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TOWARD A NONINTRUSIVE STOCHASTIC
MULTISCALE DESIGN SYSTEM FOR COMPOSITE
MATERIALS

Wei Wu∗ & Jacob Fish

Multiscale Science and Engineering Center, Rensselaer Polytechnic Institute, Troy, New York
12180

∗Address all correspondence to Wei Wu E-mail: wuw3@rpi.edu

In this paper we study a nonintrusive stochastic collocation method in combination with a reduced-order homogeniza-
tion method for solving partial differential equations with oscillatory random coefficients. The method consists of the
two-scale homogenization in space, eigendeformation-based model reduction, Galerkin approximation of the reduced-
order problem in space, and collocation approximation based on a sparse grid in the probability space that naturally
leads to a nonintrusive approach. By this approach the solution of the original stochastic partial differential equations
is constructed from a set of decoupled deterministic solutions from which statistical information is obtained. Prelimi-
nary numerical experiments are conducted to determine the feasibility of the method for solving two-scale problems in
heterogeneous media.

KEY WORDS: multiscale, homogenization, nonintrusive, stochastic

1. INTRODUCTION

It is well known that information across scales contains a
certain level of uncertainty due to incomplete knowledge
of input parameters and physical laws (assuming that the
error of numerical solutions of the deterministic problem
is negligible). However, incorporation of stochastic pro-
cesses into multiscale modeling with accurate assessment
of uncertainty propagation across scales is highly chal-
lenging. Moreover, despite growing computer power, en-
gineering designs that resolve fine-scale details and ac-
count for uncertainty in the input data such as constitutive
equations, forcing terms, boundary conditions, and geom-
etry at multiple scales are very rare. When both multiscale
and stochastic phenomena are taken into account, cross-
cutting multiscale stochastic modeling forms an emerg-
ing research frontier, as evidenced by numerous papers,
books, new journals, workshops, and funding opportu-
nities. Anecdotally, we counted over one million hits of
“stochastic multiscale” on the Google search engine. We
refer to few selected references for a comprehensive re-
view of the subject matter (Shi and Ghanem, 2006; Gana-

pathysubramanian and Zabaras, 2008; Cao et al., 2005;
Xu, 2007; DeVolder et al., 2002).

The primary objective of the present manuscript is
not to develop a new multiscale or stochastic approach,
but rather to explore the feasibility of applying the best
combination to practical problems of interest. Our choice
of the “best of two worlds” is affected by the ability
to integrate existing stochastic and multiscale capabili-
ties. For the multiscale simulation engine we select an
eigendeformation-based, reduced-order homogenization
method (Fish and Yuan, 2009; Oskay and Fish, 2007;
Yuan and Fish, 2009) due to its computational efficiency
stemming from a unit cell solution constructed in terms
of eigendeformation modes thata priori satisfy equilib-
rium equations at the fine scale, and therefore eliminate
the need for costly solution of discretized nonlinear equi-
librium. For uncertainty quantification, we choose a non-
intrusive approach based on stochastic collocation origi-
nally proposed by Mathelin and Hussaini (2003), which
when combined with the sparse grid approach (Gerstner
and Griebel, 1998; Klimke, 2005) has been shown (Gana-
pathysubramanian and Zabaras, 2007), outperforms other

1543–1649/10/$35.00 c© 2010 by Begell House, Inc. 549
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nonintrusive methods, such as nonintrusive polynomial
chaos (Walters, 2003; Xiu and Karniadakis, 2002), Monte
Carlo simulation, and its improved version based on the
Latin hypercube sampling (Iman and Conover, 1980).
However, if integration considerations were not an issue,
various derivatives of the spectral stochastic finite element
method (Ghanem and Spanos, 2003) may have offered
computational advantages.

The manuscript is organized as follows. A statement
of the two-scale stochastic problem with properties of
microphases and microinterfaces as random variables is
given in Section 2. These are the dominant variables af-
fecting the coarse-scale quantities of interest, such as
critical stresses and strains as indicated in Wu (2010).
Reduced-order homogenization and sparse grid colloca-
tion methods are reviewed in Section 3. The nonintrusive
stochastic multiscale design system (NSMDS), based on
the sparse grid collocation method in combination with
the reduced order multiscale approach, is given in Sec-
tion 4. Numerical examples are presented in Section 5.
We conclude the manuscript with a brief summary and
future work in Section 6.

2. PROBLEM DEFINITION

We assume that various response fields such as displace-
ments, strains, and stresses, denoted asg(x, y,η), are de-
pendent on the macro and micro spatial coordinates,x
and y = x/ζ, respectively, related by0 < ζ ¿ 1, as
well as on a set of input independent random variables

η =
{
ηi

}d

i=1
spanning thed-dimensional support space

Ψ. Since random variables may have different probabil-
ity density functionsf i

(
ηi

)
, the joint probability density

function can be obtained by their product as

f (η) =
d∏

i=1

f i
(
ηi

)
. (1)

A two-scale asymptotic expansion is employed to approx-
imate the displacement field

ui (x,y,η) = u0
i (x,y,η) + ζu1

i (x,y,η)

+ ζ2u2
i (x,y,η) + · · · .

(2)

The resulting two-scale strong form of the boundary value
problem is given by
(a) Fine scale

σij,yj (x,y,η) = 0, x ∈ Ω, y ∈ Θ,η ∈ Ψ (3)

σij(x,y,η)=Lijkl (x,y,η)
[
εkl (x,y,η)

−
∑

I

Iµkl (x,y,η)
]
, x ∈ Ω, y ∈ Θ, η ∈ Ψ

(4)

εij(x,y,η)=u1
(i,yj)

+u0
(i,xj)

=
1
2

[(
∂u1

i

∂yj
+

∂u1
j

∂yi

)

+

(
∂u0

i

∂xj
+

∂u0
j

∂xi

)]
, x ∈ Ω, y ∈ Θ, η ∈ Ψ

(5)

u1
i − periodic on ∂Θ (6)

(b) Coarse scale

σ̄ij,xj (x,η) + b̄i (x) = 0, x ∈ Ω,η ∈ Ψ (7)

σ̄ij(x, η)≡ 1
|Θ|

∫

Θ

σij(x, y, η) dΘ, x∈Ω, η∈Ψ (8)

u0
i (x, η) = ūi (x) , x ∈ Γu (9)

σ̄ij (x, η)nj (x) = t̄i (x) , x ∈ Γt (10)

where Eq. (4) describes the constitutive relation which as-
sumes an additive decomposition of total strainεij into
elastic and inelastic components, more generally referred
to aseigenstrainsIµkl, where the left superscriptI stands
for various eigenstrain types, such as inelastic deforma-
tion, thermal change, moisture effects, etc. For simplic-
ity, we assume that coarse-scale essential and natural
boundary conditions as well as fine-scale periodic bound-
ary conditions are deterministic. Similarly, the geometry
of body is assumed to be deterministic and depends on
coarse-scale coordinates.

In the present manuscript we focus on a case where
material constitutive parameters at the fine scale are ran-
dom variables with a given joint probability distribu-
tion. We will assume that the fine-scale topology (or mi-
crostructure geometry) is deterministic and that the con-
stitutive relation does not vary randomly from one point to
another in the coarse-scale domainΩ. Such variation can
be described in terms of random fields with a given co-
variance structure. Although such random fields are prop-
erly described by means of an infinite number of ran-
dom variables, Karhunen–Loeve expansion (Ghanem and
Spanos, 2003) could be employed to describe the random
fields in terms of a small number of uncorrelated random
variables, but this case is not considered here.
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3. REVIEW OF BUILDING BLOCKS OF NSMDS

3.1 Eigendeformation-Based Reduced-Order
Homogenization

Due to its nonintrusive nature, the solution in probabil-
ity support spaceΨ can be decoupled into a set of inde-
pendent problems solvable by a deterministic solver on
Ω × Θ. We employ an eigendeformation-based homoge-
nization to solve for the two-scale deterministic problem.
For each realizationη ∈ Ψ, we construct a residual-free
microscale displacement fieldu1

i (x, y, η) to ensure the
stress field in a unit cell satisfies equilibrium equations
for arbitrary eigenstrainsIµ0

ij and eigenseparationsδn̂

u1
i (x, y, η) = uel

i (x, y,η) +
∑

I

Iuµ
i (x, y,η)

+ uδ
i (x, y, η) = Hmic

ikl (y, η) ε̄kl (x,η)

+
∑

I

∫

Θ

Ihmic µ
ikl (y, ŷ, η)I

µ0
kl (x, ŷ, η) dŷ

+
∫

S

hmic δ
in̂ (y, ŷ,η) δn̂ (x, ŷ,η) dŷ.

(11)

The resulting fine-scale displacement gradients is given
by

u1
i,yj

(x, y,η) = Gmic
ijkl (y,η) ε̄kl (x,η)

+
∑

I

∫

Θ

Igmic µ
ijkl (y, ŷ,η)I

µ0
kl (x, ŷ,η) dŷ

+
∫

S

gmic δ
ijn̂ (y, ŷ, η) δn̂ (x, ŷ, η) dŷ,

(12)

whereGmic
ijkl,

Igmic µ
ijkl , andgmic δ

ijn̂ are influence functions
for macrostrain, eigenstrain, and eigenseparation, respec-
tively. When elastic constitutive parameters are consid-
ered as random variables, these influence functions need
to be recomputed at each realization by solving a se-
quence of elastic boundary value problems.

The reduced-order model is obtained by discretizing
the eigenstrain and eigenseparation fields as

Iµ0
ij (x, y, η) =

nI∑
α=1

IN (α) (y)I
µ̄

(α)
ij (x,η),

δn̂ (x, ỹ, η) =
m∑

ξ=1

N (ξ) (ỹ) δ̄
(ξ)
n̂ (x, η),

(13)

wherenI andm are the number of partitions of phases
and interfaces, respectively;I µ̄

(α)
ij andδ̄

(ξ)
n̂ are the aver-

age eigenstrain and eigenseparation in the phase partition
α and in the interface partitionξ, respectively.N (α) (y)
is a piecewise constant shape function defined as

N (α) (y) =
{

1 y ∈ Θ(α),
0 y 6∈ Θ(α),

(14)

whereasN (ξ) (ỹ) is a linear combination of piecewise lin-
ear finite element shape functions defined over the surface
partitionξ. The reduced-order system of equations can be
obtained by
(i) Fine scale

ε
(β)
ij (x, η)−

N∑

I=1

nI∑
α=1

IP
(βα)
ijkl (y,η)I

µ̄
(a)
kl (x, η)

−
m∑

ξ=1

Q
(βξ)
ijn̂ (y, η)δ̄(ξ)

n̂ (x, η)=A
(β)
ijkl(y, η)ε̄kl(x,η),

−
N∑

I=1

nI∑
α=1

IC
(ϑα)
n̂kl (y,η)I

µ̄
(α)
kl (x,η) + t

(ϑ)
n̂ (x,η)

−
m∑

ξ=1

D
(ϑξ)
n̂m̂ (y, η)δ̄(ξ)

m̂ (x, η)=B
(ϑ)
n̂kl(y, η)ε̄kl(x,η),

(15)

(ii) Coarse scale

σ̄ij (x, η) = L̄ijkl (y,η) ε̄kl (x, η)

+
N∑

I=1

nI∑
α=1

IĒ
(α)
ijkl (y, η)I

µ̄
(a)
kl (x, η)

+
m∑

ξ=1

F̄
(ξ)
ijn̂ (y, η) δ̄

(ξ)
n̂ (x, η),

(16)

wheretn̂ = G
(
δ̄n̂

)
represents the traction along the in-

terface. All the coefficient tensors are determined prior to
nonlinear macro analysis (Yuan and Fish, 2009) and de-
pend on the randomness of material elastic constitutive
parameters.

3.2 Stochastic Collocation Method Using Sparse
Grid

Consider a stochastic collocation method that approxi-
mates probability space in multidimensions by interpo-
lation from a set of collocation points (referred to as real-
izations). Letg

(
η1

j1
,η2

j2
, · · · , ηd

jd

)
be a deterministic so-

lution of the two-scale problem (15)–(16) at a collocation
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point(η1
j1

, η2
j2

, · · · ,ηd
jd

) in thed-dimensional probability
space, wherejk denotes thejkth node index ink-direction
(or kth random variable). Denote the total number of grid
points ink-direction asmk. The interpolated solution in
random space is given by

ĝ (η) =
m1∑

j1=1

· · ·
md∑

jd=1

g
(
η1

j1 , · · · , ηd
jd

)
N1

j1

(
η1

)

·N2
j2

(
η2

) · · ·Nd
jd

(
ηd

)
(17)

whereNk
jk

is an interpolation function in thek-direction,
such as Lagrange polynomials, satisfying the interpola-

tion propertyNk
jk

(
ηk

js

)
=

{
1 if js = jk

0 otherwise .

The quantities of interest are typically the statistical
moments ofg (η). The pth statistical moment denoted
by Mp can be calculated using numerical integration that
takes advantage of the function evaluation at the colloca-
tion points

Mp =
m1∑

j1=1

· · ·
md∑

jd=1

[
g
(
η1

j1 , · · ·,ηd
jd

)]p
f
(
η1

j1 , · · ·,ηd
jd

)

· (w1
j1 · w2

j2 · · ·wd
jd

)
(18)

wheref
(
η1

j1
, · · · , ηd

jd

)
is a joint probability density func-

tion;
(
w1

j1
· w2

j2
· · ·wd

jd

)
are weights at quadrature points(

η1
j1

, · · · ,ηd
jd

)
.

To realize the enormous computational complexity of
the tensor product rule in multidimensions, consider a ten-
sor product of two random variables with 10 nodes inη1

andη2 directions, which has a complete polynomial order
of up to 9. From the Pascal triangle it follows that there are
55 monomials forming complete polynomial expansion
of up to order 9, yet the tensor product involves summa-
tion of 100 terms, i.e., 45% of terms are wasted. The per-
centage of wasted monomials grows exponentially with
increase in the number of random variables. For instance,
in 3d, 78% of terms are wasted, in 4d, it increases to 92%,
and in 5d and 6d, the number of wasted terms reaches 97
and 99%, respectively. This is often referred to as a curse
of dimensionality.

The basic idea of thesparse gridmethod, originally
proposed by Smolyak (1963), is to construct a hierarchal
basis of one-dimensional interpolants and then to consider
a tensor product of interpolants that contribute only to the
completeness of the polynomial we want to approximate.

Starting from a one-dimensional univariate condition,
the hierarchical interpolation is given by

ĝ
(
ηi

)
=

mi∑

j=1

g
(
ηi

j

)
N i

j

(
ηi

)
. (19)

Herei denotes the interpolation level. Similarly, for the
(i− 1)th interpolation level, we have

ĝ
(
ηi−1

)
=

mi−1∑

j=1

g
(
ηi−1

j

)
N i−1

j

(
ηi−1

)
, (20)

where mi−1 and mi denote the total number of basis
nodes in levelsi − 1 and i, respectively. In the follow-
ing we consider a Clenshaw–Curtis grid that provides a
nested structure of basis nodes, i.e., the basis nodes in
level i − 1 are a subset of those in leveli. Since leveli
interpolants can exactly representĝ

(
ηi−1

)
we have

ĝ
(
ηi−1

)
=

mi∑

j=1

N i
j

(
ηi

)
[

mi−1∑

k=1

g
(
ηi−1

k

)
N i−1

k

(
ηi−1

j

)
]
. (21)

The difference between the two subsequent levels is de-
fined as

∆i = ĝ
(
ηi

)− ĝ
(
ηi−1

)
=

mi∑

j=1

g
(
ηi

j

)
N i

j

(
ηi

)

−
mi∑

j=1

N i
j

(
ηi

)
[

mi−1∑

k=1

g
(
ηi−1

k

)
N i−1

k

(
ηi−1

j

)
]

=
mi∑

j=1

[
g

(
ηi

j

)− ĝ
(
ηi−1

j

)]
N i

j

(
ηi

)
.

(22)

Sinceg
(
ηi

j

)
= ĝ

(
ηi−1

j

)
on mi−1 nodes of leveli − 1,

Eq. (22) can be rewritten as

∆i = ĝ
(
ηi

)− ĝ
(
ηi−1

)
=

m∆
i∑

j=1

[
g

(
ηi

j

)

− ĝ
(
ηi−1

j

) ]
N i

j

(
ηi

)
,

(23)

wherem∆
i = mi − mi−1 denotes the number of new

nodes that are added to leveli from leveli− 1.
The Smolyak algorithm constructs the sparse in-

terpolation space ind-dimensions as follows. Letik,
k = 1, 2, · · · , d be the interpolation level along thek-
direction, andi = (i1, i2, · · · , id) the multi-index with
|i| = i1 + · · ·+ id. The Smolyak algorithm builds the in-
terpolation function in multidimensions by adding a com-
bination of one-dimensional functions of orderik subject
to the constraintq − d + 1 ≤ |i| ≤ q, which yields

ĝ (η)|q = ĝ (η)|q−1 +
∑

|i|=q

(
∆i1 ⊗ · · · ⊗∆id

)
, (24)
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(
∆i1 ⊗ · · · ⊗∆id

)
=

m∆
1∑

j1=1

· · ·
m∆

d∑

jd=1

[
g
(
ηi1

j1
, · · · , ηid

jd

)

− ĝ
(
ηi1

j1
, · · · , ηid

jd

) |q−1

]
N i1

j1

(
ηi1

)

×N i2
j2

(
ηi2

) · · ·N id
jd

(
ηid

)
,

(25)

whereq − d ≥ 0 denotes the sampling level in the sparse
grid. Equation (24) states that given an approximation in
the previous level̂g (η)|q−1, new sampling points are se-
lected so that monomials that satisfy|i| = q are added to
the approximation in the new levelq.

The Clenshaw–Curtis grid points are defined as

ηik
jk

= − cos
(

π (jk − 1)
mk − 1

)
, jk = 1, · · · ,mk

ηik
1 = 0 if mk = 1.

m1 = 1 and mk = 2ik−1 + 1 for ik > 1.

(26)

Note that sparse grids are defined on a hypercube[−1, 1]d.
A mapping functionT is employed to translate points in
the hypercube to the random space spanned by random
variablesη.

4. NONINTRUSIVE STOCHASTIC MULTISCALE
DESIGN SYSTEM FOR COMPOSITE
MATERIALS

In this section we describe a nonintrusive stochastic mul-
tiscale design system aimed at quantifying the influ-
ence of various uncertainties in the microstructure on the
coarse-scale quantities of interest (QoI). The microstruc-
tural uncertainties include elastic constitutive parameters
of phases (such as Young’s modulus, Poisson ratio), in-
elastic constitutive parameters of phases and interfaces

(such as damage law parameters), and geometric param-
eters describing material microstructure (such as volume
fraction of fiber). The above uncertainties can either vary
from one unit cell to another (random fields) or be con-
stant throughout the macro domain (random variables),
as shown in Fig. 1.

From a computational complexity point of view and in
the context of a reduced-order homogenization method,
we identify six levels of computational complexity (cate-
gory I being of the highest computational complexity):

I. Microstructural geometry as random field

Since microstructural geometry defines residual-free
fields in the unit cell, the influence functions will
vary from point to point in the coarse-scale domain.
Thus, the coefficient tensors of Eqs. (15) and (16)
need to be evaluated on the fly during nonlinear sim-
ulation at each quadrature point in the macro do-
main.

II. Microstructural geometry as random variable

Even though the influence functions are constant
over the coarse-scale domain, they have to be recom-
puted due to randomness of the unit cell geometry.
This will require recreation of the unit cell computer
aided design (CAD) and finite element models.

III. Elastic constitutive parameters of each phase as
random fields

While fine-scale elastic properties affect the influ-
ence functions, they can be precomputed in the pre-
processing stage and consequently reused with each
nonlinear constitutive parameter of phases and inter-
faces. The influence functions also need to be com-
puted on the fly for each macro domain’s quadrature
point during nonlinear macro simulation.

FIG. 1: Random variables and fields.
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IV. Inelastic constitutive parameters of each phase/
interface as random fields

If elastic properties and microstructural geometry
are assumed to be deterministic, then the influence
functions need to be computed only once throughout
the entire stochastic analysis. The inelastic constitu-
tive laws of micro-phases and micro-interfaces are
allowed to vary in macro-domain.

V. Elastic constitutive parameters of each phase as
random variables

These parameters affect the influence functions;
however, in this case the influence functions are the
same from one macro quadrature point to another.

VI. Inelastic constitutive parameters of each phase/
interface as random variables

This level is the simplest and most inexpensive sce-
nario.

The general framework of the nonintrusive stochastic
multiscale design system (NSMDS) that can address all
six levels of complexity is shown in Fig. 2. The NSMDS
consists of the following building blocks:

FIG. 2: Block diagram of nonintrusive stochastic multi-
scale design system.

Random field classifier—The stochastic partial dif-
ferential equation is classified into one of the six cate-
gories described in the previous section.

Random variable decoupler—The original depen-
dent random variables are transformed into independent
random variables.

Stochastic model reducer/decoupler—The infinite-
dimensional probability space is reduced to a finite-
dimensional space of random variables commonly known
as a “finite-dimensional noise assumption” using the
Karhunen–Loeve (KL) expansion.

Stochastic solver—The Monte Carlo (MC) or
stochastic collocation (SC) methods are applied to trans-
form stochastic partial differential equations into deter-
ministic equations in the physical space that can be solved
by the deterministic multiscale design system (MDS).

Coarse-scale statistics abstractor—It provides esti-
mation of statistical moments in the quantities of interest
and failure probabilities.

In the present manuscript attention is restricted to
study levels V and VI of complexity, i.e., we consider in-
dependent random elastic and inelastic constitutive vari-
ables. The algorithm for this case is summarized in the
table below.

Algorithm: Nonintrusive stochastic solver based on
sparse grid collocation and reduced order homoge-
nization

1. Set level of the Clenshaw–Curtis sparse grid.

2. Construct sparse grid in hypercube[−1, 1]d and ap-
ply mapping to translate grids onto the random vari-
able space

[
η1

lb, η
1
ub

] ⊗ · · · ⊗ [
ηd

lb, η
d
ub

]
, whereηk

lb

andηk
ub are lower bound and upper bound of random

variableηk.

3. Group the grid points with the same elastic constitu-
tive parametersGel

1

⋃
Gel

2

⋃ · · ·⋃ Gel
n , i.e.,

(
ηel1

1 , · · · , ηel1
k1

)

︸ ︷︷ ︸
Gel

1

⋃ (
ηel2

1 , · · · , ηel2
k2

)

︸ ︷︷ ︸
Gel

2

⋃

· · ·
⋃(

ηeln
1 , · · · ,ηeln

kq

)

︸ ︷︷ ︸
Gel

n

,

whereηelm
j denotes thejth point in the groupGel

m.

4. For each groupGel
m, 1 ≤ m ≤ n,

1) Compute coefficient tensors for Eqs. (15) and
(16).
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2) For each grid point in the group,ηelm
j , 1 ≤

j ≤ km,

- update inelastic constitutive parameters
and perform simulation,

- record coarse-scale quantities of interest

(QoI’s) g
(
ηelm

j

)
,

- record joint probabilityf
(
ηelm

j

)
and inte-

gration weightw
(
ηelm

j

)
.

5. Denote the total number of grid points asN , and
compute statistical moment of QoIs byMp =
N∑

i=1

[g (ηi)]
p
f (ηi)w (ηi).

