40070 02 04 06 0.8
Strain
FIG. 5: Tension test under plasticity law (along fiber direction).
80
----- direct homogenization
—reduced order (1 partition per phase)
60 | ’_“‘mf"" 2

Stress (MPa)

o

1.0[x.1E-3]

/’ macro model
-20 p .
[™a
,—*"“-“r - \
0.0 0.2 0.4 . 0.6 0.8
Strain

FIG. 6: Tension test under plasticity law (orthogonal to fiber direction)

Wu et al.

TABLE 4: VBO parameters for the fiber—matrix phases.
P (MPa) k1 ko (MPa) | ks | Ay (MPa) A A; (MPa) | R (1/s)
Matrix | 32750.0 | 0.305 26.0 5.0 28.0 213.0 1.0 1.97E-5
Fiber | 65500.0 | 0.610 52.0 10.0 56.0 1260.0 2.0 1.97E-5
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FIG. 7: Creep simulation under VBO law (orthogonal to fiber direction).
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APPENDIX k k{f &
I
I
I

A. CONTINUUM DAMAGE

|-
We consider a piecewise isotropic damage law for both ﬁ
phases. Letv be the damage parameter. The inelastic L
strain (or eigenstrain}i” is given by we;;, wheree;; !
is the total strain. Consider the + 1)*" iteration. Fol-

lowing Fig. 1, givenAeg;;(,41), we need to calculate
the stress incremenho;;(,,+1) and consistent tangent
(0AG;(nt1))/(0Ak(n11)) fOr each micro phase. From
the stress definition, we have max (\/[[SI - [E(T)], T < t) where &; are the

principal componentg] is defined as follows:

FIG. 8: Damage parameter evolution.

ACijn+1) = Lijr (A‘Ekl(nJrl) - AEZ?’(n+1))

z, if >0
= Lijm (Aﬁkzmﬂ)*w(n+1)€k1(n+1) (A.1) =] = { cx, otherwise (A-5)
chU(n)ekl(n)) wherec is a material parameter.

Derivation of (0w ;,,+1))/(0A¢g;;n+1)) In EQ. (A2)

and the consistent tangent is given by follows from the chain rule

aAO—ij(n-‘rl) — L1 —L:: 8(u)(n-l-l)smn('n,—i-l)) aw(n+1) aw(n+1) 0 H H(nJrl
OAELi(nt1) R S OAER(nt1) = eq
I I I A2) Oeiji, 1y Ollellngr) 0 [[51@“)]] (A.6)
- g(]i)l ~ R T R e . 9 I:I:él(nJrl):I:I i1y Okliiny .
D) BB e ey
OAELI(n+1) Tt M Hnt)
The last term in (A2) depends on the evolution of dama&' ere 5 bk
parametetv. Here we adopt a linear stress/strain relation weq = ; f (A.7)
as shown in Fig. 8. A |lell (el ™)™ (k — ki)
In Fig. 8, S is the critical stress at the end of the elas-
tic process and is the area under the stress/strain curve a|e|ld Mer .y ]]
. . . (n+1) (n+1) A.8
or the strain energy density. The evolution of the damage ) [[81 ]] €] (A.8)
parameter is defined as () (n+1)
0, Ile]| < K, Ofed _ f 814y if >0 (A9)
i ea_y, 0¢y cdry, otherwise )
w= wma);qf ||€|| - i, ki < ||E||eq§k'f (A3)
[el™ kg — ki o Oy A ) A 1
W el > ks e = [8 (E) 2D
€ij(nt1)
S 2G o6 . 2 0l .
ki=—, kif=— A4 X | =— (&, - €1, A.10
Ea f S ( ) [aﬂij(nﬂ) ( It H)) aeij(n+1) ( g H)) ( )
where E, is the elastic modulus in the loading direc- 0l
tion. The equivalent strain is defined gs(¢)|! = Oeijin)
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In Eq. (A10),14, 15, I3 are the three invariants given by 2. Check yield condition

I; = trace (Sij) = &1+ &+ &3 2
ftrial — trzal _ K ((X )
I = £ [(trace (e:;))? — trace (eue .)} k1) = [Pas(ntn) 3o
T2 K kSR (A11) 4
= 8189 + 8283 + 8384 If £y < 0, thense(:) .,y = (-)f;ﬁ‘:ll) and exit.
I3 = det (81']') = £18983 rial
i L — _Sij(n+1)
and their derivatives with respecttg;  ,, are 3. Compute the unit vector;.1) = Nletziat ST
on 5. 4. Use Newton method to solve fdxy from
Ocijiysy,
oI — trial trial
Y2 1,8;; — €ijnin) (A.12) 9(Ay) = \[K n+1) z](n+1)H
O€ijiny
ol3 —{2uAy + 2 {H (oct”“l ) H (o )} =0
Der €ik(pi1) ERi(nrr) ~ L1805 () 1204 3 (n+1) (n)
1) (n+1)