To this end we compare the sparse grid and equal grid
methods. In the uniform grid case, each direction is di-
vided into equal intervals as shown in Fig. 3. We consider
a probability density function having normal distribution

N
(
µ, σ2

)d
in multidimensions. Letµ = 0, σ = 1/3,

and consider integration domain[µ− 3σ, µ + 3σ]d =
[−1, 1]d. The analytical solution is

[
erf

(
3/
√

2
)]d

.
Figure 4 compares the two methods ford ranging from

1 to 5. In all the cases, the sparse grid is found to have a
faster convergence rate. However, for low accuracy, it can
be seen that the equal grid has a lower computational cost
than the sparse grid.

5. NUMERICAL EXAMPLES

We consider a fibrous composite microstructure as
a fine-scale model and a 7-layer composite laminate

FIG. 3: Equal grid in 1D case.
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FIG. 4: Numerical integration of multidimensional nor-
mal distribution PDF.

0/90/90/0/90/90/0 subjected tensile loading as a coarse-
scale model as shown in Fig. 5. For the constitutive model
of microphases we consider an isotropic damage model as
shown in Fig. 6, whereS denotes the elastic proportional
limit stress andG the strain energy per unit volume. The
material properties considered are shown in Table 1.

A typical stress–strain curve is plotted in Fig. 7. We
investigate the effect of variations in material inelastic pa-
rameters on the coarse-scale ultimate stress and the effect
of variations in material elastic parameters on homoge-
nization modulus. For the reference solution, we consider
a Latin-hypercube Monte Carlo (LHMC) method with up
to 10,000 sampling points.

Problem 1: Inelastic constitutive parameters as
random variables with Gaussian distribution

Statistical properties of random variables are depicted
Table 2 for problem 1.
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FIG. 5: Tensile test of 0/90/90/0/90/90/0 composite lam-
inate (symmetric model).

FIG. 6: Isotropic damage model for phase.

FIG. 7: Strain/stress curve of tensile test of composite
laminate.

TABLE 1: Microstructural material properties

E (MPa) v S (MPa) G
Matrix 2.E+4 0.2 13 0.04
Fiber 4.E+4 0.2 160 0.1

Figure 8 compares the absolute relative error in the
mean and variance of ultimate stress as obtained by the
sparse grid, equal grid, and LHMC. Several observations
are noteworthy. First, LHMC at 5000 realizations seems
to converge, and the reference solution in the following
examples is set as LHMC at 5000 points. Second, LHMC
needs a larger number of realizations than the collocation
methods, and the computational time of LHMC is about
5–6 times higher. Third, sparse grid and equal grid col-
location methods converge to the reference solution as
the number of realizations increases; however, the latter
seems to oscillate at high accuracy level.

Problem 2: Inelastic constitutive parameters as
random variables with Lognormal distribution

Statistical properties of random variables are depicted
in Table 3 for problem 2. LHMC at 5000 points is used as
a reference solution. The equal and sparse grid methods
are compared in Fig. 9.

Problem 3: Elastic constitutive parameters as ran-
dom variables with Lognormal distribution

Statistical properties of random variables are depicted
in Table 4 for problem 3. In this example, an elastic ho-
mogenization modulus of coarse-scale model is selected
as a quantity of interest. LHMC at 5000 sampling points
is used as a reference solution. Figure 10 compares the
equal and sparse grid methods.

Problem 4: Four-dimensional random space
We consider the inelastic properties of the two phases

as random variables and the coarse-scale ultimate stress as
a quantity of interest. Statistical properties of input vari-
ables are listed in Table 5. The sparse grid collocation
method is studied in Fig. 11, but no comparison to the
reference solution is made as it would require millions of
LHMC realizations. It seems that the mean and variance
reached a plateau value at relatively small number of real-
izations, but without having a reference solution this may
or may not be a converged value.

6. SUMMARY

A nonintrusive stochastic multiscale design system (NS-
MDS) was developed and limited numerical experiments
were conducted to study its performance. The design
system decouples stochastic partial differential equations
into a set of deterministic equations, which are subse-
quently solved using a two-scale eigendeformation-based
reduced-order homogenization method. A stochastic col-
location method based on a sparse grid was seamlessly
integrated into a deterministic multiscale design system,
which employs ABAQUS as a coarse-scale solver. While
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TABLE 2: Inelastic random variables for problem 1

Mean Standard deviation COV(%) Distribution
S of matrix 13 0.65 5 Gaussian
S of fiber 160 8 5 Gaussian
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FIG. 8: Absolute relative error in mean and variance of ultimate stress for problem 1. Problem 2: Inelastic constitutive
parameters as random variables with log normal distribution.

TABLE 3: Inelastic random variables for problem 2

Mean Standard deviation COV(%) Distribution
S of matrix 13 0.65 5 Log normal
S of fiber 160 8 5 Log normal
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FIG. 9: Absolute relative error in mean and variance of ultimate stress for problem 2. Problem 3: Elastic constitutive
parameters as random variables with log normal distribution.
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TABLE 4: Elastic random variables for problem 3

Mean Standard deviation COV (%) Distribution
E of matrix 2.E+4 2.E+2 1 Log normal
E of fiber 4.E+4 4.E+2 1 Log normal
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FIG. 10: Absolute relative error in mean and variance of homogenization modulus for problem 3.

TABLE 5: Inelastic random variables for problem 4

Mean Standard deviation COV (%) Distribution type
S of matrix 13 0.65 5 Gaussian
G of matrix 0.04 0.002 5 Uniform
S of fiber 160 8 5 Gaussian
G of fiber 0.1 0.005 5 Uniform
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FIG. 11: Prediction of mean and variance of ultimate stress by stochastic collocation using sparse grid for problem 4.
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we have demonstrated the feasibility of transforming a
deterministic commercial finite element solver of choice
into a stochastic solver, the overall performance was hin-
dered by repeated calls to the license manager, which
considerably slowed the overall solution process and thus
limited our studies to problems of low computational
complexity with a limited number of random variables
representing microscopic material constitutive parame-
ters.

In our future studies we will consider problems of con-
siderably higher computational complexity (levels I–IV)
by replacing the commercial deterministic solver with an
in-house developed finite element solver.
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Polymer clay nanocomposites (PCNs) synthesized using different organic modifiers show enhanced nanomechanical
properties and difference in percentage crystallinity of polymer in the PCN. It appears that organic modifiers have
an influence on the nanomechanical properties and crystallinity of PCNs. Tailoring crystallinity and nanomechanical
properties of PCNs to required mechanical behavior of PCN is a promising technology. In addition, this is essential
for robust multiscale modeling of nanocomposites through a hierarchical modeling approach, wherein nanomechani-
cal behavior from experiments and molecular simulations are incorporated into finite element models. To evaluate the
influence of molecular structure of organic modifiers on the crystallinity and nanomechanical properties of PCN, five
organic modifiers have been selected in this study in such a way that either they have identical end functional groups
but different backbone chain lengths or identical backbone chain length with different functional groups. The PCNs
synthesized with the same polymer (polyamide 6) and clay (sodium montmorillonite) but different organic modifiers
show significant difference in the crystallinity and nanomechanical properties. In this work molecular models of PCNs
based on these organic modifiers have been built and interaction energies between different constituents of PCNs have
been evaluated using molecular dynamics simulation. By comparing the interaction energies with experimental results,
important insight is obtained regarding the crystallinity and nanomechanical properties of PCNs. It is observed that in-
teractions between the polymer and the organic modifier are key to controlling the nanomechanical properties of PCNs,
and by varying the backbone chain length of the organic modifiers, the nanomechanical properties and crystallinity
of a particular polymer-based PCN can be tailored to a significant extent. Also by changing the functional groups of
modifiers, the crystallinity and nanomechanical properties of PCNs can be altered.

KEY WORDS: polymer-clay nanocomposite, molecular dynamics, molecular modeling

1. INTRODUCTION

Polymer clay nanocomposites (PCNs) show enhanced
mechanical (Okada et al., 1990; Ray and Okamoto, 2003;
Ma et al., 2003; Vaia et al., 2002; Sikdar et al., 2007)
and thermal properties (Hsueh and Chen, 2003; Zhang
and Wilkie, 2003; Meneghetti and Qutubuddin, 2006) in
comparison to pristine polymer. However, the mechanism
for enhancement of physical properties (mechanical or
thermal) of PCNs in comparison to pristine polymer is
not well understood. This knowledge is important for tai-
loring the properties of PCNs into desired specification.

Since the development of PCN in 1990 by Toyota Re-
search Laboratory, almost all common varieties of poly-
mer have been undertaken by the researchers for synthe-
sis of PCNs (Ray and Okamoto, 2003). Sodium mont-
morillonite (MMT) is most commonly used as clay for
synthesis of PCN, which is hydrophilic in nature. To en-
hance the miscibility of hydrophobic polymer with MMT,
organic modifiers are usually used for treating MMT,
which transforms MMT from hydrophilic into hydropho-
bic and organically modified montmorillonite (OMMT)
is obtained. Hence it appears that the primary function
of organic modifiers is to enhance the miscibility of hy-
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drophilic MMT with hydrophobic polymer. From our pre-
vious work (Sikdar et al., 2007) it is found that PCNs
synthesized with the same polymer and MMT but with
three different organic modifiers results in different elas-
tic modulus and dynamic mechanical properties in the
nanometer length scale. Ma et al. (2003) in a separate
work showed that PCNs synthesized with the same set of
polymers (polyamide 6), clay, and three different organic
modifiers resulted in different improvements of bulk scale
properties (mechanical and thermal) in comparison to
pristine polymer. Thus, in addition to the enhancement
of miscibility of hydrophilic clay with hydrophobic poly-
mer, organic modifiers have a significant role in the en-
hancement of physical properties of PCNs. In our previ-
ous work (Sikdar et al., 2008b) multiscale modeling of
PCNs was carried out using steered molecular dynam-
ics, atomic force microscopy imaging, nanoindentation,
and finite element analysis. Our previous work indicates
that there exists an altered phase region in the polymer
around individual clay particles resulting from nonbonded
interactions (van der Waals, electrostatic interactions) of
about 250Å (Sikdar et al., 2008b). Thus, in PCNs, where
nanosized clay particles are uniformly dispersed, a sig-
nificant volume of polymer is influenced by clay. Hence,
the enhanced (altered) mechanical behavior of polymers,
as a result of molecular interactions between different
constituents (clay–modifier–polymer), is key to modeling
the mechanical behavior of PCNs. Based on this multi-
scale approach, we vary molecular interactions by chang-
ing both the length and functional group of the modi-
fier, since the multiscale approach clearly indicates the
large impact of the molecular interactions on macroscale
properties. Researchers have also used Monte Carlo meth-
ods to model inclusions as spherical entities and studied
the interactions between inclusions and polymers, as well
as physical characteristics of the polymer (Dionne et al.,
2005, 2006).

Our previous molecular dynamics study (Sikdar et al.,
2008a) shows that in the crystallinity and enhancement
of nanomechanical properties of PCNs, interactions be-
tween polymers and modifiers are the key. The study fur-
ther showed that backbone chains as well as functional
groups of organic modifiers both have a specific role with
regard to crystallinity and enhancement of nanomechan-
ical properties of PCNs. However, knowledge regarding
controlling the crystallinity and nanomechanical proper-
ties of particular polymer-based PCNs and the influence
of organic modifiers on the structure and nanomechanical
properties of PCNs is not well understood. Molecular dy-
namics (MD) is a useful technique for studying structure,

dynamics and interactions between different constituents
of PCNs (Vaia et al., 2002; Ginzburg et al., 2000; Vaia
and Giannelis, 1997). Thus, in this work to address the
issues regarding tailoring the structure and nanomechani-
cal properties of PCNs and the influence of organic mod-
ifiers on the structure and nanomechanical properties of
PCNs, using MD, we have studied interactions between
the constituents of typical PCNs synthesized with identi-
cal polymer (polyamide 6) and clay (sodium montmoril-
lonite) but different organic modifiers. Our previous work
using multiscale modeling and experiments (Sikdar et al.,
2008b, 2009) has clearly shown the role of molecular in-
teractions between clay–modifier–polymer systems on al-
tering the polymer and clay phases to a very large extent,
thus significantly impacting the mechanical properties. In
this work, we further investigate the effectiveness of this
concept by changing the clay–polymer–modifier interac-
tions by varying the modifier chain length and functional
group.

In this work, for constructing the molecular model of
polyamide 6 (PA6)–based PCNs, we have chosen five typ-
ical organic modifiers (n-dodecylamine, hexadecylamine,
octadecylamine, dodecyl trimethyl ammonium bromide,
and hexadecyl trimethyl ammonium bromide), similar to
those of our previous experimental work (Sikdar et al.,
2009). For the convenience of representation, the organic
modifiers in this work have been named dodecyl, hex-
adecyl, octadecyl, dodecyl-Br, and hexadecyl-Br, respec-
tively. The molecule of organic modifier has two parts
in its structure: (i) backbone chain and (ii ) end func-
tional groups. The molecular structure of organic modi-
fiers showing backbone chain length and end functional
groups is given in Table 1(a). To evaluate the influence of
organic modifiers on the crystallinity and nanomechanical
behavior of PCNs more precisely, we have grouped the
modifiers into two different sets as follows: (i) in the first
set only the backbone chain length of modifiers varies,
keeping the end functional group the same as shown in
Table 1(b), and (ii ) in the second set, only one end func-
tional group of modifier varies, keeping the backbone
chain identical as shown in Table 1(c).

The properties of composites are largely influenced
by the interactions between constituents (Sikdar et al.,
2009). Interaction energy is a measure of interactions be-
tween different constituents of PCNs. Hence, in this pa-
per, using MD, we have constructed the representative
molecular model of five different PCNs and have calcu-
lated interaction energies between different constituents
of PCNs in order to evaluate interactions between differ-
ent constituents of PCNs. By comparing the results ob-

Journal for Multiscale Computational Engineering



Tailoring Crystallinity and Nanomechanical Properties 563

TABLE 1(a): Molecular structure of organic modifiers showing backbone chain length, end
functional group, and partial charges on the atoms of the amine functional group.

Organic modifiers Backbone Functional groups
Partial charges of atoms
of amine functional groups

N C H
Dodecyl (CH2)11 (CH3) (NH3) -0.051 - +0.176

Dodecyl-Br (CH2)11 (CH3) N(CH3)3 +0.206 -0.285 +0.133
Hexadecyl (CH2)15 (CH3) (NH3) -0.193 - +0.235

Hexadecyl-Br (CH2)15 (CH3) N(CH3)3 -0.055 -0.180 +0.113
Octadecyl (CH2)17 (CH3) (NH3) -0.204 - +0.227

TABLE 1(b): Comparison of the molecular structure of
organic modifiers with increasing backbone chain length.

Organic modifiers Backbone Functional groups
Dodecyl (CH2)11 (CH3) (NH3)

Hexadecyl (CH2)15 (CH3) (NH3)
Octadecyl (CH2)17 (CH3) (NH3)

TABLE 1(c): Comparison of molecular structure of or-
ganic modifiers with identical backbone but different func-
tional groups.

Organic modifiers Backbone Functional groups
Dodecyl-Br (CH2)11 (CH3) N(CH3)3

Dodecyl (CH2)11 (CH3) (NH3)
Hexadecyl-Br (CH2)15 (CH3) N(CH3)3

Hexadecyl (CH2)15 (CH3) (NH3)

tained from MD simulations of these PCNs with the crys-
tallinity and nanomechanical properties of the same set
of PCNs obtained from previous experimental work (Sik-
dar et al., 2009), we get valuable information about the
role of organic modifiers with regard to the structure and
nanomechanical properties of PCNs. Our study further
shows that through the selection of an appropriate organic
modifier, the structure and nanomechanical properties of
PCNs containing specific polymers can be tailored to a
significant extent by controlling interactions between the
constituents of PCNs.

2. COMPUTATIONAL METHODOLOGY

The polymer and clay used for synthesis of PCNs are
polyamide 6 (PA6) and MMT, respectively. The or-
ganically modified montmorillonite (OMMTs) synthe-

sized with organic modifiers dodecyl, hexadecyl, oc-
tadecyl, dodecyl-Br, and hexadecyl-Br are named in
this work OMMT-dodecyl, OMMT-hexadecyl, OMMT-
octadecyl, OMMT-dodecyl-Br, and OMMT-hexadecyl-
Br, respectively, and PCNs synthesized using organi-
cally modified montmorillonite OMMT-dodecyl, OMMT-
hexadecyl, OMMT-octadecyl, OMMT-dodecyl-Br, and
OMMT-hexadecyl-Br are named PCN-dodecyl, PCN-
hexadecyl, PCN-octadecyl, PCN-dodecyl-Br, and PCN-
hexadecyl-Br, respectively. By comparing the results ob-
tained from PCN-dodecyl, PCN-hexadecyl, and PCN-
octadecyl, the effect of the backbone chain of the mod-
ifier on the crystallinity and nanomechanical behavior of
PCNs can be obtained. By comparing the results of PCN-
dodecyl with PCN-dodecyl-Br, and PCN-hexadecyl with
PCN-hexadecyl-Br, the effect of the functional group of
the modifier on the crystallinity and nanomechanical be-
havior of the PCNs can be obtained.
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The structure of the polymer, clay, and organic modi-
fiers used in this paper were constructed using the mod-
ule BuilderTM of InsightII 2005 of Biosym Technolo-
gies, Inc. (San Diego, CA, USA). The force field pa-
rameters used in polymer and organic modifiers were ob-
tained from CHARMm 27 (Brooks et al., 1983). For the
atoms of the polymer, the standard partial charges ob-
tained from the library of CHARMm 27 were used. The
partial charges on the polymer atoms are shown in Fig. 1.
The chemical structure of a unit cell of isomorphically
ion substituted MMT is [NaSi16(Al6FeMg)O40(OH)8].
In the MMT unit cell, an aluminum octahedral layer is
sandwiched between two silica tetrahedra layer. The co-
ordinates of atoms lying in the MMT unit cell were ob-
tained from the work of Skipper et al. (1995a, 1995b).
The partial charges on the atoms of the MMT unit cell
were obtained from the work of Teppen et al. (1997). In
our earlier work (Katti et al., 2005), the CHARMm force
field parameters of MMT were derived using the stan-
dard parameters of clay in consistent force field (CFF)
and those derived parameters were used in the present
work for clay. The molecular structure of the polymer
and organic modifiers was minimized initially using In-
sightII. Using these energy-minimized structures of poly-
mer and organic modifiers, the initial models of OMMT
and PCN were constructed using visual molecular dynam-
ics (VMD) (Humphrey et al., 1996). The synthesis proce-
dure of different OMMTs and PCNs is described in our
earlier work (Sikdar et al., 2007, 2009; Katti et al., 2006).

3. CALCULATION OF PARTIAL CHARGES ON
THE ATOMS OF ORGANIC MODIFIERS USING
THE AB INITIO METHOD

Ab initio calculations were conducted using the quan-
tum chemistry program Gaussian98 (Frisch et al., 1995)

in order to calculate the charges on the atoms of the
molecules of organic modifiers used for synthesizing
organically modified montmorillonite and polymer clay
nanocomposites. The structures used for the charge cal-
culations were dodecylamine, hexadecylamine, and oc-
tadecylamine with hydrochloric acid (HCl), and dode-
cylamine and hexadecylamine with tri methyl bromide.
All the structures were first minimized with the Hartree–
Fock method with 6–31 G** basis set (HF/6–31 G**).
After minimization, the first three structures with HCl
form protonated dodecylamine, hexadecylamine, and oc-
tadecylamine, whereas the last two structures form do-
decyl trimethyl ammonium and hexadecyl trimethyl am-
monium. The final minimized structures of organic mod-
ifiers are shown in Fig. 2, which shows that organic mod-
ifiers maintain almost linear structure. Snapshots of the
end functional group (amine and trimethyl amine) of oc-
tadecylamine and hexadecyl trimethyl ammonium bro-
mide before and after minimization are shown in Fig. 3.
From Figs. 2 and 3 it is observed that dodecyl, hexadecyl,
and octadecyl form (R–NH3)+Cl−, whereas dodecyl-Br
and hexadecyl-Br form [R–N(CH3)3]+Br−. Here R rep-
resents the alkyl groups which depend upon the starting
molecular structures of organic modifiers.

The atom-centered charges were calculated using
Merz–Singh–Kollman method (Singh and Kollman,
1984; Besler et al., 1990). In this method, atomic charges
are fitted to reproduce the molecular electrostatic poten-
tial at several points around the calculated molecule. The
atomic charges are calculated in such a way that the to-
tal charge equals the molecular charge. In our work, the
overall charge on a molecule of each organic modifier was
considered as 0. The Merz–Singh–Kollman method has
been used with B3LYP/cc-pVDZ electric potential. The
schematic diagrams of the organic modifiers are shown in
Fig. 4. The partial charges on the atoms of organic modi-

FIG. 1: Partial charges on the atoms of a polymer (polyamide 6).
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FIG. 2: Snapshots showing minimized structures of different organic modifiers:(a) n-dodecylamine,(b) do-
decyl trimethyl ammonium bromide,(c) n-hexadecylamine,(d) hexadecyl trimethyl ammonium bromide,(e) n-
octadecylamine (C = grey, H = white, N = blue, orange = Cl/Br).

FIG. 3: The amine groups in the molecules of octadecylamine and hexadecyl trimethyl ammonium bromide(a) before
minimization and(b) after minimization. (For (i): N = black, H = white, Cl = gray. For (ii): N = dark gray, C = light
gray, Br = black, H = white.)
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FIG. 4: Schematic diagrams showing the molecular structure of different organic modifiers:(a) n-dodecylamine,
(b) hexadecylamine,(c) octadecylamine,(d) dodecyl trimethyl ammonium bromide, and(e) hexadecyl trimethyl
ammonium bromide.

fiers are shown in Table 2. The serial number of different
atoms (C, H, and N) of modifiers used in Table 2 were
taken from the atom serial as shown in the schematic dia-
gram of modifiers in Fig. 4. From ab initio charge calcula-
tion, the net partial charge on the molecule of protonated
organic modifiers was found to be +0.70 in all the cases.

4. SIMULATION DETAILS OF THE OMMT AND
PCN MODELS

Molecular dynamics (MD) software, NAMD 2.5 (Kal é
et al., 1999), was used for conducting MD of OMMT
and PCN. The Varlet algorithm was applied for running
MD. The isothermal-isobaric ensemble, constant number,
pressure, and temperature (NPT) simulation was used in
the MD simulation. For van der Waals interaction, switch
and cutoff distances applied were 20 and 22Å, respec-
tively, in all OMMT and PCN models. The particle mesh

Ewald simulation method was used for electrostatic in-
teractions between the atoms of OMMT and PCN mod-
els (Karasawa and Goddard, 1989). The Nose’–Hoover
Langevin piston and Langevin dynamics were used in
the simulation for controlling model pressure and tem-
perature, respectively (Martyna et al., 1994; Feller et al.,
1995). A time step of 0.5 femtosecond was used in the
simulation. The change of temperature during MD sim-
ulation was maintained following the synthesis route of
OMMT and PCN. For OMMT, first, the model is mini-
mized for a duration of 5 picoseconds (ps) (10−12 sec-
ond) at 0 K temperature and 0 bar pressure. Then MD
of OMMT was conducted by increasing the temperature
of the system to 300 K while keeping the pressure at 0
bar. By keeping the temperature at 300 K, the pressure of
the system increased to 1 atmospheric (1.013 bar) pres-
sure in four equal steps in order to bring the tempera-
ture and pressure of the OMMT model to ambient con-
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TABLE 2: The partial charge on each atom of different organic modifier molecules (here numbering of differ-
ent atoms of modifiers is taken from Fig. 4).

Atom type Partial charge on the atoms of different organic modifier molecules
Terminal and
backbone carbon
atoms

n-Dodecyl
amine

Hexadecylamine Octadecylamine Dodecyl
trimethyl
ammonium
bromide

Hexadecyl
trimethyl
ammonium
bromide

C1 -0.212 -0.200 -0.210 -0.203 -0.228
C2 +0.186 +0.179 +0.191 +0.182 +0.175
C3 -0.004 +0.002 +0.029 +0.003 +0.044
C4 +0.012 -0.017 -0.008 +0.016 -0.069
C5 +0.081 +0.129 +0.072 +0.061 +0.201
C6 -0.004 -0.049 +0.078 +0.006 -0.090
C7 +0.066 +0.046 +0.027 +0.028 +0.061
C8 -0.110 -0.018 +0.000 +0.040 -0.028
C9 -0.027 -0.030 +0.085 -0.002 -0.050
C10 +0.148 +0.074 -0.047 -0.108 +0.078
C11 -0.177 -0.019 -0.029 +0.204 -0.063
C12 +0.167 +0.027 +0.074 -0.174 +0.061
C13 +0.099 -0.052 +0.044
C14 -0.101 +0.028 +0.066
C15 +0.131 +0.121 -0.239
C16 -0.057 -0.111 +0.354
C17 +0.152
C18 -0.055
Backbone
hydrogen atoms
H4 -0.038 -0.036 -0.041 -0.041 -0.035
H5 -0.038 -0.037 -0.042 -0.038 -0.036
H6 -0.007 -0.010 -0.016 -0.011 -0.019
H7 -0.007 -0.007 -0.016 -0.008 -0.015
H8 -0.016 -0.010 -0.015 -0.018 -0.004
H9 -0.016 -0.010 -0.016 -0.016 -0.004
H10 -0.023 -0.033 -0.030 -0.022 -0.046
H11 -0.030 -0.038 -0.025 -0.021 -0.054
H12 -0.005 +0.002 -0.027 -0.014 +0.008
H13 -0.004 +0.004 -0.028 -0.003 +0.009
H14 -0.017 -0.014 -0.016 -0.019 -0.015
H15 -0.005 -0.002 -0.023 0.000 -0.015
H16 +0.026 +0.003 -0.011 -0.017 0.006
H17 +0.032 +0.004 -0.009 -0.012 +0.008
H18 +0.018 +0.002 -0.027 +0.032 +0.011
H19 +0.014 +0.005 -0.008 0.000 +0.069
H20 -0.023 -0.024 -0.006 +0.032 -0.013
H21 -0.005 -0.006 +0.008 +0.012 -0.004
H22 +0.022 -0.003 +0.007 -0.002 +0.008
H23 +0.022 -0.001 +0.004 -0.029 +0.004
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TABLE 2: (Continued) The partial charge on each atom of different organic modifier molecules (here num-
bering of different atoms of modifiers is taken from Fig. 4).

Atom type Partial charge on the atoms of different organic modifier molecules
Backbone
hydrogen atoms

n-Dodecyl
amine

Hexadecylamine Octadecylamine Dodecyl
trimethyl
ammonium
bromide

Hexadecyl
trimethyl
ammonium
bromide

H24 +0.036 -0.012 -0.015 +0.082 -0.010
H25 +0.029 -0.014 -0.006 +0.094 -0.025
H26 -0.031 +0.004 -0.017
H27 -0.003 +0.006 -0.010
H28 +0.031 -0.018 -0.018
H29 +0.009 -0.005 +0.027
H30 -0.007 -0.035 +0.094
H31 -0.002 -0.009 +0.037
H32 +0.100 +0.011 +0.021
H33 +0.042 +0.027 -0.093
H34 -0.005
H35 -0.016
H36 +0.041
H37 +0.099
Methyl hydrogen
atoms
H1 +0.044 +0.040 +0.041 +0.041 +0.047
H2 +0.044 +0.040 +0.041 +0.041 +0.047
H3 +0.044 +0.040 +0.041 +0.041 +0.047
Nitrogen atom
(N1)

-0.051 -0.193 -0.204 +0.206 -0.055

Hydrogen atoms
of protonated
amine group
H1 +0.175 +0.220 +0.223
H2 +0.175 +0.220 +0.223
H3 +0.175 +0.220 +0.223
Trimethyl amine
group atoms
C +0.285 -0.180
H2 +0.136 +0.113
H3 +0.136 +0.113
H4 +0.136 +0.113

dition. In the final heating cycle, by keeping the pressure
at 1 atmosphere, the temperature of the OMMT model
was further raised to 313 K and was subsequently low-
ered to 300 K. In each step of temperature and pressure
change, the simulation was run for 25 ps. To equilibrate
the OMMT model, the model was run for a duration of

200 ps at room temperature and pressure. The energy ver-
sus time plot of the OMMT model shows that the simula-
tion time of 200 ps is sufficient to equilibrate the model.
Keepingz-direction movement of MMT free from exter-
nally applied constraint, a force-constraint of 1 Kcal/mol-
Å was applied to all the atoms of MMT in thex andy di-
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rections. No constraining force was applied on the atoms
of organic modifiers.

The simulation procedure of the PCN model was done
following the synthesis route of PCNs as described in our
previous work (Sikdar et al., 2007, 2009; Katti et al.,
2006). The variation of temperature and pressure in the
PCN model is similar to the OMMT model except the
maximum temperature which is used in the simulation of
the PCN model is 300 K, following its synthesis route.
MD simulation is started for the PCN model with energy
minimization at 0 bar pressure, and 0 K temperature. In
the beginning, keeping the pressure at 0 bar, the temper-
ature of the model is increased to 300 K, followed by in-
creasing the pressure to 1 atmospheric level in four equal
steps, keeping the temperature constant at 300 K. In each
step of change in pressure and temperature during simu-
lation of the PCN models, MD simulation is run for a du-
ration of 25 ps. Finally, the whole PCN model is run for
a duration of 200 ps to equilibrate the model. As before,
the energy versus time plot shows that the 200 ps dura-
tion of simulation is sufficient for convergence of energy
of the PCN model. Similar to the OMMT model, a force
constraint of 1 Kcal/mol-Å is applied to all the atoms
of MMT only in thex andy axis directions. The atoms of
polymer and organic modifiers are kept free from any con-
straint in all directions. Additional details about the com-
putational methodology and simulation procedure can be
found in our earlier work (Sikdar et al., 2006a, 2006b,
2008).

4.1 Model of Organically Modified
Montmorillonite (OMMT)

By comparing the experimental (X-ray diffraction [XRD]
and photoacoustic Fourier transform infrared spec-
troscopy [PA-FTIR]) and modeling (d-spacing and min-
imum energy conformation) results, the OMMT models
were formed. The construction details of the OMMTs are
given in our earlier work (Sikdar et al., 2006a, 2008a).
In the intercalated OMMT model there are two layers of
clay. In each layer of clay, 18 unit cells of MMT are pe-
riodically replicated, out of which 6 unit cells are in the
x direction and 3 are in they direction. The net charge
of each layer of clay is−9. The net charge for each
molecule of organic modifiers found from ab initio calcu-
lation is +0.70. To make the whole OMMT model charge
neutral, we placed 13 organic modifiers in the interlayer
clay gallery of the OMMT model. From our earlier MD
study (Katti et al., 2006; Sikdar et al., 2006b) it was found
that orientation of organic modifiers is parallel to the clay

gallery. Therefore, in our model the organic modifiers are
initially placed parallel to the clay gallery. From the PA-
FTIR study (Sikdar et al., 2009; Katti et al., 2006), it was
found that organic modifiers have only nonbonded inter-
actions with clay in the OMMT, and therefore no bond
is formed between the clay and the modifier in OMMT
models. The PA-FTIR study of OMMT shows that there
are no water molecules in the OMMT interlayer (Katti
et al., 2006; Sikdar et al., 2008c) and hence, no water
molecules are incorporated in our initial OMMT model.
The OMMT model is periodically replicated in thex, y,
andz direction by applying periodic boundary conditions
to replicate the periodic structure of clay in all directions.
The initial d-spacings of OMMT models are selected as
described in our earlier work (Sikdar et al., 2006a). For
obtaining the final OMMT model, the MD simulation of
the initial OMMT model is conducted following the syn-
thesis route of OMMT (Sikdar et al., 2007; Katti et al.,
2006). The following conditions were applied for select-
ing a representative OMMT model (Sikdar et al., 2006a,
2008b):

(1) The final d-spacing of OMMT models obtained after
running MD simulations matches with experimen-
tally observed d-spacing of respective OMMT ob-
tained from XRD results.

(2) The OMMT model satisfies the minimum energy
conformation.

The final models of OMMT-octadecyl and OMMT-
hexadecyl-Br obtained after applying these above two cri-
teria are shown in Fig. 5. The d-spacings of the final mod-
els of OMMTs obtained from XRD and MD simulation
are shown in Table 3, showing good agreement in terms
of d-spacing between modeling and experimental results.

4.2 Model of Polymer Clay Nanocomposites
(PCNs)

The PCN models were constructed by comparing the re-
sults obtained from experiments (XRD and PA-FTIR)
and MD simulation, as done in our earlier work (Sik-
dar et al., 2006a). A globally minimized polymer struc-
ture was obtained by annealing the polymer at high tem-
perature (700 K), as described in detail in our previous
work (Sikdar et al., 2006a). The initial models of PCNs
containing five different OMMTs were constructed by in-
serting the annealed polymer chains inside the interlayer
clay gallery of the final model of the respective OMMT.
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(a) (b)

FIG. 5: Molecular model of OMMT showing organic modifiers intercalated inside the interlayer clay gallery:(a)
OMMT-octadecyl and(b) OMMT-hexadecyl-Br. Clay is in VDW rendering form and the organic modifier is in licorice
rendering form.

TABLE 3: d-Spacing of OMMTs obtained from XRD and MD simulation.

OMMT Sample d-spacing from XRD (Å) d-spacing from MD simulation (Å)
OMMT–dodecyl 14.18 14.78

OMMT–dodecyl-Br 15.46 15.70
OMMT–hexadecyl 20.63 20.56

OMMT–hexadecyl-Br 18.55 19.30
OMMT–octadecyl 22.29 21.87

PA-FTIR study of PCNs showed that there are only non-
bonded interactions between the different constituents of
PCNs, and hence, in the PCN model no bond is between
clay, organic modifier, or polymer. For obtaining the fi-
nal OMMT model, the following conditions were applied,
similar to the previous work (Sikdar et al., 2006a):

(1) The energy-minimized conformation of the annealed
polymer fits perfectly in the interlayer clay spacing
of the final OMMT model while making the initial
PCN model.

(2) The final d-spacing of the PCN model obtained from
MD simulation matches with the d-spacing of the
PCN sample observed from XRD.

(3) The representative model of the PCN sample satis-
fies the minimum energy conformation.

The PCN model which has the largest polymer chain
in the interlayer clay gallery and satisfies the above three
conditions is considered the representative intercalated

PCN model. Similar to OMMT models, the PCN mod-
els are replicated in thex, y, andz direction to replicate
the periodic structure of clay in all directions. The size
of the PCN model in thex andy directions is 33.55 and
28.902Å, respectively, and the cellBasisVector applied to
the simulation in thex andy directions is 40 and 34̊A,
respectively. The cellBasisVector of the PCN models in
thez direction is kept twice the d-spacing of the respec-
tive initial PCN model. For Van der Waals interaction, the
switch and cutoff distance used for the models are 14 and
16 Å, respectively. The representative molecular models
of PCN-octadecyl and PCN-hexadecyl-Br obtained af-
ter MD simulation are shown in Fig. 6. The represen-
tative model of PCN-dodecyl and PCN-dodecyl-Br con-
tain an 8-monomer chain intercalated polymer, whereas
the representative model of PCN-hexadecyl and PCN-
hexadecyl-Br contains a 12-monomer-chain polymer. The
largest polymer chain is found in the representative model
of PCN-octadecyl, the length of which is 18 monomers
long. The final models of PCNs are used for studying
the interactions between different constituents of PCNs.
The d-spacing of PCNs obtained from modeling and XRD
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(a) (b)

FIG. 6: The molecular model of polymer clay nanocomposites showing polymer and organic modifiers intercalated
inside the interlayer clay gallery:(a) PCN-octadecyl and(b) PCN-hexadecyl-Br. Clay is in VDW rendering form,
polymer is in line rendering form, and the organic modifier is in licorice rendering form.

TABLE 4: d-Spacing of PCNs obtained from XRD and MD simulation.

PCN Sample d-spacing from XRD (Å) d-spacing from MD simulation (Å)
PCN–dodecyl 14.52 14.62

PCN–dodecyl-Br 14.08 15.49
PCN–hexadecyl 17.48 19.68

PCN–hexadecyl-Br 17.35 18.36
PCN–octadecyl 18.06 20.77

are given in Table 4, which shows good agreement be-
tween the modeling and experimental results. From lit-
erature (Zin et al., 2005; Mitsunaga et al., 2003) it is
seen that the d-spacing of PCN can be smaller than that
of OMMT. Furthermore, from modulus mapping experi-
ments the elastic modulus of PCNs are found significantly
higher than that of pristine polymer in nanometer length
scale, and the crystallinity percent of PCN is found to be
significantly lower than that of pure polymer (Sikdar et
al., 2009). The significant improvement of nanomechani-
cal properties and reduction in crystallinity % of PCN in
comparison to pristine polymer indicates the formation of
polymer clay nanocomposite. Transformation of the crys-
talline form of polymer fromα-crystalline form in pure
polymer intoγ-crystalline form in PCN is also indicative
of formation of PCN (Vaia et al., 2002).

5. CALCULATION OF INTERACTION ENERGY

MDEnergyTM of NAMD was used for studying interac-
tion energies between different constituents of PCNs. The
trajectory file of the whole molecular model is directly
obtained from MD simulation. The interaction energies

of any given set of atoms or between two given sets of
atoms for a particular time span can be calculated us-
ing the trajectory file of the molecular system knowing
their structural information, interaction parameters, cut-
off, and switch distance. The interaction energies for any
molecular system can be calculated for bonded and non-
bonded energies separately. Furthermore, the bonded en-
ergy terms include bond, angle, and dihedral energies cor-
responding to the atoms under consideration within the
molecular system. Similarly, the nonbonded energy can
be calculated in the van der Waals category and electro-
static energies for any given set of atoms or between two
sets of interacting atoms. To equilibrate the models, MD
simulations of all OMMT and PCN models were run for
a duration of 200 ps in the final stage, and the average of
results for the last 25 ps was considered for calculating
the interaction energy of the molecular models.

6. RESULTS AND DISCUSSION

The properties of the composites largely depend on the in-
teractions between constituents (Brooks et al., 1983). In-
teraction energies are the measure of interactions between
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different constituents of composites. The negative energy
indicates attractive interaction, and positive energy rep-
resents repulsive interaction between two constituents of
composites. To estimate the interactions between different
constituents of composites, the interaction energies be-
tween different constituents of PCNs were evaluated. The
PCNs in this study were synthesized with the same poly-
mer (PA6) and clay (MMT) but with five different organic
modifiers. The organic modifiers are categorized into two
types as mentioned earlier: (i) modifiers having identical
functional groups but different lengths of backbone chain,
a comparison of molecular structures of which is shown
in Table 1(b), and (ii ) modifiers having different end func-
tional groups with the same backbone length, a compari-
son between the molecular structure of which is presented
in Table 1(c). To study the effect of organic modifiers
on the properties of PCN, the study was constructed in
two ways: (i) comparing the results of simulation and ex-
periments between the PCNs synthesized with modifiers
containing different backbone chain lengths but identi-
cal end functional groups, and (ii ) comparing simulation
and experimental results between the PCNs synthesized
with modifiers having different end functional groups but
identical backbone chains. This comparison gives valu-
able insight regarding the influence of organic modifiers
on the structure and nanomechanical properties of PCNs,
and tailoring the structure and nanomechanical properties
of particular polymer-based PCNs by selecting a certain
type of organic modifier.

6.1 Effect of Modifier Backbone Chain Length
on Crystallinity and the Elastic Modulus of
PCNs

The crystallinity of PCNs was evaluated in our earlier
work using differential scanning calorimetry (Sikdar et
al., 2009). In the same study (Sikdar et al., 2009), the
elastic modulus of PCNs in the nanometer length scale
was evaluated using nanoindentation. To study the effect
of organic modifiers on the crystallinity and nanomechan-

ical properties of PCNs, the PCNs are synthesized in that
work (Sikdar et al., 2009) with same polymer and clay
but with different organic modifiers, similar to the set of
modifiers used in our current MD work. The compari-
son of crystallinity and elastic modulus of PCNs synthe-
sized with identical functional groups but varying back-
bone chain length are shown in Table 5. From Table 5 it
is evident that with the increase of backbone chain length
of modifiers, the crystallinity of PCNs decreases and the
elastic modulus increases. Thus, it is evident from the
results of Table 5 that for particular polymer- and clay-
based PCNs, by changing the backbone chain length of
the organic modifier, the nanoscale structure and nanome-
chanical properties of PCNs can be varied to a significant
extent, and this gives important insight regarding tailor-
ing the properties of particular PCNs. Fourier transform
infrared spectroscopy of PCNs shows that there are only
nonbonded interactions between different constituents of
PCNs (Sikdar et al., 2009). MD simulation has been used
to evaluate the nonbonded interactions between different
constituents of PCNs and their probable correlations with
the crystallinity and elastic modulus of PCNs.

6.2 Effect of Functional Group Modifier on PCN
Crystallinity and Elastic Modulus

The crystallinity and elastic modulus of PCNs synthe-
sized with organic modifiers having the same backbone
chain but different end functional groups are shown in
Table 6. Here also we observe that by changing the
functional group from a protonated amine (N+H3) to
trimethyl amine [N+(CH3)3] the crystallinity of PCNs
and elastic modulus changes, indicating the significant
influence of the modifier’s functional group on the crys-
tallinity and elastic modulus of the PCN.

6.3 Interactions in PCN-Dodecyl

The interphasial nonbonded interactions between differ-
ent constituents (polymer, clay, and organic modifiers)

TABLE 5: Effect of backbone chain length of the organic modifier on the crystallinity and elastic
modulus of polyamide 6–based PCNs.

PCN Samples
Structural difference

% Crystallinity from DSC E (GPa)Backbone Functional group
PCN-dodecyl (CH2)11 NIL 27.78 4.77

PCN-hexadecyl (CH2)15 NIL 20.81 4.81
PCN-octadecyl (CH2)17 NIL 19.81 5.06
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TABLE 6: Effect of functional group of organic modifier on the crystallinity and elastic modulus of
polyamide 6–based PCNs.

PCN Samples
Structural difference

% Crystallinity from DSC E (GPa)Backbone chain Functional group
PCN-dodecyl-Br NIL N(CH3)3 27.95 4.36

PCN-dodecyl NIL (NH3) 27.78 4.77
PCN-hexadecyl-Br NIL N(CH3)3 28.05 4.84

PCN-hexadecyl NIL (NH3) 20.81 4.81

in polymer clay nanocomposites synthesized with an or-
ganic modifier,n-dodecylamine, are shown in Fig. 7. The
attractive interactions are represented by the solid line and
the repulsive interactions are represented by the dotted
line. The highest nonbonded interactions are observed be-
tween the clay and the organic modifier,−596 Kcal/mol,
followed by interactions between the clay and the poly-
mer (-193 Kcal/mol) and the polymer and the organic
modifier (−85 Kcal/mol). From Fig. 7 it is further ob-
served that the functional group as well as the backbone
chain of the organic modifier both have significant attrac-
tive interactions with the clay. The contribution of inter-
actions coming from the modifier backbone is even larger

FIG. 7: Energy diagram showing nonbonded interaction
energies between polymer, clay, and organic modifier in
PCN synthesized with organic modifier,n-dodecylamine.

than the interactions coming from the functional group
of modifiers. As seen from Table 2, although the partial
charges on the atoms of the modifier backbone are much
less than the partial charges on the atoms of the end func-
tional group of the organic modifier, the larger number of
atoms present in the backbone of the modifier makes their
total contribution high. Between the clay and the poly-
mer, major interactions are observed between the clay
and backbone of the polymer, which is−123 Kcal/mol.
There is relatively feeble interaction (−70 Kcal/mol) be-
tween the clay and the functional group of the polymer.
Between the polymer and the organic modifiers, the func-
tional group of polymer has attractive interactions with
the functional group as well as the backbone of the or-
ganic modifiers, whereas the polymer backbone has re-
pulsive interactions with the backbone and functional
groups of the organic modifier. The largest attractive in-
teractions between the polymer and the organic modi-
fier are observed between the functional group of the
polymer and organic modifier functional group, which
is −98 Kcal/mol, followed by attractive interactions be-
tween the functional group of the polymer and the modi-
fier backbone (−55 Kcal/mol). The largest repulsive inter-
actions are observed between the polymer backbone and
the modifier backbone (+47 Kcal/mol), followed by inter-
actions between the polymer backbone and the functional
group of organic modifiers (+21 Kcal/mol).

6.4 Interactions in PCN-Hexadecyl

The nonbonded interactions between different con-
stituents of PCN-hexadecyl are shown in Fig. 8. Similar
to PCN-dodecyl, the largest interactions between the dif-
ferent constituents are observed between the clay and the
modifier (−600 Kcal/mol), followed by the clay and the
polymer (−162 Kcal/mol), and the polymer and organic
modifier (−156 Kcal/mol). For interactions between the
clay and the organic modifier, the end functional group
and backbone of organic modifiers both have significant
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FIG. 8: Energy diagram showing nonbonded interaction
energies between polymer, clay, and organic modifier in
PCN synthesized with organic modifier, hexadecylamine.

interactions with clay,−252 and−348 Kcal/mol, respec-
tively. The interactions between the clay and the poly-
mer are dominant through the backbone of the polymer,
which is−128 Kcal/mol; the functional group of poly-
mer has relatively weaker attractive interactions with clay
(−34 Kcal/mol). Between the polymer and modifier, the
backbone of polymer has repulsive interactions with the
backbone as well as functional groups of the organic mod-
ifiers, which have magnitudes of+87 and+76 Kcal/mol,
respectively. These interactions are represented by dotted
lines in the diagram. The polymer functional groups have
significantly strong attractive interactions with the back-
bone and functional groups of the modifier, which are
−173 and−146 Kcal/mol, respectively.