Since(9¢;j(n+1))/(0Aki(n+1)) = Lijr, the derivation wherea(7') = a(n) +/2/3Ay.
of (0AG;j(n+1))/(OAE(n+1)) fOllows from Eq. (A2).
5. Update the equivalent plastic straig, ;) =

B. PLASTICITY -

In this example we adopt the classical isotropic/kinematid. Update the back stress, plastic strain and stress.
hardening plasticity law for matrix phase with fibers be-

ing elastic. Consider theg:+1)" iteration. The stress in- 2

- i Bijont1) = Bijom + /3 [H ((n+1))
crement is given byAo;ji41) = Lijkl(Askl(nH)—
A, +1)) whereAej, . ) is the plastic strain incre- — H () }nij(”ﬂ)

ment. The radial return algorithm is typically employed
to ensure consistency.

Let « be the equivalent plastic strain that represents
isotropic hardening of the von Mises yield surfagg; )
the back stresss;; the relative elastic stress, anity 7. Compute the consistent tangent
the consistency parameter. For simplicity, we assume OAG
. L h . . . Oijienin
isotropic/kinematic hardening with a constant hardening —ntl)
modulusH . We denoteX («) = oy +0H o as an isotropic ODEkL( 1)
ha_rdening ancH_(cx) = (_1 —-0) Ho_c as a kinematic hard- ONY (n11) Mijir )
ening. For pure isotropic hardenifg= 1; for pure kine- X nmnmm +AY (n41) W :
matic hardenin@ = 0. The stress update procedure and (D (nt D)
consistent tangent are summarized in the box below.

Efj(nJrl) = £;7inj(n) + AYn?J(n+1)
A1) = Lijkt (Aeki(nr1) = AYki(ni1))

= Liji — 2u

: . . o where
Algorithm 2 Radial return algorithm for plasticity
e oo . ; 1
with isotropic/kinematic hardening DAY (1) s Kén+1)+HEn+1) y
1. Compute trial elastic stress. ODeri, ) 3p oy
Cij(n+1) = Eij(n+1) ~ 30uiCkk(n+1) Mijnyny _ 2p
8A£k1( 41 a trial H
. n (e
rial ij(n+1)
stitatin =20 (et — i) L
tria ria X Iz _762”6 — Ty
glfj(nlﬂ) = s;j(nlﬂ) Bijn) ( dkl = 304 Okl nj(n+1)nkl(n+1)>
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C. VISCOPLASTICITY With the introduction of overstress, the inelastic strain

. : . .. rateis given as
As in the previous two models the basic assumption is that 9

the rate of total strain can be additively decomposed into . 3
elastic and inelastic parts, which gives Ny = \/gﬁ“‘nij (C.12)
g.o= gel 4 gin -
Sij = Eij T Eij €1 wheren*" is the equivalent inelastic strain rate defined as
The corresponding deviatoric expression is given as
N = L (C.13)
fij = 05 + 1 (C.2) Ek(T)
where where ' is Young’s modulus;k is positive and a de-
e 164 : (C.3) creasing function of the equivalent overstré€sand acts
Mij = Eij = 304 Chk "/ as a repository for nonlinear viscous behavior. A recom-

The inelastic part of strain is assumed to be volume pfaended form is given as
serving; thus, the inelastic strain rate is deviatoric

T\ s
cin ain k=k 1+ — C.14
Nij = &5 (C.4) ! ( + kg) ( )

The rate form of the stress—strain relation is given as wherek;, k», andks are model parameters.
. ol . cin With the definition of the inelastic strain rate, the rate
0ij = Lijri€y = Lijh (5kl - 5kl) (C.5) form of stress—strain relation can be rewritten as

The material is assumed to be isotropic . . <5
P &ij = Lijrién — Voun™ny; (C.15)

gt = Nijdki + Mdikdjt + HOud ik €8 he corresponding deviatoric expression is given as