6.5 Interactions in PCN-Octadecyl

The nonbonded interactions between the different con-
stituents (clay, polymer, and organic modifier) of PCN-
octadecyl are shown in Fig. 9. The nature of interactions
observed in PCN-octadecyl are similar to PCN-dodecyl
and PCN-hexadecyl, where the largest attractive non-
bonded interactions are observed between the clay and
the organic modifier (−476 Kcal/mol), followed by inter-
actions between the polymer and clay (−186 Kcal/mol),
and polymer and organic modifiers (−102 Kcal/mol). The
interactions of polymer backbone with the backbone and
functional groups of organic modifiers are found repul-

FIG. 9: Energy diagram showing nonbonded interaction
energies between polymer, clay, and organic modifier in
PCN synthesized with organic modifier, octadecylamine.

sive only in nature, which has a magnitude of +21 and
+76 Kcal/mol, respectively, and these repulsive interac-
tions are represented by a dotted line in the interaction
diagrams. Between the polymer and the modifier, the at-
tractive interactions are observed between the polymer
functional group with the modifier functional group and
backbone,−160 and−139 Kcal/mol, respectively. All
attractive interactions between different constituents of
PCN are represented by the solid lines in the interaction
diagram. Between clay and the modifier, backbones as
well as the functional group of the modifier both have
significant attractive interactions with clay,−300 and
−176 Kcal/mol, respectively. On the other hand, between
clay and polymer, significant interactions are found be-
tween the polymer backbone and clay (−148 Kcal/mol);
relatively weaker interactions (−38 Kcal/mol) are ob-
served between the polymer functional group and clay.

6.6 Interactions in PCN-Dodecyl-Br

The interaction energies between different phases of
PCN-dodecyl-Br are shown in Fig. 10. As seen from Ta-
ble 1(c), the difference between PCN-dodecyl and PCN-
dodecyl-Br is the presence of end functional groups in
the organic modifiers, which is protonated amine in PCN-
dodecyl and trimethyl amine in PCN-dodecyl-Br. The na-
ture of interactions found in PCN-dodecyl-Br is similar
to that of PCN-dodecyl, where it is observed that the
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FIG. 10: Energy diagram showing nonbonded interac-
tion energies between polymer, clay, and organic modi-
fier in PCN synthesized with organic modifier, dodecyl
trimethyl ammonium bromide.

highest attractive interactions are between the clay and
the modifier (−557 Kcal/mol), followed by interactions
between clay and polymer (−148 Kcal/mol) and poly-
mer and modifier (−51 Kcal/mol). Here also we find
that clay has attractive interactions with the backbone
(−308 Kcal/mol) and functional groups (−249 Kcal/mol)
of the modifier, whereas clay has significant interactions
with the backbone of polymer (−101 Kcal/mol) and rel-
atively weaker interactions with the polymer functional
group (−47 Kcal/mol). Between the polymer and organic
modifier, the repulsive as well as attractive, both types
of interactions exist which are represented by dashed
and solid lines, respectively, in the interaction diagrams.
The polymer backbone has repulsive interactions with the
modifier backbone and functional group, which are+14
and+46 Kcal/mol, respectively, in PCN-dodecyl-Br. The
polymer functional group has significant stable interac-
tions with the functional group and backbone of modifier
which are−75 and−36 Kcal/mol, respectively.

6.7 Interactions in PCN-Hexadecyl-Br

The nonbonded interactions between different con-
stituents (polymer, clay, and organic modifier) of PCN-
hexadecyl-Br are shown in Fig. 11. The nature of non-

FIG. 11: Energy diagram showing nonbonded interac-
tion energies between polymer, clay, and organic modi-
fier in PCN synthesized with organic modifier, hexadecyl
trimethyl ammonium bromide.

bonded interactions observed between different con-
stituents of PCN-hexadecyl-Br is similar to those of other
PCNs. The magnitude of attractive interactions between
different constituents of PCN from higher to lower mag-
nitude are in the order of clay–modifier, clay–polymer,
and polymer–modifier, and these have the magnitude of
−551, −184, and−156 Kcal/mol, respectively. All the
interactions are attractive in nature, except the interac-
tions of backbone of polymer with backbone and func-
tional group of polymer. All the attractive and repul-
sive interactions are represented in solid and dotted lines,
respectively, in the interaction diagram. As seen from
Fig. 11, the backbone of polymer has repulsive interac-
tions of+75 and+54 Kcal/mol, with the functional group
and backbone of organic modifiers, respectively, in PCN-
hexadecyl-Br. The functional group of polymer has at-
tractive interactions with the functional group and back-
bone of organic modifier, having magnitudes of−131
and−154 Kcal/mol, respectively. Between all the interac-
tions, the highest attractive interactions are observed be-
tween the clay and modifier backbone (−354 Kcal/mol)
followed by the interactions between clay and the organic
modifier functional group (−197 Kcal/mol). Between the
clay and polymer, the significantly stronger attractive in-
teractions are observed between the backbone of polymer
and clay (−139 Kcal/mol), and relatively weaker interac-
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tions are observed between the polymer functional group
and clay (−45 Kcal/mol).

6.8 Comparison of Interactions between
Polymer and Modifier in PCNs

Polymer is the most abundant constituent of PCNs in
which nanoclay inclusions are dispersed in the polymer
matrix. Being a major constituent of PCNs, the structure
and properties of polymer must have significant impact on
the overall structure and properties of nanocomposites. In
composite material the interactions between the different
constituents play a major role in the structure and prop-
erties of composites. Thus, the interphasial interactions
of polymer with other constituents (modifier and clay)
must have a significant role in the structure and nanome-
chanical properties of PCN. Furthermore, from Fig. 6 it
is evident that in intercalated PCNs, the polymer and or-
ganic modifier enter into the interlayer clay spacing of
MMT and lie in close association, indicating that interac-

tions between the polymer and organic modifier are im-
portant for the structure and nanomechanical properties
of PCNs. The interphasial interactions between the back-
bone and functional groups of polymer and organic mod-
ifiers present in PCNs are presented in Table 7(a), where
it is observed that the presence of different organic mod-
ifiers results in different amounts of interactions between
the polymers and organic modifiers in PCNs. Again from
Tables 5 and 6 it is observed that the presence of different
modifiers in PCNs results in different amounts of crys-
tallinity of polymers in PCNs, indicating that interactions
between polymers and organic modifiers have a signif-
icant influence on the crystalline structure and nanome-
chanical properties of PCNs. For studying the effect of
backbone chain length of the modifier on interphasial in-
teractions between the polymer and modifier and evaluat-
ing its effect on the structure and nanomechanical prop-
erties of PCNs, in Table 7(b) we have furnished the inter-
actions between different parts of the modifier and poly-
mer of three PCNs (PCN-dodecyl, PCN-hexadecyl, and

TABLE 7(a): Nonbonded interaction energies between the backbone and functional groups of the polymer and
modifier in different PCNs.

Sample Modi function–poly function
(Kcal/mol)

Modi back–poly back
(Kcal/mol)

Modi function–poly back
(Kcal/mol)

PCN–dodecyl -98 +21 +47
PCN–dodecyl-Br -75 +14 +46
PCN–hexadecyl -146 +87 +76
PCN–hexadecyl-Br -131 +54 +75
PCN–octadecyl -160 +21 +76

TABLE 7(b): Effect of chain length of modifier on the interactions between polymer and modifier in PCNs.

Sample Modi function–poly function
(Kcal/mol)

Modi back–poly back
(Kcal/mol)

Modi function–poly back
(Kcal/mol)

PCN–dodecyl -98 +21 +47
PCN–hexadecyl -146 +87 +76
PCN–octadecyl -160 +21 +76

TABLE 7(c): Effect of functional group of modifier on the interactions between polymer and modifier in PCNs.

Sample Modi function–poly function
(Kcal/mol)

Modi back–poly back
(Kcal/mol)

Modi function–poly back
(Kcal/mol)

PCN–dodecyl-Br -75 +14 +46
PCN–dodecyl -98 +21 +47
PCN–hexadecyl-Br -131 +54 +75
PCN–hexadecyl -146 +87 +76
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PCN-octadecyl). These PCNs are synthesized with three
different organic modifiers (dodecyl, hexadecyl, and oc-
tadecyl) having identical end functional groups but dif-
ferent backbone chain lengths, which are 11, 15, and
17 methylene units in dodecyl, hexadecyl, and octade-
cyl, respectively. From Table 7(b) it is observed that with
the increase of the backbone chain length of the modi-
fier, attractive nonbonded interactions between the poly-
mer functional group and the modifier increase. It ap-
pears that the polymer functional group anchors on the
functional group of the organic modifiers and with the in-
crease of modifier backbone chain length the anchoring
strength increases. On the other hand, the polymer back-
bone has repulsive interactions with the modifier func-
tional group and backbone, and with the increase of the
modifier backbone chain length, the repulsive interactions
between the polymer backbone and modifier functional
group increase. From Table 5 it is observed that with the
increase in modifier backbone chain length the PCN crys-
tallinity decreases. Thus, in comparing the results of Ta-
bles 5 and 7(b), it appears that combination of attrac-
tive and repulsive interactions between polymer and or-
ganic modifiers results in the disruption of normal peri-
odic conformations of polymer and subsequently dimin-
ishes the crystallinity of polymer in PCNs. As seen from
Table 7(b), the higher the backbone chain length of the
modifier, the higher are the intensities of attractive and
repulsive interactions between selected parts of the poly-
mer and organic modifier, resulting in a higher disruption
of the periodic structure of the polymer in PCNs and sub-
sequently, reduction in the crystallinity of the PCN.

In studying the effect of modifier functional groups on
the crystallinity and nanomechanical properties of PCNs,
the interphasial interactions between different parts of
polymer and organic modifiers lying in four typical
PCNs (PCN-dodecyl with PCN-dodecyl-Br, and PCN-
hexadecyl with PCN-hexadecyl-Br) are compared in Ta-
ble 7(c). The differences in constituents in these PCNs
are due to the presence of organic modifiers, and as seen
from Table 1(c), the difference in the molecular structure
of the organic modifiers is due to the different end func-
tional group. Between these organic modifiers, dodecyl
and hexadecyl have protonated amine, whereas dodecyl-
Br and hexadecyl-Br have trimethyl amine as the func-
tional group of one end of the modifier. In comparing
the interactions between PCN-dodecyl and PCN-dodecyl-
Br from Tables 1(c) and 7(c), it is observed that due to
the change of the amine (NH3)functional group in dode-
cyl into a trimethyl amine [N(CH3)3] functional group in
dodecyl-Br, the attractive interactions between the poly-

mer functional group with the modifier functional group
significantly increase and subsequently, repulsive inter-
actions of polymer backbone with the modifier back-
bone and functional group also increase considerably.
The same trend is observed in PCN-hexadecyl and PCN-
hexadecyl-Br, where due to changing the functional group
from protonated amine in hexadecyl into the trimethyl
amine functional group in hexadecyl-Br, the attractive in-
teractions between the polymer functional group with the
modifier functional group as well as the repulsive inter-
actions of polymer backbone with the modifier backbone
and functional group significantly increase. As seen from
Table 1(a), because the partial charges on the atoms of
the amine and trimethyl amine functional groups of the
respective modifiers are different, they result in a differ-
ent amount of interactions in these PCNs. Now from Ta-
ble 6, it is observed that the crystallinity in PCN-dodecyl
and PCN-hexadecyl is lower with respect to that of PCN-
dodecyl-Br and PCN-hexadecyl-Br, respectively. Com-
paring the results of Tables 6 and 7(c), it appears that
due to larger attractive interactions between the polymer
functional group and the modifier functional group, as
well as larger repulsive interactions of polymer backbone
with the functional group and backbone of the modifier
in PCN-dodecyl and PCN-hexadecyl, there is relatively
greater disruption in the normal conformation of polymer
and a subsequent reduction in the crystallinity of polymer
in comparison to PCN-dodecyl-Br and PCN-hexadecyl-
Br, respectively. Thus, by changing only the functional
group of the modifier the interactions between the differ-
ent constituents of PCNs can be changed considerably,
which seemingly results in differing amounts of polymer
crystallinity in PCNs. This is further evidence that by
selecting a suitable modifier functional group, the crys-
tallinity of PCNs can be tailored to a significant extent.

Modulus mapping images of PCN-octadecyl and PCN-
hexadecyl-Br are shown in Fig. 12, in which lighter
shades represent polymer and darker shades represent the
clay plates in PCNs. From the figure it is observed that
clay platelets are uniformly dispersed in the polymer ma-
trix. The localized interactions between the nanoclay par-
ticles and polymer also result in the disruption of crys-
tallinity of polymer in PCNs.

The mechanical properties of composite materials
largely depend on their interphasial interactions. Nega-
tive interactions indicate attractive or stable interactions
between the constituents of composite. As seen from
Table 7(b), the highest attractive interactions between
polymer and modifier functional groups are observed in
PCN-octadecyl, followed by PCN-hexadecyl and PCN-
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(a) (b)

FIG. 12: Modulus mapping image of(a) PCN-octade-
cyl and (b) PCN-hexadecyl-Br showing dispersion of
submicron-size clay particles in the polymer matrix in
polymer clay nanocomposites. Dark shades show clay
particles and lighter shades show polymer matrix.

dodecyl. On the other hand, from Table 5, the highest
elastic modulus of PCN is observed in PCN-octadecyl fol-
lowed by PCN-hexadecyl and PCN-dodecyl. Thus, com-
paring the results of Tables 5 and Table 7(b), it seems
that with an increase in modifier backbone chain length,
the attractive interactions between the polymer functional
group and the modifier functional group increase, which
results in stronger docking between the polymer func-
tional group and the modifier functional group, and sub-
sequently results in the higher elastic modulus of PCN.
From the above discussion it is further observed that
by changing the backbone chain length or functional
group of the modifier, the elastic modulus of a particu-
lar polymer-based PCN can be changed, which is a result
of change in attractive interactions between the the func-
tional group of the polymer and the functional group of
the modifier present in PCNs.

Comparing results in Tables 6 and 7(c), it is ob-
served that due to the presence of a protonated amine
group instead of a trimethyl amine group in the modi-
fier, the relatively larger attractive interactions between
the functional group of polymer and the functional group
of the modifier are observed in PCN-dodecyl and PCN-
hexadecyl in comparison to those in PCN-dodecyl-Br
and PCN-hexadecyl-Br, respectively. These larger attrac-
tive interactions result in greater docking strength be-
tween the polymer functional group and the modifier
functional group, causing a change in the elastic modu-
lus in PCN-dodecyl and PCN-hexadecyl in comparison to
that of PCN-dodecyl-Br and PCN-hexadecyl-Br, respec-

tively. However, it appears that the effect of modifier func-
tional groups on the PCN elastic modulus is not as promi-
nent as the change in backbone chain length of modifiers.

6.9 Comparison of Interactions between Clay
and Polymer in PCNs

The interactions between different parts (backbone and
functional group) of polymer and clay in PCNs are shown
in Table 8(a). To evaluate the effect of backbone chain
length of the polymer on the crystallinity and nanome-
chanical properties of PCNs, in Table 8(b) the polymer–
clay interaction energies between PCN-dodecyl, PCN-
hexadecyl, and PCN-octadecyl are compared. As seen
from Table 8(b) it is evident that both the backbone and
functional group of polymer have dominantly van der
Waals interaction with clay. The differences in interac-
tion energies between the clay and polymer in PCNs are
primarily due to the difference in van der Waals interac-
tion. The van der Waals interaction energy solely depends
on the distance between interacting atoms. The presence
of different organic modifiers in PCNs results in different
amounts of interactions between the constituents (clay,
polymer, and organic modifier) of PCNs, which seems
to result in different distances between clay and polymer.
Thus, the difference in interaction energies between poly-
mer and clay in PCNs is due to the presence of different
organic modifiers.

In order to evaluate the effect of the modifier func-
tional group on the interactions between the polymer
and the clay in PCNs and evaluating the influence of
polymer–clay interactions on the structure and nanome-
chanical properties of PCNs, the interaction energies
between polymer and clay in PCN-dodecyl and PCN-
dodecyl-Br, and PCN-hexadecyl and PCN-hexadecyl-Br
are compared in Table 8(c). From Table 8(c) we observe
that differences in interaction energies between different
parts (backbone and functional group) of the polymer and
clay in corresponding PCNs are due to the difference in
van der Waals energies, which essentially occurs due to
the presence of different organic modifiers in the PCNs.
Thus, the differences in structure and nanomechanical
properties observed in different PCNs are the result of
interactions between the backbone chain and functional
groups of polymer and organic modifiers present in PCNs.

6.10 Comparison of Interactions between Clay
and Organic Modifiers in PCNs

The interaction energies between clay and different parts
of organic modifiers in PCNs are shown in Table 9. As
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TABLE 8(a): Nonbonded interaction energies between different parts of polymer and clay in PCNs.

Sample
Clay–poly back
(Kcal/mol)

Clay–poly function
(Kcal/mol)

Clay–poly (Kcal/mol)

VDW Elec Total
non-bond

VDW Elec Total
non-bond

VDW Elec Total
non-bond

PCN–dodecyl -125 +2 -123 -70 0 -70 -195 +2 -193
PCN–dodecyl-Br -97 -4 -101 -40 -7 -47 -137 -11 -148
PCN–hexadecyl -112 -16 -128 -52 +18 -34 -164 +2 -162
PCN–hexadecyl-Br -121 -18 -139 -55 +10 -45 -176 -8 -184
PCN–octadecyl -127 -21 -148 -57 +19 -38 -184 -2 -186

TABLE 8(b): Effect of modifier backbone chain length on the interactions between clay and polymer in PCNs.

Sample
Clay–poly back
(Kcal/mol)

Clay–poly function
(Kcal/mol)

Clay–poly (Kcal/mol)

VDW Elec Total
non-bond

VDW Elec Total
non-bond

VDW Elec Total
non-bond

PCN–dodecyl -125 +2 -123 -70 0 -70 -195 +2 -193
PCN–hexadecyl -112 -16 -128 -52 +18 -34 -164 +2 -162
PCN–octadecyl -127 -21 -148 -57 +19 -38 -184 -2 -186

TABLE 8(c): Effect of modifier functional group on the interactions between clay and polymer in PCNs.

Sample
Clay-poly back
(Kcal/mol)

Clay–poly function
(Kcal/mol)

Clay–poly (Kcal/mol)

VDW Elec Total
non-bond

VDW Elec Total
non-bond

VDW Elec Total
non-bond

PCN–dodecyl-Br -97 -4 -101 -40 -7 -47 -137 -11 -148
PCN–dodecyl -125 +2 -123 -70 0 -70 -195 +2 -193

TABLE 9: Nonbonded interaction energies between clay and organic modifier in different PCNs.

Sample
Clay–modi back
(Kcal/mol)

Clay–modi function
(Kcal/mol)

Clay–modi (Kcal/mol)

VDW Elec Total
non-bond

VDW Elec Total
non-bond

VDW Elec Total
non-bond

PCN–dodecyl -270 -54 -324 -58 -214 -272 -328 -268 -596
PCN–dodecyl-Br -259 -49 -308 -122 -127 -249 -381 -176 -557
PCN–hexadecyl -251 -97 -348 -35 -217 -252 -286 -314 -600
PCN–hexadecyl-Br -255 -99 -354 -85 -112 -197 -340 -211 -551
PCN–octadecyl -238 -62 -300 -33 -143 -176 -271 -205 -476
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seen from Table 9, between the modifier backbone and
the clay, the interaction is dominantly van der Waals in
nature, whereas between the modifier functional group
and clay, the interaction is dominantly electrostatic in na-
ture. From Table 9 and interaction energy diagrams in
Figs. 7–11, it is observed that attractive interactions be-
tween the modifier and clay are much stronger than the
interaction between the clay and polymer or polymer and
modifier in PCNs. The failure of composite materials oc-
curs through the weakest interface of their constituents.
The interface between clay and modifier is the strongest
among the three interfaces in PCNs. Hence the interac-
tions between the polymer and modifier have the most in-
fluence on nanomechanical properties of PCNs.

6.11 Summary of Results of PCNs Containing
Organic Modifiers with Identical Functional
Groups and Different Backbone Chain
Lengths

The interaction energies, percentage of crystallinity, and
nanomechanical properties of PCNs containing organic
modifiers with dissimilar backbone chain lengths are
summarized in Table 10(a), where we see that an increase
in the backbone chain length of the modifier results in
higher attractive interactions between the modifier and
polymer functional groups,,as well as higher repulsive in-
teractions between the polymer backbone and the modi-
fier functional group. The combination of attractive and
repulsive interactions between the polymer and organic
modifier results in a reduction in crystallinity of the PCN,
whereas the attractive interactions between the functional
group of the polymer and the modifier results in an in-
crease in the elastic modulus of PCNs. From the repre-
sentative molecular model of PCNs we see that the sizes
of the polymer chain intercalated inside the clay gallery in
PCN-dodecyl, PCN-hexadecyl, and PCN-octadecyl are 8,
12, and 18 monomer units of polymer (PA6), respectively.

Thus, PCN-hexadecyl and PCN-octadecyl have respec-
tively 1.5 and 2.25 times the intercalated polymer inside
the clay gallery than that of PCN-dodecyl. The larger the
amount of polymer inside the clay gallery, the larger the
direct interaction of polymer with the modifier and subse-
quently, the larger the disruption of polymer crystallinity
in the PCN, which is also evidenced from Table 10(b).
In Table 10(b) we provide the relative amount of interac-
tion energies between the polymer and modifier in PCN-
hexadecyl and PCN-octadecyl with respect to the amount
of intercalated polymer in PCN-dodecyl. In column 8 of
Table 10(b) the differences in repulsive and attractive in-
teractions between the polymer and modifier in different
PCNs is computed. As seen previously, repulsive as well
as attractive interactions between polymer and modifier
both contribute to disruption of polymer crystallinity in
PCNs. Thus, the difference in repulsive and attractive in-
teraction energies between the polymer and modifier is
largest in PCN-octadecyl, and the lowest crystallinity is
observed in PCN-octadecyl, followed by PCN-hexadecyl
and PCN-dodecyl.

The differences in the relative amount of repulsive and
attractive interaction energies, percentage of crystallinity,
and the elastic modulus of different PCNs containing
modifiers with varying backbone chain lengths are plotted
in Fig. 13. From Fig. 13 it is evident that with the increase
in backbone chain length of the modifier, the difference in
the relative interaction energies in PCNs increases, which
results in a reduction of polymer crystallinity in PCNs in
the order of PCN-octadecyl, PCN-hexadecyl, and PCN-
dodecyl. Furthermore, attractive interaction energies be-
tween polymer and modifier functional groups increases
with increasing backbone chain length of the modifier,
which results in a gradual increase in the elastic modulus
of PCNs in the sequence PCN-dodecyl, PCN-hexadecyl,
and PCN-octadecyl. Thus, it is observed that with in-
creasing backbone chain length of the modifier, the crys-
tallinity (structure) and nanomechanical properties of par-

TABLE 10(a): Summary of interactions between polymer and modifier and their relation with crystallinity and
elastic modulus of PCN containing modifiers with increasing backbone chain length.

PCN Samples Structural difference Modi
func–poly

Modi
back–poly

Modi
func-poly

%
Crystallinity

E
(GPa)

Backbone Functional
group

func
(Kcal/mol)

back
(Kcal/mol)

back
(Kcal/mol)

from DSC

PCN-dodecyl (CH2)11 NIL -98 +21 +47 27.78 4.77
PCN-hexadecyl (CH2)15 NIL -146 +87 +76 20.81 4.81
PCN-octadecyl (CH2)17 NIL -160 +21 +76 19.81 5.06
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TABLE 10(b): Summary of relative interaction energies between polymer and modifier equivalent to amount of
intercalated polymer in PCN, and its relation with crystallinity and elastic modulus of PCNs containing modifiers
with increasing backbone chain length.

PCN
samples
(col.1)

Structural difference Relative estimation of interaction
energies equivalent to amount of
intercalated polymer in PCN

% E
(GPa)

Organic modifier No. of Modi Modi Modi Difference Crystal- Between

Backbone
(col. 2)

Functional
group
(Col.3)

monomers
in
intercalated
polymer
lying in
PCN
(col. 4)

func-
poly
func-
tion
(Col.5)

back-
poly
back
(Col.6)

function-
poly back
(Col.7)

in
energies
between
posi-
tive and
negative
part
(Col.8)=
(Col.7)
+(Col.6)
-(Col.5)

linity
from
DSC
(col. 9)

polymer
and
modifier
(col.
10)

PCN-
dodecyl

(CH2)11 NIL 8 -98 +21 +47 166 27.78 4.77

PCN-
hexadecyl

(CH2)15 NIL 12 -219 +131 +114 464 20.81 4.81

PCN-
octadecyl

(CH2)17 NIL 18 -360 +47 +171 578 19.81 5.06

FIG. 13: Plot shows the relation between modifier backbone chain length with the differences in attractive and
repulsive interaction energies, crystallinity, and elastic modulus of different PCNs.
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TABLE 11: Summary of interactions between polymer and modifier and their relation with crystallinity and elastic
modulus of PCN containing modifiers with different functional groups.

PCN samples
Structural difference Modi

func-
Modi
back-

Modi
func-

% Crystallinity
from DSC

E (GPa)

Backbone Functional
group

poly
func

poly
back

poly
back

PCN-dodecyl-Br NIL N(CH3)3 -75 +14 +46 27.95 4.36
PCN-dodecyl NIL (NH3) -98 +21 +47 27.78 4.77
PCN-hexadecyl-Br NIL N(CH3)3 -131 +54 +75 28.05 4.84
PCN-hexadecyl NIL (NH3) -146 +87 +76 20.81 4.81

ticular polymer-based PCNs can be tailored to a signifi-
cant extent by controlling the interaction between the in-
tercalated polymer and the modifier in PCNs.

6.12 Summary of Results of PCNs Containing
Organic Modifiers with Identical Backbone
Chain and End Functional Groups

The interaction energies, percentage of crystallinity, and
nanomechanical properties of PCNs containing organic
modifiers with different end functional groups are sum-
marized in Table 11. Here it is observed that by select-
ing an appropriate functional group in the modifier (in
this case protonated amine in place of trimethyl amine),
the attractive interactions between the polymer functional
group and the modifier functional group, and repulsive
interactions between the polymer backbone and the mod-
ifier functional group can be changed significantly, which
in effect changes the crystallinity and elastic modulus
of PCNs. However, the effect of the modifier functional
group on the crystallinity and elastic modulus of PCNs is
not as conclusive as the effect of backbone chain length
of organic modifiers.

7. CONCLUSIONS

The backbone chain length of organic modifiers has sig-
nificant influence on the crystallinity and elastic modulus
of PCNs in the nanometer length scale. By increasing the
backbone chain length of the modifier, the attractive in-
teractions between the modifier functional group and the
polymer functional group as well as repulsive interactions
between the polymer backbone and modifier functional
group can be significantly increased. The combination of
attractive and repulsive interactions between the polymer
and modifier determines the crystallinity of polymer in
PCNs. The elastic modulus of PCNs depends on attractive

interactions between the functional groups of the poly-
mer and modifier. Thus, through the selection of an ap-
propriate modifier backbone chain length during synthe-
sis of PCNs, interfacial interactions between the interca-
lated polymer and the organic modifier in PCNs can be
controlled, which in turn helps in tailoring the percentage
crystallinity and nanomechanical properties (elastic mod-
ulus in nanometer length scale) of particular polymer-
based PCNs to a considerable extent.

The modifier functional group also has an influence
on the percentage of crystallinity and elastic modulus of
PCNs in the nanometer length scale. By incorporating an
appropriate functional group in the modifier, the inter-
phasial interactions between the intercalated polymer and
the organic modifier can be controlled to a great extent,
which in turn can alter the percentage crystallinity and
the elastic modulus of particular polymer-based PCNs.
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A multiscale modeling methodology that relates the nanostructure of concrete to its micro and macro properties is
presented. This work attempts to establish a framework for understanding the relations among chemical composition,
microstructure morphology, and the macroscale mechanical properties of concrete constituents. The simulation is based
on four levels of a hierarchal structural model, starting from the molecular dynamics simulation of hydrated cement
solid nanoparticles (e.g., C–S–H, and calcium hydroxide), all the way up to concrete. To validate the theoretical model,
a nondestructive testing technique, resonant ultrasound spectroscopy (RUS), is used to measure the elastic constants of
hydrated cement paste. The results showed good agreement between theoretically predicted and experimentally measured
properties.

KEY WORDS: multiscale, concrete simulation, mechanical properties, C–S–H, molecular dynamics, mi-
croporomechanics

1. INTRODUCTION

Cement concrete is one of the world’s most widely used
materials. Unfortunately, the production of cement in-
volves a thermal process that accounts for 5–10 percent
of the world’s total CO2 emissions. Constantinides and
Ulm (2007) studied the cement paste and found that the
macroscopic strength of concrete appears to be linked to
the nano-granular structure of its constituents, particu-
larly the calcium–silicate–hydrate (C–S–H) units and not
to its chemistry. They argued that if one can replace the
constituents of conventional Portland cement with mate-
rials of the same or similar nanostructure, which can be
produced without an intensive thermal process, then it

opens the door for a “green concrete” that can cut glo-
bal CO2 emission. Therefore, a basic understanding of
the nano/micro structure of concrete constituents and how
this relates to the macroscopic mechanical properties is
essential to the design of a new class of concrete that
is high strength, yet green. Macroscopic properties of
concrete essentially depend on the nanostructure of con-
crete’s major constituent, that is, C–S–H, and how C–S–
H nanoparticles are organized (stacked). Studying macro-
scopic properties of concrete based on nanoscale con-
stituent properties and the sub-micro and micro structure
of major strength contribution may show how nanoscale
constituents link to the macroscale materials. Another
way to “green-up” is to study how to improve the nanos-

1543–1649/10/$35.00 c© 2010 by Begell House, Inc. 585



586 Wu et al.

tructure of the constituents, especially for C–S–H, to en-
hance the macro properties of concrete.

Many materials, including advanced nanocomposites
as well as concrete, may be studied as multiscale mate-
rials. This has been the focus of many researchers. For
example, Fish et al. (2000, 2002, 2010), Yuan and Fish
(2009), and Li et al. (2008) employed multiscale mod-
eling techniques to study advanced materials, and Jasiuk
(2005) characterized and modeled trabecular bone as a
five-structural-level hierarchical random composite ma-
terial. Gates et al. (2005) outlined multiscale modeling
methods used in simulating nanostructured materials.

Concrete may be considered as a composite material
at a range of levels (scales). The lowest level is the C–
S–H solids. Several microstructural models of the C–S–
H gels have been proposed (Aligizaki, 2005). The mile-
stone work for the C–S–H gel structure is credited to
Powers and Brownyard (1948, 1960), where they pro-
posed cement paste as a colloid composed of spheres
where each sphere represents gel substance with its as-
sociated gel pores; in between the spheres are capillary
pores outside the C–S–H gel. The C–S–H gel is com-
posed of particles. The particles have a layered struc-
ture which is made up of two to three layers. Taylor’s
C–S–H gel model (Taylor, 1986, 1993) claimed that C–
S–H has a disordered layer structure, mainly composed
of structurally imperfect jennite and 1.4 nm tobermorite.
Feldman and Sereda (1970) proposed a model similar
to the Powers–Brownyard model. The difference lies in
that C–S–H sheets in the Feldman–Sereda model do not
have an ordered layered structure; they are an irregu-
lar array of single layers. Both the Powers–Brownyard
and Feldman–Sereda models essentially describe a lay-
ered structure for the C–S–H gel. However, the C–S–H
gel in models proposed by Wittmann (1979) and Jennings
and Tennis (2000, 2004, 1994) has a colloid structure.
The Wittmann C–S–H model has a three-dimensional net-
work of amorphous colloid gel particles forming a xero-
gel, and the C–S–H gel particles are separated by strongly
absorbed thin films of water. Jennings’ recent C–S–H
model (Tennis and Jennings, 2000; Jennings, 2000, 2004)
proposed a new concept, “globules”, which is the basic
building block with structural water. C–S–H solid with
different gel porosity forms two types of C–S–H: low-
density (LD) and high-density (HD) C–S–H. In this paper
we distinguish the “globules” and LD/HD C–S–H by two
levels: a globules scale, i.e., nanoscale in this research,
and an LD/HD C–S–H gel scale, i.e., sub-microscale in
this work. LD/HD C–S–H particles, unreacted cement
clinkers, large hexagonal crystalline calcium hydroxide

(CH), and capillary cavities and voids, form an even
higher level: microscale cement paste. For a microstruc-
tural model of a well-hydrated Portland cement paste see
Mehta (1986). Modeling of concrete mechanical proper-
ties is given afterward.

There have been only a few successful attempts to
model the macroscopic mechanical properties of cement
paste and concrete from their microstructure, as reported
in the literature. The challenges in simulation stem from
the complex nanoporous structures, limited knowledge
of the individual constituent properties, and the large
variation in curing conditions. Among the few avail-
able research reports on concrete simulation, Bentz et
al. (1995) developed a multiscale cement-based material
model which consists of individual digital-image-based
structural models for C–S–H at the nanometer level, ce-
ment paste at the micrometer level, and a mortar or con-
crete at millimeter level. Bernard et al. (2003) employed
a multiscale micromechanics hydration model, combined
with intrinsic material properties, to predict the early
age elastic properties of cement-based materials. In an-
other study, Ulm et al. (2004) treated concrete as a mul-
tiscale poroelastic material. Feng and Christian (2007)
proposed a three-phase micromechanics model of cement
paste using theories of composite and poromechanics to
predict the properties of hardened cement pastes. They
adopted existing literature values of solid phases, C–S–
H, CH (calcium hydroxide), and cement. However, LD
and HD C–S–H were not distinguished and cement paste
was treated only as a three-phase composite (C–S–H, CH,
and unreacted cement). Haecker et al. (2005) predicted
elastic modulus as a function of degree of hydration us-
ing a finite-element-based “microstructure development
model”.

Research from this current study developed a multi-
scale modeling methodology to relate the nanostructural
properties to the micro and macro performance of con-
crete. This study is built on a four-level microstructural
model. At the molecular and nano scale, fundamental me-
chanical properties of constitutive mineral crystals of ce-
ment, hydrated cement paste (C–S–H globules), sand, and
aggregate are calculated by molecular dynamics (MD)
simulation. These nanoscale properties are used as the in-
put for the computation of sub-microscale LD and HD C–
S–H mechanical properties. At microscale, the effective
properties of cement paste and mortar are predicted with
the help of micromechanics of composite theory and the
microstructural model of hydrated cement paste (HCP)
developed by the authors as shown in Section 3. A void
effect is introduced by an empirical porosity–elastic prop-
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erty relation. To validate the model, resonant ultrasound
spectroscopy (RUS) is used to measure the elastic prop-
erties, which are then compared to the simulation result
for HCP. Finally, at macro (continuum) scale, both the
lattice model and the generalized method of cells (GMC)
are employed to compute the effective properties of con-
crete. The multiscale input and output for each scale are
illustrated in Fig. 1.

2. MULTISCALE APPROACH FOR CEMENT
CONCRETE

Figure 1 illustrates a four-level model to obtain macro-
scale properties for cement-based materials (Dormieux

and Ulm, 2005). Level 1 represents the nanoscale C–S–
H solid phase which includes globules and nanopores.
Level 2 includes LD and HD C–S–H and the gel pores,
which have a dimension of roughly larger than 16.6 nm
diameter. Level is cement paste which is composed of
C–S–H matrix, residual cement clinkers, CH, and macro-
pores. Monosulfate hydrate (AFm phase) has a minor ef-
fect on the structural properties of cement paste, and for
simplicity it was replaced with CH in this study. Level 4
is a composite which can be mortar or concrete.

Level 1 C–S–H plays a central role in the study of
cement-based material properties. A widely accepted C–
S–H colloidal model is by Jennings and co-worker (Ten-
nis and Jennings, 2000; Jennings, 2000; 2004), in which

FIG. 1: Diagram of the multiscales, input and output.
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they assumed that two types of C–S–H, LD and HD, ex-
ist in cement gel. LD and HD C–S–H have 37% and
24% gel porosity, respectively. Both LD and HD C–S–H
are formed by the basic building blocks called globules,
having a dimension of 5.6 nm and nanoporosity of 18%,
which is usually filled with structural water.

Gel porosities of C–S–H and nanoporosity of glob-
ules are intrinsic properties of concrete. The volumetric
proportion of LD C–S–H and HD C–S–H changes from
one cement paste to another, depending on the water-to-
cement ratio and curing condition. In the development of
the microstructure of cement, HD C–S–H usually forms
around residual cement clinkers while CH is generally
formed in between LD C–S–H and is adjacent to macro-
pores (Dormieux and Ulm, 2005).

There are two types of multiscale modeling tech-
niques: hierarchical and concurrent. Hierarchical mod-
eling starts the computation from lower level materials,
such as the crystalline structure of C–S–H, and these com-
puted lower level properties are used as input data for
the next level computation, and so on. In the concurrent
modeling, various methods, such as finite element (FE),
molecular dynamics (MD), etc., are applied to regions of
different scales of the material at the same time. Research
for this paper employs the hierarchical modeling method
to simulate cement-based materials (concrete and mortar)
as shown in Fig. 2.

3. HYDRATED CEMENT PASTE AND MORTAR
MODEL

The micromechanics model for cement paste and mor-
tar discussed in this paper is based on the following two
observations (Dormieux and Ulm, 2005): (1) unreacted
cement is generally rimmed by HD C–S–H; and (2) CH
tends to grow in between LD C–S–H sheets. The scheme
for this proposed hydrated cement model is illustrated in
Fig. 3. In this model, LD C–S–H and CH are assumed
to form a LD/CH composite, which can then be the in-
clusion of the next level of hydrated cement composite
(composite 2). Unreacted cement is enclosed by HD C–
S–H to form a HD/cement composite (composite 1–1),
which can be the matrix of composite 2. Mortar (compos-
ite 3) is considered to be composed of sand particles and
composite 2.

For the multiscale computation, MD is utilized to sim-
ulate the mechanical properties of nanoscale solid phase
C–S–H (C–S–H structural related mineral crystals to-
bermorite 14Å and jennite), calcium hydroxide (CH),
and sand (alpha quartz). Then the properties of LD and

FIG. 2: Multilevel microstructure images of cement-
based materials.

HD C–S–H gels are calculated using microporomechan-
ics theories (Wu et al., 2008). Next, the effective prop-
erties of two-level composites—composite 1 (1–1, and
1–2) and composite 2—are calculated using the Mori-
Tanaka method (M-T). Finally M-T theory was applied
to obtain the homogenized properties of mortar (compos-
ite 3). In order to account for the presence of voids in
the mortar (mortar porosity), empirical elastic properties–
porosity relations are used to calculate the effective prop-
erties of mortar. However, the volumes of major phases in
the cement paste model need to be determined prior to the
homogenization process.

The volume of major hydrated cement phases was pre-
sented by Powers and Brownyard (1948, 1960) and Jen-
nings and Tennis (1994). Whereas Powers’ model can
only predict the volume of unreacted cement, Jennings’
model can estimate the relative amount of unreacted C–
S–H and CH. Highlights of the Jennings model are sum-
marized as Eqs. (1)–(4):

Vunreactedcement = c (1− αtotal)
(

1
ρcement

)
(1)

VCH = c(0.189α1p1 + 0.058α2p2) (2)
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FIG. 3: Proposed cement paste and mortar model for w/c of 0.4.

VAFm = c(0.849α3p3 + 0.472α4p4) (3)

VCSH Solid = c(0.278α1p1 + 0.369α2p2) (4)

whereVunreacted cement, VCH, VAFm, andVCSHsolid are
the volumes of unreacted cement, CH, AFm, and solid
C–S–H material in 1 g of cement paste, respectively, and;
is the initial weight of the cement, defined by

c =
1

1 + w0/c
(5)

wherepi is the percent ofith phase (C3S: i = 1, C2S: i =
2, C3A: i = 3, and C4AF: i = 4) in the unreacted cement,
andαi is the degree of hydration of the four cement con-
stituents, expressed as

αi = 1− exp (−ai (t− bi)
ci) (6)

In the above,ai, bi, andci are constants determined by
Taylor (1987), andt is the age of the hydrated cement.
The composition of cement used in this paper is shown
in Table 1. The water-to-cement ratiow0/c used is 0.4.
Two types of C–S–Hs can be distinguished with the ratio
1:1, based on Dormieux and Ulm (2005). The calculated
volume fractions of different components using Jennings’
model are shown in Fig. 3.

TABLE 1: Composition of cement constituents.

Phases WP (%) VP (%)
C3S 73.9 73
C2S 12.3 10
C3A 6.3 8.8

C4AF 7.5 8.2
WP: weight percentage
VP: volume percentage

4. NANOSCALE: MD SIMULATION OF
NANOPARTICLES

Understanding the properties of basic constituents of ma-
terials is the first step in multiscale modeling. With the
recent advancement in experimental techniques, more in-
sight has been gained into concrete’s nanostructure.

At nanoscale (see level 1 in Fig. 1), the mechanical
properties of nanoparticles of C–S–H, CH, cement con-
stituents, and sand are calculated using MD simulations.
The corresponding crystalline structures of these materi-
als are shown in Fig. 4.

MD is a computational technique that models the be-
havior of molecules. The force fields of computational
chemistry and materials science are applied for studying
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FIG. 4: Unit cell of crystalline structure of(a) jennite
(C–S–H),(b) calcium hydroxide (CH),(c) alpha quartz
(sand), and(d) C3S (cement).

small chemical molecular systems and material assem-
blies. The common feature of molecular modeling tech-
niques is that the system is at the atomistic level; this
is in contrast to quantum chemistry which applies quan-
tum mechanics and quantum field theory (Lowe, 1993).
The main benefit to molecular modeling is in allowing
more atoms to be considered compared to quantum chem-
istry during the simulation. This is accomplished by start-
ing with a small number of molecules and persistently
increasing the unit cell size until a periodic system is
reached, which represents the full-scale material prop-
erties. The procedure recommends simulating unit cells
with 3000 atoms or more in order to reach the periodic
unit cell that represents the infinite system.

For MD simulation, commercially available software
Materials Studio (Accelrys, Inc., 2008) was utilized to es-
timate the mechanical properties of nanoparticles of Port-
land cement and hydrated cement nanoparticles. More de-
tail on MD simulations are reported in Wu et al. (2010a,
b).

5. SUB-MICROSCALE:
MICROPOROMECHANICS CALCULATION OF
EFFECTIVE PROPERTIES OF LD AND HD
C–S–H

Microporomechanics is a useful tool to study the mechan-
ics and physics of multiphase porous materials (Dormieux
et al., 2006). At the second level of this study (see Fig. 1),

properties of C–S–H gels are computed using microp-
oromechanics. C–S–H gel is a porous material with 37%
(LD) and 24% (HD) porosity (Jennings, 2000). According
to Dormieux and Ulm (2005) the poroelastic properties of
LD and HD C–S–H can be calculated using the following
relations:

K = Gs
4 (1− φ0)

3φ0 + 4(Gs/Ks)
(7)

G = Gs
(1− φ0) (8Gs + 9Ks)

6φ0(2Gs + Ks) + 8Gs + 9Ks
(8)

whereK andG are effective bulk and shear moduli;Gs

andKs are shear and bulk modulus of the solids obtained
from MD simulation; andφ0 is the porosity. The prop-
erties of LD and HD C–S–H are estimated in Wu et al.
(2008a,b).

6. MICROSCALE: HOMOGENIZATION OF HD
C–S–H WITH RESIDUAL CEMENT AND LD
C–S–H WITH CH

The two-phase sphere micromechanics model (Abudi,
1991) is utilized to estimate the effective properties of
level 3 composites: composite 1 (1–1, and 1–2). The vol-
ume fraction of unreacted cement in the composite 1–1 is
given by

V Funreacted cem =
V Funreacted cem

V Funreacted cem + V FHD CSH

=
9%

9% + 23%
= 0.281

(9)

Obtained results for composite 1 (1–1, and 1–2) are
shown in Table 2.

In order to compute the effective properties of cement
paste, the M-T micromechanics model is used to homog-
enize two composites: unreacted cement-HD C–S–H and
CH-LD CSH shown in Table 2. The volume fraction of
inclusion (CH-LD CSH) in this modelVF CH−LDCSH is
taken as 0.68, sinceVFCH=45% andVFLD−CSH = 23%.
Therefore, the effective properties of cement paste with
zero porosity (e.g., Young’s modulus,Eo, Poisson’s ratio,
vo, bulk modulus,Ko, and shear modulus,Go) are calcu-
lated as

E0 = 43.1 GPa ν0 = 0.3 K0 = 35.9 GPa

G0 = 16.6 GPa
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TABLE 2: Computation of mechanical properties of composites: unreacted cement/HD
CSH, and CH/LD C–S–H.

Composite (inclusion/matrix) VFi Ei νi Em νm Eeff νeff

Unreacted cement/HD CSH 0.281 56.6§ 0.29 41 0.3 44.87 0.3
CH/LD CSH 0.662 50.02 0.31 30.8 0.29 42.31 0.3

∗ The unit in this table is GPa except forVF andν.
§ Cement particles porosity effect considered asE = E0e

−3.4φ = 137e−3.4(0.26) = 56.6 GPa.

7. MACROSCALE: EFFECTIVE PROPERTIES OF
MORTAR AND CONCRETE

7.1 Elastic Properties–Porosity Relation

Porosity is one of the most important factors which affect
the strength of cement paste. Many analytical or semian-
alytical equations may be used to describe the moduli-
porosity relation of a porous material. A good summary
of these equations is given by Yoshimura et al. (2007). For
reference, selected relations are listed in Table 3.

Knudsen (1959) proposed an empirical equation to de-
fine the relation between mechanical strength and poros-
ity. Relation no. 1 in Table 3 is the Knudsen law, which is
the one most widely used. Porosity has a great influence
on the effective properties of concrete, as stated by Mehta
(1986).

The effective properties of hydrated cement paste cal-
culated using Eqs. (1)–(4) in Table 3 are given in Table 4.
The Young’s moduli of hydrated cement paste (HCP) fall

in the range of 15.4–23.7 GPa. Poisson’s ratio computed
by Eqs. (3) and (4) is 0.27. The results in Table 4 are used
as the input parameters for next-level computation to ob-
tain properties of mortar.

7.2 Effective Properties of Mortar

M-T micromechanics theory is used to compute the ef-
fective properties of composite mortar (composite 3 in
Fig. 3) in which sand (alpha quartz) is considered the in-
clusion and cement paste is the matrix. The volume frac-
tion of the sand used in the calculation is 1/3 of the total
volume of mortar. The homogenization results for mortar
are given in Table 5.