The corresponding deviatoric expression is given as

4 $ij = 2um; — V6un"n; (C.16)
$ij = 2M5; = 2 (A7) (.7
here C.2 Evolution of Equilibrium Stress
w
$ij = Gij — léijdkk (c.8) The high-homologous temperature VBO model has the
-3 equilibrium stress evolution equation expressed in rate the
form as

C.1 Overstress and Evolution of Inelastic Strain

: ) oij L'y
In order to evaluate the evolution of the inelastic strain, ¢;; = % 85 + f - E% — Rl\gijll 955 (C.17)

the concept of overstress is introduced. The overstress

deviator is given as wherey andR are model constants, antis the isotropic
stress introduced to model the cyclic hardening or soften-
Oij = Sij ~ Yij (C.9) ing behavior. The evolution form is given as
where g;; is defined as the equilibrium stress deviator.
The scalar invariant of the overstress deviator (or equiva-
lent overstress) is defined as

A=A (47— )7 (.18)

with the initial condition

3
I'= 501‘]‘01']' (ClO) A (t = 0) = A() (Clg)
and the normalized tensor of overstress deviator is giviRe®4e, Ay, andA, are model parameters.
as Now, with the explanation of all parameters, the VBO
3 04 model for high homologous temperature has been intro-
Ngj = 5T (C.11) duced.
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C.3 Integration Scheme of the VBO Model where

The problem of stress update can be stated as follows; Am+1)
given the vqlue of atthe timg,,) and. the strain increment ' Alni) +¢Aﬁz(‘2+1) +A(n+1)AtR|gij(n)‘
Ag;j(n+1), find the value of at the timg,, ;1.

Using the backward Euler integration scheme, the W 9
stress update is given as Cy=Ci— An(nH) —V6u+ \/gE (C.31)

Oij(n+1) = Oij(n) T Al0ij(nt1) (C.20)

(C.30)

trial

PAUNTE
Gijin+1) = Gijtn) T~ ANij(n+1) (C.32)
Referring to Egs. (C15) and (C16), the stress and stress
deviator at timé,, 1) can be expressed as '”Cf’0u<n+1> = Sij(n+1) — Gij(n+1) AN Sijni1) =
. ) Sf;zqul) \fHAﬂ(nH)mJ(nH we have
Oij(nt1) = o—fjrzgzl-&-l) - \/6PLAﬁ22+1)nij(n+1) (C21)

2 )
ria —in 70 n+1 +C3 Nij(n+1 :Sfr‘,lal 7019:5”04 (C33)
Sij(n-‘,—l) = S;j(nl—&-l) — \/éuAn(7L+1)nij(n+1) (CZZ) (\/; (n+1) ) j(n+1) ij(n+1) ij(n+1)

where where
e Cy = VouAn(: ) + C C.34
ot 1) = Oijn) + LijriDerint1) (C.23) 5 = VOuAR(: ) + Cs (C.34)
Take the inner product for both sides of Eq. (C33), we
SZ"ZZZH) Sij(n) T 2HANj(nt1) (C.24) have
Aﬁ:ﬁ_l = Atnzz""l) (C25) . 2 ’ trial
Th ilibri H : . F(F(n-‘rl)) = gl—‘(m_l)—&—Cg, — Sij(n+1)
e equilibrium stress at time, ;1) is given as ©.35)

trial trial trial
- Clgij(nJrl)) (Sij(n+l)_clgij("+1)) =0

— VORATG 1y nij sy + AtO:("“) (C.26) Lin+1) can be found by solving a nonlinear Eq. (C35)
(n+1) using the Newton method. A consistent tangent for the
Newton method is

"
Jij(n+1) = Jij(n) + o {QHAnij(n+1)

in Jij(n
EAR N(n+1) Aj(( H)] _AtR’gij(n)‘gij(nJrl)

OFT (n11) \F \F 9Cs
— " —9ol /2T, Z
where 8F(n+1) 3 +1+03 3+8F(n+1)

) (C.36)