7.3 Effective Properties of Concrete

Two micromechanics models are used to calculate the ef-
fective properties of concrete: generalized method of cell

TABLE 3: Selected elastic constants-porosity relations (after Yoshimura et al. 2007).∗

Eq. Author (year) Elastic constants–porosity relation
1 Knudsen (1959) E = E0e

(−kφ0)

2 Helmuth and Turk (1966) E = E0(1− φ0)kk = 3

3 Kerner (1952)
G = G0(1− φ0)(7− 5ν0)/[φ0(8− 10ν0) + 7− 5ν0]
K = 4K0G0(1− φ0)/(4G0 + 3φ0K0)

4 Hashin (1962)
E = E0(1− φ0)/{1 + (1 + ν0)(13− 15ν0)φ0/[2(7− 5ν0)]}
G = G0(1− φ0)/[1 + 2(4− 5ν0)φ0/(7− 5ν0)]
K = K0(1− φ0)/{1 + (1 + ν0)φ0/[2(1− 2ν0)]}

∗Constantk in Eq. (1) follows Velez et al. (2001) andk = 3.4. −K0, G0, andν0 are from the calculated results of
cement paste in Section 6. Porosity in this studyϕ0 = 8.1%

TABLE 4: Effective properties of hydrated cement paste.

No. E0(GPa) Eq. in Table 3 Ehcp(GPa) νhcp

1

43.1

1 16.1 -
2 2 15.4 -
3 3 23.7 0.27
4 4 23.7 0.27
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TABLE 5: Effective properties of mortar.

Case Matrix (Cement paste) Inclusion (sand) Mortar
E K G E K G E ν

1 23.7 17.17 9.33 98.66 42.05 44.48 47.4 0.21
2 23.7 17.17 9.33 62.5 42.05 44.48 39 0.24

Unit in this table is GPa, except for Poisson’s ratio.

(GMC) (NASA, 2002; Aboudi, 1989; Aboudi, 1996) and
the lattice model. Both methods may be applied to com-
posites with irregular shape inclusions and different pack-
ing arrangements.

The lattice model (spring network) has been utilized to
compute effective elastic moduli and simulate crack for-
mation in materials (Ostoja-Starzewski, 2002; Alkateb et
al., 2009). In this paper, regular triangular lattices with
linear central springs (Fig. 5) are adopted. Elastic mod-
uli of individual phases are mapped into spring stiffness
according to the formula

Cijkl =
α

2
√

3

6∑
n=1

lni lnj lnk lnl (10)

where l1 = cos θ, l2 = sin θ are the direction of the
spring, andα is the spring constant.

The springs’ stiffnesses are assigned according to the
following criteria: if the spring falls within the inclusion
boundary it is assigned a stiffnesski; if it falls within the
matrix boundaries it is assigned a stiffnesskm; for any

FIG. 5: Fine mesh spring network with a zoom-in for a
unit cell.

bonding spring connecting both phases, it is assigned a
stiffnesskb. The values ofki andkm are calculated ac-
cording to the individual phase’s elastic properties ac-
cording to Eq. (12):

C1111 = C11 =
3
√

3
8

α, C1122 = C12 =
√

3
8

α,

C1212 = C66 =
√

3
8

α

(11)

A lattice used in the computation is shown in Fig. 6.
The effective properties of concrete are computed by

GMC and the lattice model, and are given in Table 6. The
Young’s moduli given by GMC and the lattice model are
42 GPa and 36.3 GPa, respectively.

8. RESULTS VALIDATION

To validate the numerical results of this study, RUS is
employed to measure the elastic constants of hydrated
cement paste. RUS is a modern nondestructive acoustic

FIG. 6: Spring network mesh of concrete.
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TABLE 6: Effective elastic moduli of concrete by GMC
and lattice model.

Emortar 39
Eagg 46.6∗

Econ eff : GMC 42
Econ eff : lattice 36.3

∗Properties of concrete estimated from elastic-porosity rela-
tion E = E0e

(−kφ0) = 98.66e(−3)(0.25) = 46.6, whereE0

is the modulus of quartz,φ0 is the porosity of aggregate, and
Econ eff is the effective Young’s modulus of concrete. The
unit in this table is GPa.

technique which can be used to measure the elastic prop-
erties of solids with high precision (Migliori et al., 1993,
1990). RUS measures the eigenmodes of vibration of par-
allelepiped, spherical, or cylindrical samples. An RUS in-
strument is shown in Fig. 7.

RUS test samples were prepared and cured according
to ASTM standard C192. The water-to-cement ratiow0:
c is 0.4. The amount of cement used in each cubic meter
cement paste is 325 kg. Although the samples can be of
different shapes, this research used an accurately shaped
parallelepiped sample. The water-to-cement ratio for the
samples is the same as used in the concrete specimens,
0.4.

To perform the test, the two corners of the test sam-
ple were carefully placed between two transducers. Next,
one of the two transducers applied the vibrations to the
sample using the frequency sweeping technique and the
other recorded the frequency amplitude of the sample’s
response in terms of the natural frequencies. Finally, the
elastic constants were determined (Maynard, 1996).

FIG. 7: A room temperature RUS system with a cement
paste sample.

The elastic constants measured by RUS for a hydrated
specimen with water-to-cement ratio of 0.4 and poros-
ity of 8.1% are an elastic modulus E of 21.55 GPa, and
the Poisson’s ratioν of 0.22, which agree quite well with
the computed results in Table 3. More details on the RUS
measurement of hydrated cement paste are reported in the
authors’ recent paper (Wu et al., 2009).

The Young’s modulus of concrete was obtained by the
ASTM C469 standard test method for static modulus of
elasticity and Poisson’s ratio of concrete in compression
using a concrete compression machine. The volume of
aggregate in unit volume of concrete is 0.72. Laboratory
tests give the results of Young’s modulus for concrete as
38.2 GPa, which matches the values given by GMC and
lattice model: 42 and 36.3 GPa.

9. CONCLUSIONS

A multiscale simulation methodology was developed to
relate the nanoscale constituent properties of cement con-
crete to its micro- and macroscale properties. Nanoscale
properties were obtained using MD simulation; micro-
scopic properties were obtained using microporomechan-
ics theory; and macroscopic properties were obtained
using M-T composite theory. Concrete properties were
obtained using GMC/HFGMC approaches. Throughout
these simulations, lower scale results were used as the
input data for higher scale simulations. The input param-
eters for MD simulation were obtained from the funda-
mental physical–chemical properties of constituting ele-
ments. The simulated results are compared with experi-
mental results and showed quite good agreement at each
calculation level. Therefore, it is demonstrated that the hi-
erarchical approach used in this study can be a powerful
tool to investigate the properties of cement concrete from
nanoscale to macroscale. Ultimately, the goal is to utilize
such tools for the design of concrete that is stronger and
more environmentally friendly.
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An extended multiscale finite element method (EMsFEM) is developed to study the equivalent mechanical properties of
periodic lattice truss materials. The underlying idea is to construct the numerical multiscale base functions to reflect
the heterogeneity of the unit cell of periodic truss materials. To consider the coupled effect among different directions in
the multidimensional problems, the coupled additional terms of base functions for the interpolation of the vector fields
are introduced. Numerical results show that the base functions constructed by linear boundary conditions will induce
nonequilibrium of the boundary nodal forces and thus lead to a strong scale effect of the unit cell in the multiscale com-
putation. Thus, more reasonable oscillatory boundary conditions are introduced by using the oversampling technique
in the construction of the multiscale base functions of the unit cell. A special algorithm is introduced to improve the
properties of the equivalent stiffness matrix of the unit cell to make the numerical results more accurate. The advantage
of the developed method is that the downscaling computation could be realized easily and the stress and strain in the unit
cell can be obtained simultaneously in the multiscale computation. Therefore, the developed method has great potential
for strength analysis of heterogeneous materials.

KEY WORDS: multiscale finite element method, truss material, homogenization method, downscaling
computation, base function

1. INTRODUCTION

Motivated by recent advances in manufacturing tech-
niques, ultralight materials are becoming an essential part
of present engineered materials, because they offer ad-
vantages such as light weight, ease of construction, high
stiffness, and high strength (Evans et al. 2001). As one of
the most attractive ultralight materials, lattice truss ma-
terial has received more and more attention for its high
stiffness-to-weight and strength-to-weight ratios in the
past few years (Brittain et al., 2001; Wadley, 2006) and
has been widely used in aeronautic engineering structures
(Huybrechts et al., 2002). A lattice truss structure consists
of only two force members which are connected together
at their ends by pin joints [Fig. 1(a)]. It is composed of
many periodic cells which can be decomposed in elemen-
tary bars [Fig. 1(b)]. Much research has already been done

on mechanical properties of lattice truss materials. Desh-
pande et al. (2001) investigated the effective mechani-
cal properties of the octet-truss lattice structured mate-
rial, both experimentally and theoretically. They found
that the strength and stiffness of the octet-truss mate-
rial are stretching-dominated and compare favorably with
the corresponding properties of metallic foams; thus,
this material may become a substitute metallic foams in
lightweight structures.

When a direct numerical method such as the finite el-
ement method (FEM) is used to solve large lattice truss
structure problems, the degrees of freedom of the result-
ing discrete system will be too large to be managed, even
with the help of high-speed modern computers. It will
need a tremendous amount of memory storage and com-
puting time. On the other hand, in engineering practice, it
is often sufficient to predict the averaged effect of small
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(a) (b) 

FIG. 1: (a) Photograph of the octet-truss lattice structure.(b) A unit cell of the octet-truss lattice structure. The
darkened rods represent an octahedral cell while the nodes labeled p1-p4 form a tetrahedral cell (Deshpande et al.,
2001).

scales on large scales for mechanical analysis of compli-
cated materials. Noor (1988) has summarized some com-
monly used approaches on continuum modeling of repeti-
tive lattice structures. In recent decades, the homogeniza-
tion method based on double-scale asymptotic expansions
has been developed and widely used in multiscale compu-
tation of periodic materials (Benssousan et al., 1978; Has-
sani and Hinton, 1998; Yan et al., 2006; Fish et al., 1997;
Yu and Fish, 2002). However, these methods have some
limitations. Besides the local periodicity hypothesis, these
methods request that the ratio between the small-scale
length and the large-scale length be very small.

The multiscale finite element method (MsFEM) has
been widely used for numerically solving second-order
elliptic boundary value problems with high oscillating co-
efficients since it was proposed and improved by Hou and
Wu (1997), Hou et al. (1999), Chen and Hou (2003),
Efendiev and Hou (2007), and Chu et al. (2008). For
example, the method has been generalized and success-
fully used for numerical simulation of two-phase flow
in heterogeneous porous media (Hou, 2005; Efendiev et
al., 2006; Aarnes, 2004; Aarnes et al., 2006). Recently,
Dostert et al. (2008) investigated the MsFEM for the
stochastic permeability field as well as application to un-
certainty quantification. Moreover, several similar multi-
scale methods have been developed, such as the multi-
scale finite volume method (Jenny et al., 2003) and the
finite volume multiscale finite element method (He and
Ren, 2005). However, fewer works discuss vector field
problems of computational solid mechanics. Zhang et al.
(2009) seems to be the first work in which the MsFEM

was developed for solving the coupling problems of con-
solidation of heterogeneous saturated porous media under
external loading conditions. The main idea of the MsFEM
is to construct finite element base functions numerically
which can capture the small-scale information in each
coarse-scale element by locally solving Dirichlet bound-
ary value problems. The effect of small-scale properties
is correctly captured via these base functions. Thus, the
method provides an effective way to capture the large-
scale solutions on a coarse-scale mesh without resolving
all the small-scale features. However, it seems that the
method will face some difficulties when it is extended to
deal with the problems in solid mechanics where the bulk
expansion/contraction phenomena need to be considered
in the construction of the base functions.

In this paper, the extended multiscale finite element
method (EMsFEM) is developed for numerical homoge-
nization of lattice truss materials. To consider the coupled
effect among different directions in the multidimensional
problems, the coupled additional terms of base function
for the interpolation of the displacement field are intro-
duced. We demonstrate, through extensive numerical ex-
periments, that the small-scale features induced by het-
erogeneities of truss stiffness can be well captured via this
technique. However, from our computational experience,
it can also be observed that the construction of base func-
tions with linear boundary conditions will lead to scale
effects in some cases. This is induced by nonequilibrium
of the boundary nodal forces of the unit cells. To over-
come this difficulty, an adaptive oversampling technique
is proposed to construct more accurate boundary condi-
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tions for unit cells in the construction of the multiscale
base functions.

Different from other homogenization methods, the re-
sults obtained from the EMsFEM can not only repre-
sent the mean field solution of the heterogeneous mate-
rials in homogeneous level, but also reflect well the local
mechanical behavior of the materials in the microlevel.
That is to say, the method developed here can be directly
used for downscaling computation, and the real stress and
strain within the unit cell can be obtained simultaneously
in the multiscale computation. Thus, the EMsFEM devel-
oped here has great potential for strength analysis of het-
erogeneous materials and is applicable to general nonlin-
ear problems.

Our method can also be extended to solve nonperiodic
solid materials. However, for simplicity and as the first
step of the research work of the EMsFEM, only 2D pe-
riodic truss materials are considered in this paper, so that
some basic properties of the method could be explored.
The numerical experiments show that the results obtained
by the EMsFEM agree well with the reference solutions.
Moreover, it reduces the computational cost and memory
storage drastically.

This paper is organized as follows: In the next section,
a brief overview of the multiscale finite element is pre-
sented first, and then in Section 2 the construction process
of the base functions with a linear boundary condition for
the unit cell of lattice truss materials is discussed in de-
tail, from which the unit cell’s equivalent stiffness matrix
is deduced. In Section 3, the representative volume ele-
ment (RVE) method is briefly introduced. In Section 4,
four representative numerical examples are carried out for
the comparison of our multiscale method with the RVE
method and standard finite element method. In Section 5
we analyze the scale effect and source of error of the EMs-
FEM with linear boundary conditions. Then more reason-
able oscillating boundary conditions are constructed us-
ing the oversampling technique in Section 6, and a spe-
cial numerical algorithm is applied to modify the equiva-
lent stiffness matrix obtained with the oscillatory bound-
ary conditions. In Section 7, downscaling computation is
carried out to get internal forces of truss elements in fine-
scale mesh. Finally, some discussion is presented.

2. EXTENDED MULTISCALE FINITE ELEMENT
METHOD (EMSFEM)

In this section, the numerical procedure of the EMsFEM
for mechanical analysis of periodic truss materials is de-
scribed. We first briefly review the principle idea of the

standard multiscale finite element method. Then the con-
struction processes of the multiscale base functions for
the unit cell of periodic truss materials are presented. Fi-
nally, the equivalent stiffness matrix of the unit cell is de-
rived with the use of the base functions.

2.1 Overview of MsFEM

The MsFEM was first developed by Hou and Wu (1997)
to solve the elliptic equations with multiscale coefficients.
It provides an effective way to capture the large-scale so-
lutions on a coarse-scale mesh without resolving all the
small-scale features. This is accomplished by construct-
ing the multiscale base functions that are adaptive to the
local property of the differential operator. The small-scale
information is then brought to the large scales through
the coupling of the global stiffness matrix, and the ef-
fect of small scales on the coarse scales is correctly cap-
tured. Thus, the finite element method needs only to be
handled on the coarse-scale meshes. It greatly reduces the
degrees of freedom. The method is applicable to the gen-
eral multiple-scale problems without restrictive assump-
tions. The construction of base functions is fully devel-
oped from element to element. Thus, the method is per-
fectly parallel and is naturally adapted to massively paral-
lel computers. Motivated by previous works, in this paper
the original MsFEM is extended to the mechanical analy-
sis of truss materials.

2.2 The Base Functions of Unit Cell of Periodic
Truss Materials

Since the solid deformation is cross-coupling among dif-
ferent spatial directions for the influence of Poisson’s ef-
fect, the main difficulty of the EMsFEM is how to con-
struct finite element base functions which can accurately
capture the small-scale heterogeneities of the unit cell.
For the displacement field of the truss unit cell, in or-
der to consider the heterogeneity in the unit cell, the
base functions must be constructed separately for each
coordinate direction. In two-dimensional problems (2D),
two kinds of base functions for interpolation of the dis-
placement field of the 2D truss structures are constructed
in which one is used for the displacement interpolation
in x-direction and the other is used fory-direction. The
base functions are constructed by solving the equilibrium
equation in each fine-scale mesh within the unit cell with
some specified boundary conditions. Hou and Wu et al.
(1997, 1999) demonstrated that the boundary conditions
of the base functions have a big influence on the accu-
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racy of the multiscale method. This is also suitable for the
computation of vector fields. Thus, the linear boundary
conditions which were generally used in the standard Ms-
FEM are studied here first, and then more accurate bound-
ary conditions, i.e., oscillatory boundary conditions, are
proposed to construct the base functions in Section 6.

Without loss of generality, take a truss unit cell as an
example (see Fig. 2), whereNi denotes the base function
of nodei, which satisfiesNi|j = δij , (i, j = 1, 2, 3, 4),
whereδ is the Kronecker delta. In the two-dimensional
vector field,Nix andNiy are constructed numerically and
independently. First, let us consider the construction of
N1x as shown in Fig. 3. Our earlier research (Zhang et
al., 2009) has introduced a simple method for the con-
struction of base functions of a solid skeleton. As shown
in Fig. 3(a), the displacements at all boundary nodes are
not constraint in they-axis direction except node 3, for
which the displacements are fixed to zero in both coordi-
nate directions in order to avoid rigid displacement. For
the linear boundary conditions, a unit displacement is ap-
plied on node 1 inx-positive direction, and the values vary
linearly along boundaries 12 and 14, just as in the stan-
dard bilinear (linear) base functions. At the same time, the
nodes on boundary 34 and boundary 23 are constraint in
thex-direction. Using the boundary conditions mentioned
above, the internal displacement field of the unit cell can
be solved directly by standard finite element analysis in
fine-scale mesh, and the base functionN1x can be ob-
tained. The rest of the base functions of the truss cell can
be constructed in a similar way. It is easy to verify that the
base functions constructed above satisfy

∑4
i=1 Nix = 1

1 2

34

FIG. 2: A truss unit cell.

1 2

34

unit displacement

(a)

2 1 2

34

unit displacement

(b)

FIG. 3: The construction of base functions for a truss
cell: (a) boundary constraints in literature (Zhang et al.,
2009) and(b) boundary constraints in this paper.

and
∑4

i=1 Niy = 1 in the unit cell. In particular, for the
homogeneous cell, the values of constructed base func-
tions are equal to those of the standard bilinear base func-
tions of a four-node rectangular element, i.e., for the co-
ordinate system shown in Fig. 4, we have the following
relationship when the unit cell is homogeneous

Ni = Nix = Niy =
(a + x0)(b + y0)

4ab
(1)

wherex0 = xix/a, y0 = yiy/b, andNi is the bilinear
base function of nodei.

From our computational results, it can be seen that
the construction method mentioned above cannot capture
well the small-scale deformation information in the unit
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1 2

34

aa

b

b

x

y

FIG. 4: Bilinear rectangular element.

cell due to Poisson’s effect, especially for a heterogeneous
unit cell. So in the present study, a new method for the
construction of base functions is introduced. In order to
consider the coupled effect among different directions in
multidimensional problems, the coupled additional terms
of base functions are introduced for the interpolation of
the vector fields. Different from the previous boundary
constraints, the boundary nodes of the cell are all con-
straint in they-direction in the new construction method,
as shown in Fig. 3(b). For the linear boundary conditions,
a unit displacement is applied on node 1 inx-positive di-
rection, and the values vary linearly along boundaries 12
and 14, just the same as the steps mentioned above. Thus,
the base functionsN1x andN1xy can be obtained. Un-
like the original MsFEM,Nixy is proposed here, which
is a coupled additional term and means the displacement
field in y-direction within the unit cell induced by unit
displacement of nodei in thex-direction.

It can been verified that the base functions constructed
above satisfy





4∑

i=1

Nix = 1,

4∑

i=1

Niy = 1

4∑

i=1

Nixy = 0,

4∑

i=1

Niyx = 0

(2)

which ensures the rigid displacement of the unit cell and
the compatibility between the neighboring unit cells.

Once the base functions are constructed, the displace-
ment fields within the unit cell can be expressed as

u =
4∑

i=1

Nixu
′
i +

4∑

i=1

Niyxv′i (3)

v =
4∑

i=1

Niyv
′
i +

4∑

i=1

Nixyu′i (4)

Equations (3) and (4) can be given in a unified form

u = Nu′E (5)

whereN is the base function matrix of the unit cell,u
is the displacement vector of the nodes in the fine-scale
mesh, andu′E is the displacement vector of the unit cell
in macro level. They can be expressed as

u =
[

u1 v1 u2 v2 · · · · · · un vn

]T

N =
[
Rx(1)T Ry(1)T Rx(2)T Ry(2)T

· · · · · · Rx(n)T Ry(n)T
]T

(6)

u′E =
[

u′1 v′1 u′2 v′2 u′3 v′3 u′4 v′4
]T

where

Rx(i) =
[
N1x(i) N1yx(i) N2x(i) N2yx(i)

N3x(i) N3yx(i) N4x(i) N4yx(i)
]

Ry(i) =
[
N1xy(i) N1y(i) N2xy(i) N2y(i)

N3xy(i) N3y(i) N4xy(i) N4y(i)
]

(7)

and n is the total node number of the fine-scale mesh
within a unit cell.

We will demonstrate through extensive numerical ex-
amples that the new method is superior to the previous
one for constructing base functions of a truss cell and can
capture well the small-scale information within the unit
cells.

2.3 Equivalent Stiffness Matrix of the Truss Unit
Cell

The multiscale base functions are utilized to construct the
equivalent stiffness matrix of the truss unit cell. Consid-
ering an arbitrary truss element within the unit cell shown
in Fig. 5, in the local numbering scheme, the two nodes
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FIG. 5: A two-dimensional truss element.

of the element are numberedm andn. The globalX, Y-
coordinate system is fixed and does not depend on the
orientation of the truss element. The element strain en-
ergy in local coordinate is given by

πe =
1
2
ke∆l2 (8)

where∆l is the length change of the element andke is the
elastic coefficient. Both of them can be expressed as

∆l=
[ − cosθ − sin θ cosθ sin θ

]




um

vm

un

vn





,

ke =
EA

l

(9)

whereE is Young’s modulus,A is the element cross-
sectional area, andl is the length of the element.

Using Eqs. (5), (6), and (7), we get




um

vm

un

vn





=




Rx(m)
Ry(m)
Rx(n)
Ry(n)


 {u′E} (10)

By using Eq. (10), we find that Eq. (9) yields

∆l = [Ge] {u′E} (11)

where

[Ge]=
[− cos θ − sinθ cos θ sin θ

]



Rx(m)
Ry(m)
Rx(n)
Ry(n)


 (12)

Substituting Eqs. (11) and (12) into Eq. (8), we get

πe =
1
2
u′TEGeTkeGeu′E (13)

Adding up the strain energy of all the elements within the
unit cell, the total strain energy is obtained as follows

πE =
M∑

i=1

πi
e =

1
2
u′TE

[
M∑

i=1

GeiTki
eG

ei

]
u′E (14)

whereM is the total number of truss elements within the
unit cell. It is obvious that the strain energy of the unit cell
can be expressed by a displacement vector of four corner
nodes, as shown in Eq. (14).

As mentioned above, the equivalent stiffness matrix of
the truss unit cell can be expressed as

KE =
M∑

i=1

GeiTki
eG

ei (15)

Once the equivalent stiffness matrix is obtained, the stan-
dard FEM is then able to be implemented on the coarse-
scale mesh, which clearly reduces the degrees of free-
dom in macro-level computation. In particular, for peri-
odic materials, the equivalent stiffness matrix of the unit
cell needs only to be solved one time.