Am) +4 AfAﬁmH) trial trial 901 rial
Agnsr) = c27)  +2(siji — Qo ATy, St
(n+1) 1+ A, AT] o ( ) ( J(n+1) 1545( +1)) ar( J(n+1)
; . OAR"
RecalllngOij(n+1) = \/%F(n+1)nij(n+1), Eq (C26) 603 :\/6u n("+1) + 802 (C37)
can be rearranged as O (1) o) T (1)
A*in
v 0%y _ AL (o Ok (cag
9ij(n+1) <1+A( +1) AT] 71+1)+AtR|gZJ(n) D ar(n+1) Ek2 (n+1) aF(Tl-‘rl) ( ' )
2Pu —kg—1
= <gij(n)+ AT]U(n+1)) < Ve (C.28) Ok _ _liks (1 + F(n+1)> (C.39)
| NP ko ko
2 )
+ [E) AR ANt oC Vv 2
3 (n+1)"*ij(n+1) 2 _ |- -
oy — B\ VOR3P
Define in (C.40)
801 ﬁzn 4 8An(”+1) C
ria n or, ... b
Gij(n+1) = Clgfj(nl_;,_l) + CQnij(n+1) (C29) 8F(n+1 (n+1) 8F(n+1)
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801 aA(n-‘rl
Or (n+1) 8F n+1) [(1+AtR|gU(n)|)A(n+l)
+ ¢Aﬁ22+1>} — Agnyr) [ (1+AtR [gij(n)|)
‘ Ly (C.41)
X A(n+1)+¢AﬁzZ+1)} [ (1+ AR |g55(m)|)
A 3Aﬁm<”“>]
O (1) OC (n41)
aA(n+1) _ (Af — A(”)) Ac aAﬁzZ'H) (C.42)
8F(n+1) 81_‘(n+1)

(1+ a8 +1>)

A summary of the implicit back-Euler method for the

VBO integration scheme is given in the Algorithm 3.
Algorithm 3 Implicit integration scheme for VBO

1. Databaseu;;(n), gij(n)r An)-
2. Giventhe strain field, ;1) = €ij(n) +A&ij(n+1)-

3. Compute the trial stress.

trial

0ij(nt+1) = Oij(n) T LijriAeginir)
trial _ trial . ~trial
Sij(n+1) = Yij(nt1) — §5w Okk(n+1)

4. Solve for the nonlinear functiof (T'(,,; 1)) = 0 for
I'(;,+1) using the Newton method.

5. ComputeAﬁ%::H) andnj(,41).-

F(n+1)
Ek (F n+1))

(Sf§fi+1> Clgw(nﬂ))

(\/ﬁl“(nﬂ) + Cg)

6. Update the stress and all the internal variables.

ﬁfﬁﬂ) = At

Nij(n41) =

Oij(n+1) = zJ(n+1) \[HAn(n_t,_Unz](n-i-l)
Gij(n+1) = Clgij(nJrl) + Cangj(nt1)

A(n) + ACAfAﬁzZ+1)
A(n+1) -

1+ AcANG

C.4 Formulas for Ao;j(,+1) and Consistent

OATj(n+1)
Tangent YT

RecallGij(n+1) =0

= VBRANG )7 (1), WE
have

trial
ij(n+1)

rial
AG;j(nt1) = Oij(n+1) — Oij(n) = Z(n+1) (C.43)

— VORAN ()T (n41) — Oijm)

Wu et al.

The consistent tangent is given by

trial
ij(n+1)

OAOj(nt1) _ 0 (
OAei(nt1)  OAER(ng1)

%‘(n))

(Aﬁéz+1)nij(n+1))

— VOUAAR 1) nijnt) —

=1,
e \[HaAEM(nH)

OA )
5A€kz(n+1)

-

Mij(n41)

= Lijis = ‘/6”< (C.44)
anz](7)+1)

AR’ Y O —
an nH 3A€kl(n+1

Ol (n41)
3A€kl(n+1)

where

trial 801
gz] (n+1) aF (n+1)

(FF(nH) + 03)

Mijintr) _
Ol (n41)

(C.45)

803 trial trial

(VBT () + Cs)’

Equation (C44) has a single unknow(dI'(, 1))/
(0Aepin+1)) (the other terms have already been calcu-
lated in the process of solving foY,, ;1) described in the
previous section). Differentiating’ (F(n+1)) = 0 gives

oF OF
dFF = ——dl'(, 4+ ——
O (n41) (n+1) OAEj(nt1) (C.46)
X dAEzJ(n-i—l) =0
From Eg. (C35) it follows that
OF tria trial
OAEj(nt1) =2 (S”("“) Clg”(”*l))
trial trial (C47)
% aSzg(n-‘,—l) — O 8 Zj(n+1)
aAEkl(nH) 8A5kl (n+1)
where
trial
Osiien) _o  OAMy ) Deijue) (C.48)
0A €kl(n+1) aAskl(n-‘rl) aAfikl(n-i-l)
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rial
995 (1) _ 2yp JAny

OAegini1y B ODeg(ny1

_ 2hp D€ij(ny
E 0Aep(ny1)

Oeijinrn) = lijr — 15”5’”
OAERI(ny1) K 37

Volume 8, Number 6, 2010

Since(9F) /(I (,41)) has been already computed, from
Eq. (C36) we have

(C.49)
M) _ ( oF )_1 oF  (cs
aAEij(n—O—l) aF(n+1) 8A£ij(n+1)

(C.50) And finally, (0AG;;(n+1))/(0AER(n+1)) follows from
' Eq. (C44).
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Image fusion is used to integrate multiple images into a composite image which contains complementary information
from each of the source images. In defense applications, fusion is widely employed to obtain images pertaining to the
object under surveillance and also for mapping terrain for navigation purposes. Although there are a many fusion
algorithms reported in the literature, the need is for a computationally efficient fusion rule that can be implemented
easily in hardware. Driven by this motivation we have formulated a discrete wavelet transform—based fusion technique
that uses the energy of the wavelet coefficients to determine the fusion weights for the approximate image and choose
maximum intensity rule for the detail image. Surveillance imaging generally uses two imaging sources, one an infrared
camera and the other a conventional digital camera, and the images are usually captured under low lighting and night-
time conditions. We used the structural similarity index, mutual information, and standard deviation as metrics to
evaluate the performance of our fusion scheme with existing algorithms. Our experiments have shown that the algorithm
developed produces good results under the constraints imposed by this application.

KEY WORDS: image fusion, surveillance and navigation, discrete wavelet transform, energy of wavelet
coefficients, structural similarity index, mutual information

1. INTRODUCTION image that has visible details as perceived by the human
visual system. Hence, the need arises for a data fusion
Image fusion finds widespread application in night-tintechnique that can combine the information from each of
surveillance and navigation systems used by the militatfyese images to produce a composite output image that
These require the ability to detect targets and obstructia@ be processed for further analysis.
under low-light conditions. Night vision images are usu- The pixel level image fusion algorithms reported in
ally obtained by means of conventional charge-coupléte literature are broadly classified as statistical fusion
device (CCD) cameras which produce a low-intensity isechemes and multiresolution analysis-based fusion. Das
age, or forward-looking infrared (FLIR) cameras whichnd Krebs (2000) proposed a principal component anal-
give an infrared image. However, both these camerasydiis (PCA)-based fusion scheme for navigation and
not capture all available information due to the charasurveillance. Apart from this, experimental tests have
teristics of the sensors employed. While the FLIR carbeen carried out for various fusion algorithms using night-
era responds to variations in heat, they cannot capturetinge images and the results have been reported in Chen
variations in intensity. The CCD cameras, on the othand Blum (2005) and Canga et al. (2005). The PCA-based
hand, respond to the illumination of the scene and give fusion rule (Das et al., 2000) is efficient in terms of the
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output fused image quality; however, implementing it it Source Source
real time is more involved. This arises due to the matri Image-1 Image-2
multiplication operations involved in the computation o
the principal components. As the size of the input imag bWT V I DWT
increases, the matrix dimensions increase, making co | }
effective implementation not feasible. According to ou
literature survey, there have not been many publicatiol
reported in this area. This has been a motivation for ol /’Va\’e'Et Co efficient Map
research, to present a new and efficient algorithm. FuSion Bl
In this paper we present a multiresolution-based fi Decision map rules
sion scheme using the discrete wavelet transform (DW1
This algorithm proposes a weighted fusion scheme fortl  1owTt
approximation sub-images, where the weights are calc
lated based on the energy of the DWT coefficients. Tt
detail sub-images are fused using the rule of choosing t 1
maximum intensity pixels. The paper is organized as fo Fused
lows: Section 2 details the image fusion methodology u._ Image
ing wavelet transform and the proposed fusion scheme is
described. In Section 3, the various quality metrics de- F|G. 1: Elow of DWT-based data fusion method.
ployed to evaluate the performance of the fusion scheme
are outlined. Section 4 gives the results obtained and com-
pares the performance with existing fusion techniques. Actually the fusion rules adopted in images select
maximum or minimum for detail images. Averaging the
2 DISCRETE WAVELET TRANSFORM-BASED approx_imation of images results ina _prob!em in that th<=T
FUSION fused images are inconsistent. Detailed images contain
important information such as image edges, lines, and
The multiresolution image fusion algorithms used widehegion boundaries. The approximation image represents
follow two stages: First, they decompose the input inthe low-frequency component of the image. Hence, while
age into multiple resolution levels using different deconeombining these images, the useful low-frequency com-
position methods. Then they combine the decompositiponent information must be transferred from the sources
images of specific levels using fusion rules to obtain the the fused output image. To better meet the need of hu-
fused output. The pyramid decomposition and waveletsn visual systems, fusion rules of detail images usually
are the commonly used multiresolution image decompaequire salient information and sharper contrast that is
sition schemes. The pyramidal decomposition has beesier for observation. The fusing of detail information
implemented using various algorithms such as Toet's requires preserving the edges in the source images and
tio pyramid (1989), the contrast pyramid—based fusi@voiding the introduction of artifacts in the fused image
of Toet et al. (1989), the generalized Laplacian pyramitlie to the high-frequency components.
(GLP) method put forward by Kim et al. (1993), and Numerous fusion rules have been published in the lit-
Burt's Gaussian pyramid (GP) and the enhanced Lapéaature, and most of these techniques used a weighting
cian pyramid (ELP) (1984). However, in these methodsheme to combine the coefficients. Our fusion scheme
the computations involved increase rapidly with an imrses the energy of the wavelet coefficients to determine
crease in the decomposition levels, and hence a tradeh# fusion weights.
is sought between the accuracy and the computation in
applications. . : .
The DWT-based fusion techniques involve the initia%'1 2?2]/;5:?@/ Based Weighted Fusion
multiresolution decomposition of the input images, com-
bining the coefficients of the corresponding levels usifidhis algorithm proposes a weighted fusion scheme for the
fusion rules and finally, synthesizing the fused image uspproximation sub-images, where the weights are calcu-
ing inverse discrete wavelet transform (IDWT). The floated based on the energy of the DWT coefficients. The
of a DWT-based fusion scheme is illustrated in Fig. 1. detail sub-images are fused using the rule of choosing
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the maximum intensity pixels. This effectively makes use Wy = Eaz (6)