3. REPRESENTATIVE VOLUME ELEMENT (RVE)
METHOD

As a classical homogenization method, the representative
volume element method has been widely used to predict
the effective macroscopic property of the heterogeneous
materials because of its clear mechanical conception and
simplicity. In this paper, the numerical results obtained by
the developed method are compared with those obtained
by the RVE method. The RVE method has three types of
classical boundary conditions: the uniform displacement
boundary conditions (Dirichlet type), the uniform trac-
tion boundary conditions (Neumann type), and the peri-
odic boundary conditions. Many authors (Yan et al., 2006;
Kouznetsova, 2002; Terada et al., 2000; Pecullan et al.,
1999) have demonstrated that the apparent properties ob-
tained by application of uniform displacement boundary
conditions on a microstructural cell usually overestimate
the effective properties, while the uniform traction bound-
ary conditions lead to underestimation. Compared with
the above two conditions, the periodic boundary condi-
tions provide a better estimation of the overall properties;
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therefore, the periodic boundary conditions are adopted
in this work.

The periodic conditions can be expressed as follows:

~x+ − ~x− = FM · ( ~X+ − ~X−) (16)

whereFM is the macroscopic deformation (gradient) ten-
sor, ~X is the initial position vector (in the reference do-
mainV0), ~x is the actual position vector (in the current do-
mainV ), index “+” means along the positiveX direction,
and “-” means along the negativeX direction, as shown in
Fig. 6.

In the RVE method, the strain energy of effective ho-
mogeneous material of the unit cell,Φmacro, is defined
as

Φmacro =
1
2

∫

R

σ : εdΩ =
1
2
ε̄ : C : ε̄ (17)

whereC is the effective elastic tensor andε̄ is the macro-
strain of the unit cell.

At the same time, the strain energy of the correspond-
ing truss unit cell is calculated by accumulating the en-
ergy of all the truss elements within the unit cell; thus,
the equivalent elastic tensorC can be obtained under the
conception of equivalence of strain energy.

4. NUMERICAL EXAMPLES

In this section, four representative numerical examples
are presented. The numerical results obtained by the EMs-
FEM are compared with those obtained by direct finite

RVE

1 2

34 +

+-

-

FIG. 6: A typical 2D representative volume element
(RVE).

element solution, which are regarded as reference val-
ues. Moreover, the problems are also solved by the RVE
method with periodic boundary conditions for compari-
son, noting that the unit cells used in the EMsFEM and
the RVE method are the same. For the EMsFEM, the base
functions of the unit cell with linear boundary conditions
are constructed by two kinds of methods mentioned in
Section 2.2, respectively. Numerical results obtained by
these numerical methods are designated as EMsFEM-L1,
EMsFEM-L2, FEM-F, and RVE-P, respectively. Further-
more, all these numerical experiments are dimensionless.

Example 1.For the first numerical example, we con-
sider a truss structure which is composed ofnx × ny =
30 × 6 unit cells, wherenx andny denote the number
of unit cells in theX andY directions, respectively. The
internal elements of the unit cell have the same material
properties and cross-sectional areas; thus, the unit cell is
homogeneous. The sizes of truss elements in the unit cell
are shown in Fig. 7(a). Young’s modulus is used as the

 3*10

3
*
1
0

(a)

1000X

Y

(b)

FIG. 7: A truss structure composed of periodic unit cells.
(a) Homogeneous unit cell. Cross-sectional areas of the
outer elements are 0.5, while for internal elements, they
are 1.0.(b) The loading and constraint conditions.
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same in all these examples with a magnitude of 1.0E6.
The left side of the truss structure is fixed in the two axis
directions, and a uniformly distributed load is applied on
the right side, as illustrated in Fig. 7(b). Figure 8 shows
the true truss structure and the coarse-scale mesh that is
used by the EMsFEM and the RVE method. Figure 9
shows the results of theY-direction displacement of the
points on the centroidal plane of the cantilever beam. For
the EMsFEM-L2, the maximum relative error is 0.79%
compared to the FEM-F. It is superior to the EMsFEM-
L1 and the RVE-P, whose errors are 1.90 and 1.80%, re-
spectively, illustrating that the introduction of the cou-

(a) fine-scale mesh

A

B

(b) coarse-scale mesh

FIG. 8: The fine- and coarse-scale meshes of the truss
structure.
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FIG. 9: Y-direction displacement of the points on the
centroidal plane of cantilever beams.

pled additional terms for construction of base functions
is very effective. For the homogeneous unit cell, the base
functions constructed by EMsFEM-L1 are equal to stan-
dard bilinear base functions of a four-node rectangular el-
ement. That is to say, for standard FEM, more accurate
results will be obtained if the coupled additional terms
can be considered in base functions.

Example 2. In this example, we consider the same
model as example 1, just with the unit cell changed by
a new one as illustrated in Fig. 10. The unit cell has only
two nodes at each boundary. The numerical results are
shown in Fig. 11. It shows that both the EMsFEM-L2
and the RVE-P method give identical results compared
to those of the FEM-F, while the EMsFEM-L1 has some
errors. For the unit cell with two nodes at each bound-
ary, the boundary conditions do not affect the construc-
tion of base functions. So the displacement field within
the unit cell is effectively captured by the new construc-

2

2

FIG. 10: Heterogeneous unit cell with two nodes at each
boundary. Cross-sectional areas of the thinner truss ele-
ments are 0.2, while for the thicker ones they are 1.0.

FIG. 11: Y-direction displacement of the points on the
centroidal plane of cantilever beams.
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tion method. It further illustrates that the instruction of
coupled additional terms is more reasonable.

Example 3.In this example we investigate the unit cell
with a hole in the center (see Fig. 12). The unit cell can be
seen as a heterogeneous unit cell. The truss structure con-
sidered here is composed ofnx × ny = 24× 8 unit cells.
The corresponding truss structure and coarse-scale mesh
are shown in Fig. 13. The constraint and loading condi-
tions are the same as example 1. Figure 14 illustrates the
relative numerical results. The maximum relative error for
the EMsFEM-L2 is 1.60% compared to the FEM-F, while
for the EMsFEM-L1 it is 5.89%. The results obtained by
the EMsFEM-L2 are fairly good and meet the accuracy
requirement.

Example 4. For the truss structure considered in ex-
ample 3, different loading and constraint conditions are
applied in this example. As shown in Fig. 15, the left and
right sides of the structure are fixed in the two axis direc-
tions, and a uniformly distributed load of 10,000 is ap-
plied on the top side. The results are shown in Fig. 16.
Since the deformation within the unit cells is more com-
plicated in this example than the previous ones, it can be
seen that the structural stiffness values obtained by both
the EMsFEM-L1 and EMsFEM-L2 are overestimated. On
the other hand, by taking into account the periodic de-
formation in the boundary conditions, good results are
achieved in the RVE-P.

From the four numerical examples given we can see
that all the results obtained by EMsFEM-L2 are better
than those of EMsFEM-L1, demonstrating that the con-
struction method developed in this paper is more reason-

6*10

6
*1

0

FIG. 12: Unit cell with a hole in the center. The outer
element areas are 0.5 and internal element areas are 1.

(a)

(b)

FIG. 13: The fine- and coarse-scale meshes of the truss
structure.
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FIG. 14: Y-direction displacement of the points on the
centroidal plane of cantilever beams.

1440

4
8
0

F=10000

960

FIG. 15: The loading and constraint conditions.
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FIG. 16: Y-direction displacement of the points on the
centroidal plane of the cantilever beam.

able. Thus, in the rest of this article, we only use the new
construction method and denote it as EMsFEM-L for sim-
plicity. The source of error of the EMsFEM-L is analyzed
in the next section, and then a special numerical technique
is introduced to reduce the error.

5. SCALE EFFECT AND ERROR ANALYSIS

As shown in Figs. 9, 11, and 14, it is evident that the
results obtained by the EMsFEM-L fit well with the ref-
erence results and the results of the RVE-P in the first
three numerical examples. However, it is also observed
that the stiffness of the structure can be overestimated
by the EMsFEM-L under special constraints and load-
ing conditions, such as the case in example 4. This is
because the multiscale base functions in the EMsFEM-
L are constructed with linear boundary conditions, which
are dependent only on the boundary node coordinates and
are independent of the stiffness distribution within the
truss cell. That imposes a strong restriction for the bound-
ary nodes and induces nonequilibrium nodal force on the
boundary, especially for anisotropic truss cells. It is rea-
sonable to believe that for a unit cell with more elemen-
tary cells, the boundary layers will have relative minor
influences for the whole cell properties. So the error can
be reduced by increasing the number of the elementary
cells in the unit cell, as shown in the following example.

Example 5. The truss structure shown in Fig. 17 is
composed ofnx × ny = 24 × 8 unit cells. A uniformly
distributed load of 10,000 is applied on the top side of the
structure. To illustrate the scale effect, four kinds of unit
cells are adopted, respectively, as shown in Fig. 18. Fig-
ure 18(a) shows a unit cell in which the cross-sectional ar-
eas of the truss elements are 0.2, except two thicker ones
have areas of 1.0. The Young’s modulus of all the truss
elements in the unit cell is 1.0E6. The unit cell shown in

X

10000

unit cell

(a)

(b)

A

B

Y

FIG. 17: Truss structure model:(a) truss structure and
boundary conditions and(b) the unit cell.

2

2

 (a) (b)

(c) (d)

FIG. 18: Truss unit cell samples with different scale fac-
tors n: (a) the elementary cell with scale factorn = 1;
(b), (c), and (d) unit cells composed ofn2 elementary
cells, withn = 2, 4, and 8, respectively.

Fig. 18(a) is considered as an elementary cell. This cell
structure is then repeated to form a series of unit cells
with a scale factorn equal to 2, 4, and 8, respectively, as
shown in Figs. 18(b)–(d). Also, in these figures we scale
the elementary cell by the factor1/n, i.e., both the length
and cross section of the truss elements in the elementary
cell are scaled by the factor1/n. Thus, the size of the unit
cell remains unchanged.
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The displacements in theY-direction on the top side
of the structure with four different unit cells are shown
in Figs. 19–22 in comparison with the reference solutions
obtained by the FEM-F. It is obvious that the relative er-
rors tend to decrease monotonically with the increasing
scale factorn, as shown in Fig. 23.

For a strong heterogeneous unit cell, the nonequilib-
rium nodal forces, which is a key factor of errors in the
EMsFEM-L, occur only at boundary nodes, and internal
nodal forces are balanced automatically. It has been found
in the RVE method with the Dirichlet-type boundary con-
ditions (Yan et al., 2006; Pecullan et al., 1999; Huet,
1990; Hazanov and Huet, 1994; Ostoja-Starzewski, 1998;
Kanit et al., 2003) that the influence of this nonequilib-
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FIG. 19: Displacement inY-direction on the top side of
structure with scale factorn = 1. The maximum relative
error is 36.75%.
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FIG. 20: Displacement inY-direction on the top side of
structure with scale factorn = 2. The maximum relative
error is 17.43%.
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FIG. 21: Displacement inY-direction on the top side of
structure with scale factorn = 4. The maximum relative
error is 9.70%.

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0 5 10 15 20 25 30

X

D
is

p
la

c
e

m
e

n
t 

in
 y

-d
ir

e
c
ti
o

n

FEM-F EMsFEM-L

FIG. 22: Displacement inY-direction on the top side of
structure with scale factorn = 8. The maximum relative
error is 5.30%.
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FIG. 23: Convergence of the maximum relative error
with increasing scale factorn.

rium will become smaller and smaller with successively
increasing scale factor. Based on this, it is easy to under-
stand why the results obtained from the EMsFEM-L con-
verge toward the reference solutions with increasing the
scale factorn. This phenomenon can also be rechecked
when the stiffness distribution within the unit cell tends
to homogenous and the nonequilibrium nodal forces at
boundary nodes will generally be decreased. For instance,
if all the truss elements within the unit cell shown in
Fig. 19 have the same cross-sectional area, then the dis-
placements obtained inY-direction on the top surface of
the structure, as illustrated in Fig. 24, are of little differ-
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FIG. 24: Displacement inY-direction on the top surface
of structure with scale factorn = 1. The elements within
the unit cell have the same cross-sectional areas 0.2.
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ence in comparison with the results of the FEM-F. For
the unit cell with only two nodes at each boundary, the
nodal force equilibrium at cell boundaries is always sat-
isfied and the errors are very small (see the results in ex-
ample 2). To reduce the errors of the EMsFEM-L, in the
following section an adaptive oversampling technique is
adopted in the construction of the base functions.

6. THE OVERSAMPLING TECHNIQUE

6.1 Construction of Base Functions with the
Oversampling Technique

From the above discussion we can see that the multiscale
base functions constructed by linear boundary conditions
impose too strong restrictions for the deformation of near
boundary regions. Here the oversampling technique is
adopted to generate more flexible oscillatory boundary
conditions. The oversampling technique is proposed by
Hou and Wu et al. (1997, 1999) for constructing more re-
liable base functions for the MsFEM. It uses the fine-scale
solutions of a larger domain with specified boundary con-
ditions to construct the base functions directly. By doing
this, the influences of the boundary layers are greatly re-
duced in the constructed base functions. The numerical
results (Hou and Wu et al., 1997, 1999) show that the
oversampling technique does work well in the multiscale
computations and provides an effective approach for re-
moving the resonance effect between the mesh scale and
the physical scale. In this section we inherit the basic idea
of the oversampling technique and adopt it to construct
the base functions for unit cells of periodic truss materi-
als. Note that the adoptive oversampling technique here
is different from the standard oversampling technique. In
our method, we simply use the fine-scale solution of the
oversampling region to form the boundary conditions for
the base functions of the unit cells.

Consider a larger domain that covers the truss unit cell
as illustrate in Fig. 25, in which∆1234 is the unit cell
(original element) and∆1′2′3′4′ is the sampling element.
Denote the temporary base functions for the original ele-
ment asφi(i = 1, 2, 3, 4) and the temporary base func-
tions for the sampling element asψi′(i′ = 1, 2, 3, 4).
Note that we utilize the oversampling technique only to
obtain the oscillatory boundary conditions; the tempo-
rary base functionsψ andφ are constructed here without
consideration of the coupled additional terms. First, tem-
porary base functionsψ are constructed with the second
method presented in Section 2.2. However, onlyψi′x and
ψi′y are used (i.e., the coupled additional termsψi′xy and

original element

sampling element

1' 2'

3'4'

1 2

34

FIG. 25: Illustration of the oversampling technique.

ψi′yx are not used in the next step). Then the temporary
base functionsφ are constructed from the linear combi-
nation ofψ as follows:

φi =
4∑

j=1

cijψ
′
j , (i = 1, 2, 3, 4) (18)

wherecij are the constants determined by the condition
φi|j = δij andδ is the Kronecker delta. Then we obtain
the temporary base functionsφix andφiy, respectively.
The values ofφi at the unit cell’s boundary are used as
the oscillatory boundary conditions to construct the ac-
tual base functionsN for the unit cell. In practice, the
sampling domain should be large enough to avoid the in-
fluence of boundary layers. It is found that the final base
functions, i.e.,Nix, Nixy, Niy, andNiyx (i = 1, 2, 3, 4)
obtained by this way also satisfied Eq. (2). From the
above analysis one can find that the oscillatory bound-
ary conditions fully consider the heterogeneity of the unit
cell’s stiffness distribution. Thus, the nonequilibrium of
the boundary nodal forces is reduced drastically. More
accurate numerical results can be obtained with these
base functions, as is seen in the next section. We denote
the results obtained by the EMsFEM with the oscillatory
boundary conditions as EMsFEM-O.

6.2 Modification of Stiffness Matrix

The equivalent stiffness matrix derived by the EMsFEM-
O cannot satisfy rigid-body displacement completely. A
numerical technique is applied to deal with this problem.
In general, an element stiffness matrixK is symmetric
and singular, i.e., it can be expressed as
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K = [X] [Λ] [X]T (19)

where [X] is the orthogonal matrix formed by the
columns of eigenvectors ofK. For a 2D four-node ele-
ment it can be written as

[X] =
[ {X1} {X2} · · · {X8}

]

=




X11 X12 · · · X18

X12 X22 · · · X28

...
...

. ..
...

X18 X28 · · · X88




(20)

and[Λ] is the diagonal matrix which is composed of the
corresponding eigenvalues ofK as follows:

[Λ] =




λ1

λ2

. ..
λ8


 (21)

assuming thatλ1 > λ2 > · · · > λ8. In order to sat-
isfy singularity (i.e., one element can have arbitrary rigid-
body displacements), eigenvalues must have three zero
values, i.e.,λ6 = λ7 = λ8 = 0. (Take a 2D plane ele-
ment, for example; it contains two linear and one rotation
displacements.) By observing the calculation results, we
find that the eigenvalues of the equivalent stiffness matrix
obtained by the EMsFEM-O have only two zero values,
i.e.,λ6 6= 0. Further investigation shows that the situation
occurs because the rotation displacement cannot satisfy
rigid-body displacement. The stiffness matrixK should
be modified.

Ye et al. (2009) developed two methods to modify
the stiffness matrix. They are the eigenvalues modified
method (EMM) and the eigenvalues and eigenvectors
modified method (EEMM). Numerical experiments show
that application of the EMM and EEMM gives similar re-
sults for the situations considered here, so we chose the
more convenient EMM to modify our stiffness matrix. In
EMM, the nonzero eigenvalueλ6 is set to zero with other
eigenvalues and the eigenvector matrix[X] remains un-
changed. Then the modified stiffness matrix can be ex-
pressed as

K′ = [X] [Λ′] [X]T (22)

where[Λ′] is the revised eigenvalue matrix in whichλ6

equals 0.
For the numerical example shown in Fig. 21, we solve

it again with the EMsFEM-O and compare it with previ-
ous results. It is obvious that the results obtained by the
EMsFEM-O fit fairly well with the FEM-F as shown in

Fig. 26. Figure 27 shows the new numerical results of ex-
ample 4. Improved accuracy is obtained by the EMsFEM-
O in comparison with the EMsFEM-L. The results are
shown in Fig. 28 for a homogeneous unit cell, i.e., the
numerical example shown in Fig. 9. It shows that the re-
sults obtained by the EMsFEM-O and the EMsFEM-L
are almost the same. Under this condition, the oscillatory
boundaries obtained by the oversampling technique are
almost linear and coincide with those of the EMsFEM-L.
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FIG. 26: Comparison between the EMsFEM-O and other
methods shown in Fig. 21.
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FIG. 27: Comparison between the EMsFEM-O and other
methods shown in Fig. 16.
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FIG. 28: Comparison between the EMsFEM-O and other
methods shown in Fig. 9.
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7. DOWNSCALING COMPUTATION

Different from the general homogenization methods, the
EMsFEM constructs base functions to form the equiva-
lent stiffness matrix of unit cells. These base functions re-
flect local fluctuations within unit cells and in return, can
be used to construct the fine-scale solutions. Therefore,
the EMsFEM is able to perform the downscaling compu-
tations. That is to say, the displacement solutions for the
fine-scale structures can be obtained through macroscopic
results and then the stress and strain solutions in the unit
cells are obtained. These results are important and can be
used for further investigations, i.e., for the nonlinear situ-
ations.

(a) As for the EMsFEM-L, the base functions are con-
structed with linear boundary conditions and the
downscaling computations can be carried out di-
rectly. The internal force of theith truss element
within the unit cell can be written as

F
e

i = ki
e∆li (23)

Using Eq. (11), we get

F
e

i =
EiAi

li
[Ge]i {u′E} (24)

where{u′E} are the macroscopic results obtained by
the EMsFEM-L.

Take unit cell A and unit cell B shown in Fig. 8(b),
for example. The internal forces of truss elements in
the unit cells are computed by both the EMsFEM-
L and the FEM-F. The results are shown in Figs. 29
and 30, respectively. Note that a positive value im-
plies tension and a negative value implies compres-
sion. It shows that the internal forces obtained by the
EMsFEM-L fit well with those of the FEM-F in gen-
eral.
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FIG. 29: Internal forces of truss elements of unit cell A.
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FIG. 30: Internal forces of truss elements of unit cell B.

(b) As for the EMsFEM-O, the base functions are con-
structed with oscillatory boundary conditions which
are obtained by the oversampling technique. As the
equivalent stiffness matrix has been modified, we as-
sume that the modified stiffness matrix and the orig-
inal one have the following relationship:

K′ = SKST (25)

whereS is a 8 × 8 matrix and can be obtained by
solving 64 nonlinear equations iteratively. Also for
periodic materials, the matrixS needs to be solved
only one time.

By taking into account Eq. (25), Eq. (14) yields

π′E =
M∑

i=1

πi′
e =

1
2
u′TE

[
M∑

i=1

SGeiTki
eG

eiST

]
u′E (26)

If we denoteGe′ = GeST, we get

π′E =
M∑

i=1

πi′
e =

1
2
u′TE

[
M∑

i=1

Gei′Tki
eG

ei′
]
u′E (27)

By comparing Eq. (27) with Eq. (14), we can find that
the mapping relations between internal nodes and cor-
ner nodes have been changed. The new mapping relations
are used to calculate the internal forces of truss elements
within unit cells.

Here we take unit cell A and unit cell B shown in
Fig. 17 as examples and consider the unit cell shown in
Fig. 18(c). The results obtained by the EMsFEM-O and
the FEM-F are shown in Figs. 31 and 32.

For the numerical results presented above, one can
find that: (1) relatively small relative errors are generated
for the truss elements whose internal forces are relatively
large; and (2) relatively large relative error is generated
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FIG. 31: Internal forces of truss elements of unit cell A.
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FIG. 32: Internal forces of truss elements of unit cell B.

for the truss elements with small internal forces. It is ob-
vious that the truss elements having large internal forces
play an important role for the performance of the truss
structure, while those having small internal forces make
small contributions. So the errors induced by relatively
small internal forces can be ignored in strength analysis.
If the error formula (28) is used, the error distributions
corresponding to Figs. 31 and 32 are shown in Fig. 33.
The results show that the errors of the internal forces in
most of the elements are less than 10%:

Erri =
|Ffi − FMi|
|Fmax| (28)

whereFfi is the internal force of theith truss element
obtained by the FEM-F,FMi is the internal force of the
ith truss element obtained by the EMsFEM, and|Fmax|
is the absolute value of maximal internal force of all truss
elements within the unit cell.

8. CONCLUSIONS

An extended multiscale finite element method is devel-
oped for solving the problems of periodic lattice truss ma-
terials. Multiscale base functions are constructed numer-
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(%).

ically for unit cells of different types to form the equiva-
lent stiffness matrices. In order to deal with the coupled
effects among different directions in the multidimensional
problems, the coupled additional terms are introduced
in the multiscale base functions. The base functions are
constructed with both the linear and oscillatory boundary
conditions. The oversampling technique is introduced in
the generation of the oscillatory boundary conditions. It
shows that for heterogeneous unit cells, the use of base
functions constructed with the oscillatory boundary con-
ditions generates more accurate numerical results in com-
parison with that of linear ones, for it can reduce the
nonequilibrium nodal forces of the boundary nodes. Nu-
merical experiments are carried out to examine the accu-
racy of the newly developed method, showing that for the
numerical examples presented in this paper the numeri-
cal results obtained by the EMsFEM fit fairly well with
the reference solutions. At the same time the developed
method reduces the computational cost and memory stor-
age drastically.