of the energy of the source images upon knowing the Es

weights of the corresponding source images at the fusgiderew; andws lie in the range 0 to 1.

output image. From experimentation it has been determined that us-

Here we assume the images to be designatediaid ing the normalization valuk, for finding out the weights
i, corresponding to the inputs from the CCD camera aig andw, gives better results than using the energy of the
the IR camera. The approximation sub-images afg Asource images directly. One of the weighting factors is al-
and A;, and the detail components arg;fHand H, (hor- most equal to one and the other is less than one but not
izontal details), Vis and Vi, (vertical details), and Rs  zero. The result of fusing the approximation components
and D, (diagonal details). All the individual detail com-using the energy-based weighted fusion scheme is shown
ponents can be represented by [Rednd Def, in general. in Fig. 3.

The image of a road has been considered for illustrat-
ing the fusion scheme. Both the IR camera and the CGD} 5 petail Sub-Image Fusion Rule

camera source images are decomposed using the DWT _ -
for a single decomposition level, as shown in Fig. 2. The detail components of the DWT decomposition are

combined using the method of obtaining the fused out-
put by selecting the maximum intensity pixels from each
of the detail sub-image. This method ensures that the
The basic fusion rule for the low-frequency approximarigh-frequency edge details that are present in each of the
tion is the weighted image fusion given by sub-images are appropriately retained in the fused image.
Mathematically, the decision map for this is given by

2.1.1 Approximation Sub-Image Fusion Rule

ApPfuse = (W1 X Ayis) + (W2 X Ayp) (1)
- - |Dety, (1, )]
wherew; andwy are the normalized weights computed it |Deti(i,j)| > |Det.. (i,)]
from the energy of the approximation coefficients, andDetfuse(L )= vis 7)
Appruse is the fused approximation image. Det,._ (i, )|
The weights have been computed from the energy so if  |Deti(i, )| < |Detyis(i,j)]

that the image which has the highest energy has more
weight at the fused output image. This implies that thehere, i=1,2,3,...5j=1, 2, 3,...§Six S]is the
fused output image receives more information from tigémension of the detail sub-image, and Rg(j, j) is the
source image, which has higher energy, and much lessflssed detail image. As per our fusion rule, the detailed
formation is taken from a low-energy content source inmaximum of image coefficients is calculated either from
age. an IR image or CCD image, so the resultant pixel value
The energies of the approximation imageg; Bnd of detailed image is also only 8 bit. The resultant fused
E.., are calculated using the general expression for efgtail image is shown in Fig. 4.
ergy The final fused image is then obtained by taking the
E. = Z (An(i,j)? (2) inverse discrete transform using the fused detail and ap-
proximation sub-images. The resultant image as shown
in Fig. 5 shows that information from both the sources is

ij

Ear =Y (Auis(i,j))? (3) present in the output and the image also has an apprecia-
i,j bly good subjective quality.
The normalization factdE; is then calculated as the max-
imum energy value of the two images. 3. FUSION PERFORMANCE METRIC

The multisensor image fusion methods outlined in this

E; = Max Z(Air(i,j))2,z (Avis(i,)) (4) paper are directed toward applications in the areas of
i,j 1,j surveillance and navigation. In these applications, due

to the real-time nature of the scene being imaged, there
are no ground truth data available and so evaluating the
E.1 performance of such fusion schemes requires the use of

W1 = E; () nonreference-quality metrics. We have used the following

Then the weights wand w; are given by
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CCD Camera Dcta.s'l
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(@)

Approximation sub
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Detail sub image

IR Source image

(b)
FIG. 2: DWT decomposition ofa) CCD and(b) IR image.
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Energy Based
image Fusion

FIG. 3: Weighted fusion of approximation sub-images based on energy.

CCD image Dretail Sub image

Ir unage Detarl sub image
FIG. 4: Result of fusing detail components using choo$dG. 5: Result of fusing using the energy-based fusion
maximum rule. algorithm.

four metrics to compute the efficiency of our algorithmit is quite capable of measuring image quality. Entropy
entropy, mutual information (Ml), SSIM-based measuraeasures the amount of information and is a useful met-
(SI), and standard deviation (SD). Structure, intensity, arid to compare source and fused images in a noise-free
contrast detail gives the better view for human percepti@nvironment. SD measures the contrast detail. The eval-
The SSIM index produces the index value based on struetion of image quality by subjective testing gives addi-
ture similarity of images, intensity, and contrast detail, $mnal support to the above metrics.
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3.1 Mutual Information (MI) 3.3 Standard Deviation (SD)

Mutual information has been employed as a means kdr a fused image of size M M, the standard deviation
assessing image fusion quality. This metric is utilized given by

to determine the amount of information transferred from

source images to fused images. It is calculated by defin- <0 \l 1 XM (

ing the joint histogram of the source imagg | 15, and the NM Tuse(1,j) — mpuse)?  (13)
fused imaged.s. as p(fuse, ir) and p(fuse, vis). The mu-
tual information between the source image and the fusvt\alﬁer

image is given by Qu et al. (2002) as

i=1 j=1

€ huseli, J) is the (i,j)th pixel intensity value and
Meuse IS the sample mean of all pixel values of the fused

Mi; (fuse, ir) = — Zp(fuse7ir) image. The SD valu_e.gives the contrast of the image; a
fuse ®) higher SD value signifies a better contrast in the gray lev-

x log, { p( use’“"). } els of the image. The SD is composed of the signal part
[p(fuse) « p(ir)] and the noise part, and this measurement is more efficient

) ) ) in the absence of noise (Chen and Blum, 2005).
Mis (fuse, vis) = — Z p(fuse, vis)

p(fuse, vis) } ) 4. EXPERIMENTAL RESULTS

x log, {
[p(fuse) . p(vis)] . . - ;

. . L The experimental results were obtained using various sets
where p(fuse, |.r) and p(fuse, vis) are the Jo!nt h'StograrH?images and the results using the proposed new method
of the source imageyt, I and the fused imaga, .. compared with existing fusion schemes. Three sets of im-
Image fusion perfqrmgnce IS me_asured by size, wh &es were selected: the road image and the boat image
a larger measure |_mpI|e_s better 'mage quality. The fHérresponding to night-time navigation application, and
sion al_gorlth_m efficiency is determined by the metric Mtlne house on hill image corresponds to a surveillance ap-
which is defined by plication. These images were obtained from Image Fusion

MI = Mi (fuse, ir) + Mis (fuse, vis) (10) (www.imagefusion.org). The Laplacian pyramid scheme

for image fusion (Zhang and Blum, 1999; Burt and Adel-

3.2 Structural Similarity Index-Based Measure son, 1983) and the DW_T weighted fusion using the princi-
) pgl components as welghts (Zheng et al., 2007) were con-
sidered for a comparative study of the new energy-based

The SSIM index proposed by Wang et al. (2004) is us®WT fusion scheme.

as an objective image quality metric to indicate the simi- The fusion outputs for the different images are shown
larity of the structure information present in the two imin Figs. 6—8. Different parameters such as Entropy, SSIM,
ages being compared. The SSIM of two images x and yitual information and Standard deviation have been

defined as compared and listed out in Table 1. The SSIM values
9m, C1)(20,0 + C show that the new energybased rule performs as well as
SSIM(x,y) = (2mymy + C1)(20x +Cs) (11) the Laplacian pyramid and outperforms the DWT PCA

2 2 2 2
(m3 +mg + C1)(ox + 0F + C2) fusion scheme, though the Laplacian fusion shows a

where, m is the mean intensity of image &, is the stan- higher SSIM value. Ml is lower in all three images. Ml
dard deviation of image x used as an estimate of imagPresents the amount of information transformed from
contrast, and Cand G are constants. However, the SSINgource to fused image. We have considered the highest Ml
is a full-reference approach and requires the need foasithe bestvalue when SSIMis only slightly low. From the
complete reference image for its calculation. This impet®bulated results, SD is higher in our proposed scheme as
iment is overcome by separately calculating the amountasfmpared to the Laplacian pyramid, which gives the high-
structural information transferred from each of the souréét SSIM. Though the SD computed is higher for DWT
images to the fused image, SSIM(fuse, ir) and SSIM(fudeCA, the corresponding SSIM is the least of all three
vis). Then the SSIM index for the fused image is calctiRethods. From a complexity point of view, the wavelet-
lated by (Maruthi and Suresh, 2007) based reduction method yields the order of O(MN), where
N is the number of bands and M is the number of pixels in
SI = SSIM(fuse, ir) + SSIM(fuse, vis) ~ (12) the spatial domain. On the other hand, the total estimated
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FIG. 6: Results of MRA-based fusion algorithms for “boat” imada) CCD camera source imag@) IR camera
source image(c) DWT PCA max fused imagéd) DWT energy-fused image, arfd) Laplacian fused image.

(b)

(d)

FIG. 7: Results of MRA-based fusion algorithms for “road” imaga) CCD camera source imagé) IR camera
source image(c) DWT PCA max fused imagéd) DWT energy-fused image, arfd) Laplacian fused image.
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(d)

FIG. 8: Results of MRA-based fusion algorithms for “house on hill” ima@®:CCD camera source imagg) IR
camera source image) DWT PCA max fused imagéd) DWT energy-fused image, arfd) Laplacian fused image.

TABLE 1: Comparison of fusion quality metrics.

Image Fusion scheme En SSIM Ml SD
DWT energy 7.1679| 0.5636 | 3.8379| 78.1263
Boat DWT PCAmax | 7.0557| 0.2275| 4.2786| 316.506

Laplacian pyramid| 6.6104| 0.6816 | 3.2648 | 45.4758

DWT energy 6.9639| 0.5635| 2.5039| 86.1933
Road DWT PCAmax | 7.0566| 0.2678| 2.7189| 200.599
Laplacian pyramid| 6.9988| 0.7046 | 2.1312 | 54.2838

DWT energy 6.7851| 0.5527 | 1.5555| 44.1744
House on hill] DWT PCAmax | 6.9453| 0.1836| 2.2319| 129.664
Laplacian pyramid| 6.1980| 0.7164| 1.3372| 30.4117

complexity of PCA isO((MN)2 + N?), which shows that 5. CONCLUSION
the computation efficiency of a wavelet reduction tech-
nique is superior to the efficiency of the PCA method. In this paper, we present a new energy-based fusion algo-
Subjective test ranking was carried out with 20 humaithm that uses the DWT for multiresolution decomposi-
visual perception, and as seen in the tabulated results,ttbe of source images. The approximation sub-image uses
DWT energy-based scheme gives the best result. A vistted energy of wavelet coefficients as weights for fusion,
inspection shows that images fused using the Laplaceamd the detail images are fused by choosing the maximum
algorithm have a lower contrast compared to the other timensity pixels from either of the source images. The
methods. A visual perception assessed by subjective taestuctural similarity and Ml analytical measure are used
ing also indicates that the energy fusion scheme perforassthe parameters to evaluate fusion rule performance. Vi-
better than other methods. Also, it can be inferred thatal perception also assessed by subjective testing also in-
the SSIM index is also used as a quality metric for nodicates that the energy fusion scheme performs better than
reference images that reflect the fused image qualityatker methods. The results are very impressive for night
perceived by the human visual system. vision applications such as surveillance and navigation,
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