The EMsFEM can be used to perform downscaling
computations which are superior to other homogenization
methods. The actual stress and strain information in mi-
croscopic level can be obtained easily, which is important
in engineering applications, especially for the nonlinear
cases. Meanwhile, in our method the construction of base
functions and downscaling computations are performed in
each unit cell independently, that is to say, the method de-
veloped here can be extended for parallel computing in a
simple way and has great potential in mechanical analysis
of nonperiodic continuum problems.
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The manuscript focuses on the computational aspects of the eigendeformation-based, reduced-order homogenization de-
veloped in Fish and Yuan (2008), Oskay and Fish (2007), and Yuan and Fish (2009) with regard to its compatibility
to commercial finite element code architecture and on standard user-defined material interfaces. Most commercial fi-
nite element software codes provide functionality for adding user-defined material models. The eigendeformation-based
homogenization formulation has a lot of specificity that limits its flexibility to add user-defined material models. In
the present manuscript we recast the original formulation referred to above into a more transparent and flexible form
that enables easy addition of new material models of microconstituents. Several nonlinear examples, including dam-
age, plasticity, and viscoplasticity, are used to demonstrate the canonical structure of the proposed formulation and its
verification against the direct computational homogenization method.

KEY WORDS: reduced order homogenization, composite material design system, material inelasticities

1. INTRODUCTION

Due to their light weight, high specific strength/stiffness,
and resistance to corrosion, composite materials have
been increasingly attracting attention since the middle of
the last century, yet the supporting modeling techniques
are by and large limited to various effective medium
models, such the Mori-Tanaka (1973) and self-consistent
(Hill, 1965) approaches. Most finite element commercial
software packages for composites house simplistic effec-
tive medium-like models, which tend to oversimplify the
microstructural details and thus limit their full potential.
On the other hand, in the academic community, computa-
tional homogenization methods that explicitly account for
complex material microstructure have been widely used
for both linear (Guedes and Kikuchi, 1990) and nonlinear
(Terada and Kikuchi, 1995; Fish et al., 1997; Yu et al.,
1999; Fish and Yu, 2001) problems. Despite this progress,
a cost-effective and flexible multiscale methodology that
can be seamlessly integrated into commercial finite ele-
ment codes does not exist.

Adoption of computational homogenization methods
in commercial finite element packages has been very
slow, primarily due to their cumbersome code architec-
ture that requires nested structure (Yuan and Fish, 2008).
Furthermore, while the computational cost of the com-
putational homogenization approaches is a small frac-
tion compared to the direct numerical simulation, where
a characteristic mesh size is of the heterogeneity order,
they remain computationally prohibitive for complex mi-
crostructures. This is because a nonlinear unit cell prob-
lem for a two-scale problem has to be solved for a num-
ber of times equal to the product of number of quadrature
points at a macroscale and the number of load increments
and iterations at the macroscale.

The primary objective of the present manuscript is to
integrate a computationally efficient method, such as the
reduced-order homogenization method (Fish and Yuan,
2008; Oskay and Fish, 2007; and Yuan and Fish, 2009),
in a conventional finite element code architecture. The
reduced-order homogenization approach (Fish and Yuan,
2008; Oskay and Fish, 2007; and Yuan and Fish, 2009)
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constructs a unit cell problem in terms of eigendeforma-
tion modes, which a priori satisfy equilibrium equations
at the microscale and therefore eliminate the need for
costly solution of discretized nonlinear equilibrium. The
challenge is to reformulate the reduced-order homoge-
nization in terms of the conventional single-scale building
blocks for each micro phase and micro interface, such as a
stress update and consistent tangent operator. In the pro-
posed canonical structure, the user is required to supply
only a conventional stress update and consistent tangent
routines for each micro phase and micro interface, from
which the backend programs of the reduced-order homog-
enization formulation construct the overall stress update
and the overall consistent tangent operator. Finally, we
demonstrate a seamless integration of the reduced-order
homogenization approach in a commercial finite element
code by providing a sample of the user-defined material
model that employs the same structure as the UMAT in
ABAQUS.

This paper is organized as follows. Section 2 gives
a brief introduction to eigendeformation-based homog-
enization. Section 3 describes the canonical framework
starting from the formulation of the unit cell problem,
followed by the consistent tangent, the user-defined ma-
terial model, and the nested Newton method for solving
the two-scale problem. In Section 4, several nonlinear
examples, including, damage, plasticity, and viscoplas-
ticity, are used to demonstrate the canonical structure of
the method and its verification against the direct compu-
tational homogenization method.

2. REVIEW OF REDUCED-ORDER
HOMOGENIZATION

2.1 Mathematical Homogenization

Following Yuan and Fish (2009), the strong form of the
boundary value problem is stated at the microscale:

σζ
ij,j(x) + bζ

i (x) = 0 x ∈ Ω, (1)

σζ
ij(x)=Lζ

ijkl(x)

[
εζ

kl(x)−
∑

I

Iµζ
kl(x)

]
x ∈ Ω, (2)

εζ
ij(x) = uζ

(i,j)(x) ≡ 1
2

(
uζ

i,j + uζ
j,i

)
x ∈ Ω, (3)

uζ
i (x) = ūi(x) x ∈ Γu, (4)

σζ
ij(x)nj(x) = t̄i(x) x ∈ Γt, (5)

δζ
i (x) ≡

〈
uζ

i (x)
〉

= uζ
i

∣∣∣
Sζ
−
− uζ

i

∣∣∣
Sζ

+

x ∈ Sζ, (6)

σζ
ijnj

∣∣∣
Sζ

+

+ σζ
ijnj

∣∣∣
Sζ
−

= tζi

∣∣∣
Sζ

+

+ tζi

∣∣∣
Sζ
−

= 0, (7)

where the superscriptζ denotes dependence of the
response fields on the microstructural heterogeneities.
Equation (2) describes the constitutive relation which as-
sumes an additive decomposition of total strainεζ

kl into
elastic and inelastic components, more generally referred
to as eigenstrainsIµζ

kl, where the left superscriptI stands
for various eigenstrain types, such as inelastic deforma-
tion, thermal change, moisture effects, etc. Equations (5)–
(7) govern the traction continuity along the interface of
microconstituents denoted bySζ; the+/− signs indicate
the two sides of the interface.δζ

i is the displacement jump
(or so-called eigenseparation) along the interface and〈•〉
is the jump operator.

Various fields are assumed to depend on the macro-
scopic coordinatex and microscopic coordinatey =
x/ζ. They are expressed in terms of the two-scale asymp-
totic expansion as

ui(x,y) = u0
i (x) + ζu1

i (x,y) + · · · ,

εij(x,y) = ε0
ij(x,y) + ζε1

ij(x,y) + · · · .

σij(x,y) = σ0
ij(x,y) + ζσ1

ij(x,y) + · · · ,

Iµij(x,y) = Iµ0
ij(x,y) + ζIµ1

ij(x,y) + · · · ,

(8)

Inserting the asymptotic expansions into the governing
Eqs. (1)–(7) yields the microscale unit cell problem

{
Lijkl(y)

[
ε̄kl(x)+u1

k,yl
(x,y)−

∑

I

Iµ0
kl(x,y)

]}

,yj

=0(9)

from which the macroscopic stress can be computed by

σ̄ij,j(x) =
1
Θ
∫
Θ

Lijkl(y)
(

ε̄kl(x) + u1
k,yl

(x,y)

−
∑

I

Iµ0
kl(x,y)

)
dy

(10)

whereΘ is the unit cell domain, and̄σij and ε̄ij are the
macroscale stress and strain, respectively.

2.2 Reduced-Order Two-Scale Formulation

The salient feature of the eigendeformation-based ho-
mogenization is that the microscale displacement field
u1

i (x,y) is constructed so that the stress field in the unit
cell automatically satisfies the equilibrium equations for
arbitrary eigenstrainsIµ0

ij and eigenseparationsδn̂:
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u1
i (x,y) = uel

i (x,y) +
∑

I

Iuµ
i (x,y) + uδ

i (x,y)

= Hmic
ikl ε̄kl(x)+

∑

I

∫

Θ

Ihmic µ
ikl (y, ŷ)Iµ0

kl(x, ŷ)dŷ

+
∫

S

hmic δ
in̂ (y, ŷ)δn̂(x, ŷ)dŷ

(11)

The resulting microscale displacement gradients are
given by

u1
i,yj

(x,y)=Gmic
ijklε̄kl(x)+

∑

I

∫

Θ

Igmic µ
ijkl (y, ŷ)

× Iµ0
kl(x, ŷ)dŷ +

∫

S

gmic δ
ijn̂ (y, ŷ)δn̂(x, ŷ)dŷ

(12)

where Gmic
ijkl,

Igmic µ
ijkl , and gmic δ

ijn̂ are influence func-
tions for macroscale strain, eigenstrain, and eigensepa-
ration, respectively, which can be computed by solving
a sequence of elastic boundary value problems prior to
nonlinear macroanalysis. The reduced-order model is ob-
tained by discretizing the eigenstrain and eigenseparation
fields as

Iµ0
ij(x,y) =

nI∑
α=1

IN (α)(y)I µ̄
(α)
ij (x)

δn̂(x, ỹ) =
m∑

ξ=1

N (ξ)(ỹ)δ̄(ξ)
n̂ (x)

(13)

wherenI andm are the number of partitions of phases
and interfaces, respectively, andI µ̄

(α)
ij andδ̄

(ξ)
n̂ are the av-

erage eigenstrain and eigenseparation in the phase parti-
tion α and the interface partitionξ, respectively.N (α)(y)
is a piecewise constant shape function defined as

N (α)(y) =

{
1 y ∈ Θ(α)

0 y 6∈ Θ(α)
(14)

whereasN (ξ) (ỹ) is a linear combination of piecewise
linear finite element shape functions defined over the sur-
face partitionξ.

Combining the governing equations for the unit cell
problem (9) with the decomposition (12) and the dis-
cretization (13) yields the reduced-order system of equa-
tions:

Reduced-order microscale unit cell problem:

ε
(β)
ij (x)−

N∑

I=1

nI∑
α=1

IP
(βα)
ijkl

I µ̄
(α)
kl (x)

−
m∑

ξ=1

Q
(βξ)
ijn̂ δ̄

(ξ)
n̂ (x) = A

(β)
ijklε̄kl(x)

−
N∑

I=1

nI∑
α=1

IC
(ηα)
n̂kl

I µ̄
(α)
kl (x) + t

(η)
n̂ (x)

−
m∑

ξ=1

D
(ηξ)
n̂n̂ δ̄

(ξ)
n̂ (x) = B

(η)
n̂klε̄kl(x)

(15)

Reduced-order macroscale stress update:

σ̄ij(x) = L̄ijklε̄kl(x) +
N∑

I=1

nI∑
α=1

IĒ
(α)
ijkl

I µ̄
(α)
kl (x)

+
m∑

ξ=1

F̄
(ξ)
ijn̂ δ̄

(ξ)
n̂ (x)

(16)

wheretn̂ = G(δ̄n̂) represents the traction along interface.
All the coefficient tensors in the reduced-order system,
such asIPijkl, Qijn̂, Aijkl, ICn̂ij , Dn̂m̂, Bn̂ij , Lijkl,
I Eijkl, andF ijn̂, are determined in the preprocessing
stage prior to nonlinear macroanalysis. A detailed formu-
lation can be found in Fish and Yuan (2008), and Yuan
and Fish (2009).

3. THE CANONICAL STRUCTURE

In the present manuscript we focus on the computational
aspects of the eigendeformation-based reduced-order ho-
mogenization, its compatibility to the commercial finite
element software, and on a standard user-defined mate-
rial interface. Most conventional finite element software
packages provide functionality to add a user-defined ma-
terial model. The eigendeformation formulation outlined
in the previous section has a nonconventional data struc-
ture that complicates the task of adding user-defined ma-
terial models. In this section we recast the original formu-
lation (Fish and Yuan, 2008; and Yuan and Fish, 2009)
into a form that provides a conventional hookup to add
new materials models.

3.1 Reformulation of the Unit Cell Problem

To solve for Eq. (15), we define the following function:
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ψ
(
∆ε

(α)
ij , ∆δ̄

(ξ)
n̂

)

≡





∆ε
(β)
ij −

N∑
I=1

nI∑
α=1

IP
(βα)
ijkl ∆I µ̄

(α)
kl

−
m∑

ξ=1

Q
(βξ)
ijn̂ ∆δ̄

(ξ)
n̂ −A

(β)
ijkl∆ε̄kl,

−
N∑

I=1

nI∑
α=1

IC
(ηα)
n̂kl ∆I µ̄

(α)
kl + ∆t

(η)
n̂

−
m∑

ξ=1

D
(ηξ)
n̂m̂ ∆δ̄

(ξ)
m̂ −B

(η)
n̂kl∆ε̄kl.

(17)

The unknowns are the increments of phase strain∆ε
(α)
ij

and phase separation∆δ̄
(ξ)
n̂ , whereas the macro strain

∆ε̄kl is prescribed by the macro problem. The goal is

to solve the nonlinear equationsψ
(
∆ε

(α)
ij , ∆δ̄

(ξ)
n̂

)
= 0

for the unknown∆ε
(α)
ij and ∆δ̄

(ξ)
n̂ . The above equa-

tion is solved using the Newton method, which re-
quires function derivatives with respect to variablesχ ={

∆ε
(α)
kl , ∆δ̄

(ξ)
m̂

}

∂ψ

∂χ
=




δβαIijkl−
N∑

I=1

nI∑
α=1

IP
(βα)
ijmn −

m∑

ξ=1

Q
(βξ)
ijm̂

×∂I∆µ̄
(α)
mn

∂∆ε
(α)
kl

−
N∑

I=1

nI∑
α=1

IC
(ηα)
n̂mn δηξ

∂∆t
(ξ)
n̂

∂∆δ̄
(ξ)
m̂

×∂I∆µ̄
(α)
mn

∂∆ε
(α)
kl

−
m∑

ξ=1

D
(ηξ)
n̂m̂




(18)

where δij is the Kronecker delta. Afterχ ={
∆ε

(α)
kl , ∆δ̄

(ξ)
m̂

}
is calculated, the eigenstrainI µ̄(α)

ij is

subsequently computed from∆ε
(α)
ij , whereas the macro-

scopic stress follows from Eq. (16).

3.2 Consistent Tangent Operator

Consistent tangent is critical for rapid convergence of
the Newton method at the macroscale. Recall the macro-
scopic stress is given by

∆σ̄ij = L̄ijkl∆ε̄kl +
N∑

I=1

nI∑
α=1

IĒ
(α)
ijkl

I∆µ̄
(α)
kl

+
m∑

ξ=1

F̄
(ξ)
ijn̂ ∆δ

(ξ)
n̂

(19)

For convenience, we adopt the Einstein summation con-
vention over eigenstrain typesI, volume partitionsα, and
interface partitionsξ. Taking the derivative of∆σ̄ij with
respect to∆ε̄kl yields

∂∆σ̄ij

∂∆ε̄kl
= L̄ijkl+IĒ

(α)
ijmn

∂I∆µ̄
(α)
mn

∂∆ε̄kl
+F̄

(ξ)
ijn̂

∂∆δ̄
(ξ)
n̂

∂∆ε̄kl
(20)

Using the chain rule, Eq. (20) can be expressed as

∂∆σ̄ij

∂∆ε̄kl
= L̄ijkl + IĒ

(α)
ijmn

∂I∆µ̄
(α)
mn

∂∆ε
(α)
pq

∂∆ε
(α)
pq

∂∆ε̄kl

+ F̄
(ξ)
ijn̂

∂∆δ̄
(ξ)
n̂

∂∆ε̄kl

(21)

The unknown quantities in the boxes are obtained as fol-
lows. Recall the reduced-order unit cell problem:

∆ε
(β)
ij −IP

(βα)
ijkl

I∆µ̄
(α)
kl −Q

(βξ)
ijn̂ ∆δ̄

(ξ)
n̂ =A

(β)
ijkl∆ε̄kl

−IC
(ηα)
n̂kl

I∆µ̄
(α)
kl +∆t

(η)
n̂ −D

(ηξ)
n̂m̂ ∆δ̄

(ξ)
m̂ =B

(η)
n̂kl∆ε̄kl

(22)

Taking the derivative of (22) with respect to∆ε̄kl gives

∂∆ε
(β)
ij

∂∆ε̄kl
− IP

(βα)
ijmn

∂I∆µ̄
(α)
mn

∂∆ε̄kl

−Q
(βξ)
ijn̂

∂∆δ̄
(ξ)
n̂

∂∆ε̄kl
= A

(β)
ijkl

− IC
(ηα)
n̂mn

∂I∆µ̄
(α)
mn

∂∆ε̄kl
+

∂∆t
(η)
n̂

∂∆ε̄kl

−D
(ηξ)
n̂m̂

∂∆δ̄
(ξ)
m̂

∂∆ε̄kl
= B

(η)
n̂kl

(23)

By the chain rule we have

(
δβαIijpq−IP

(βα)
ijmn

∂I∆µ̄
(α)
mn

∂∆ε
(α)
pq

)
∂∆ε

(α)
pq

∂∆ε̄kl

−Q
(βξ)
ijn̂ δn̂m̂

∂∆δ̄
(ξ)
m̂

∂∆ε̄kl
=A

(β)
ijkl

−IC
(ηα)
n̂mn

∂I∆µ̄
(α)
mn

∂∆ε
(α)
pq

∂∆ε
(α)
pq

∂∆ε̄kl

+

(
δηξ

∂∆t
(ξ)
n̂

∂∆δ̄
(ξ)
m̂

−D
(ηξ)
n̂m̂

)
∂∆δ̄

(ξ)
m̂

∂∆ε̄kl
=B

(η)
n̂kl

(24)
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The unknown quantities in the boxes can be expressed as



∂∆ε
(α)
pq

∂∆ε̄kl

∂∆δ̄
(ξ)
m̂

∂∆ε̄kl




=




δβαIijpq −Q
(βξ)
ijm̂

−IP
(βα)
ijmn

∂I∆µ̄
(α)
mn

∂∆ε
(α)
pq

−IC
(ηα)
n̂mn

∂I∆µ̄
(α)
mn

∂∆ε
(α)
pq

δηξ
∂∆t

(ξ)
n̂

∂∆δ̄
(ξ)
m̂

−D
(ηξ)
n̂m̂




−1

×
(

A
(β)
ijkl

B
(η)
n̂kl

)

(25)

Finally, the macroscopic consistent tangent(∂∆σ̄ij)
/(∂∆ε̄kl) follows from Eq. (21).

3.3 Canonical Structure of the Unit Cell Problem

Consider the remaining unknowns denoted in the previous
sections,(∂I∆µ̄

(α)
ij )/(∂∆ε

(α)
kl ) and(∂∆t

(ξ)
n̂ )/(∂∆δ̄

(ξ)
m̂ ).

Note that these derivatives are taken with respect to the
increment of strain or eigenseparation in the correspond-
ing phaseα or interfaceξ. These quantities can be de-
rived from a single-scale constitutive model or cohe-
sive law (see Appendix for various material models).
(∂∆t

(ξ)
n̂ )/(∂∆δ̄

(ξ)
m̂ ) is the relation between the traction

and displacement jump, which can be specified by the co-
hesive law.

We now focus on the derivative of the eigenstrain. By
definition, the eigenstrain is given as

I∆µ̄
(α)
ij = ∆ε

(α)
ij −M

(α)
ijkl∆σ

(α)
kl (26)

whereM
(α)
ijkl is the elastic compliance tensor for phase

partitionα. The derivative of the eigenstrain is given by

∂I∆µ̄
(α)
ij

∂∆ε
(α)
kl

=
∂

∂∆ε
(α)
kl

(
∆ε

(α)
ij −M

(α)
ijmn∆σ(α)

mn

)

= Iijkl −M
(α)
ijmn

∂∆σ
(α)
mn

∂∆ε
(α)
kl

(27)

where (∂∆σ
(α)
mn)/(∂∆ε

(α)
kl ) is a single-scale consistent

tangent stiffness for the corresponding phase. Formula-
tion of the consistent tangent operator for each phase

is a standard building block in any implicit finite ele-
ment code. Given the(∂∆σ

(α)
mn)/(∂∆ε

(α)
kl ), the eigen-

strain derivative(∂I∆µ̄
(α)
ij )/(∂∆ε

(α)
kl ) can be found from

(27). Consequently, the nonlinear unit cell problem can
be solved (see Section 3.1) and the macroscopic consis-
tent tangent stiffness(∂∆σ̄ij)/(∂∆ε̄kl) can be obtained
as described in Section 3.2. Figure 1 depicts the canoni-
cal structure of the reduced-order homogenization and its
implementation in the commercial finite element code.

Note that in general, the unit cell problem is solved
for the internal variables in addition to eigenstrains and
eigenseparations. In the following, we present a nested
Newton method that can handle various material models
in the context of ABAQUS code.

Let n = 1 → nmax be the iteration count for the
macro problem and denote it by the right subscript. Let
iter = 1 → itermax be the iteration count for the unit
cell problem and denote it by the left superscript.

Given: ε̄ij(n), χ(n) =
{

ε
(α)
ij(n), δ̄

(ξ)
n̂(n)

}
, σ

(α)
ij(n), t

(ξ)
n̂(n),

γ
(α)
(n) , whereγ is an internal variable,α the αth phase

partition,ξ theξth interface partition, and∆ε̄ij(n+1) the
macro strain increment.

Find: ∆σ̄ij(n+1), ∆χ(n+1) =
{
∆ε

(α)
ij(n+1),∆δ̄

(ξ)
n̂(n+1)

}
,

σ
(α)
ij(n+1), t

(ξ)
n̂(n+1), γ

(α)
(n+1).

Recalling the functionψ from Eq. (17), we have the
following stress update algorithm:

Algorithm 1 Stress update procedure

1. Initialize 0∆χ(n+1)=
{

0∆ε
(α)
ij(n+1),

0∆δ̄
(ξ)
n̂(n+1)

}
=0.

2. Compute

(iter)∆χ(n+1) = (iter−1)∆χ(n+1)

−
[

∂ψ
(
(iter−1)∆χ(n+1),∆ε̄ij(n+1)

)

∂(iter−1)∆χ(n+1)

]−1

×ψ
(
(iter−1)∆χ(n+1), ∆ε̄ij(n+1)

)

3. Use (iter)∆χ(n), σ
(α)
ij(n), t

(ξ)
n̂(n), γ

(α)
(n) , in Newton

method to solve for the material internal variable
(iter)γ

(α)
(n+1) for microscopic phases.

4. Get(iter)σ
(α)
ij(n+1),

(iter)t
(ξ)
n̂(n) from (iter)γ

(α)
(n+1).

5. Compute (iter)∆µ̄
(α)
ij(n+1) = (iter)∆ε

(α)
ij(n+1) −

M
(α)
ijkl

(iter)∆σ
(α)
kl(n+1).
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FIG. 1: Canonical structure of the unit cell problem.

6. Compute
∂ψ

(
(iter)∆χ(n+1), ∆ε̄ij(n+1)

)

∂(iter)∆χ(n+1)

.

7. Check whetherψ
(
(iter)∆χ(n+1),∆ε̄ij(n+1)

)
<

tol; if yes, go to step 9; if no, go to step 8.

8. Let iter = iter + 1. Go to step 2.

9. Let σ
(α)
ij(n+1) = (iter)σ

(α)
ij(n+1), t

(ξ)
n̂(n+1) =

(iter)t
(ξ)
n̂(n+1), γ

(α)
(n+1) = (iter)γ

(α)
(n+1), ∆χ(n+1) =

(iter)∆χ(n+1), and∆µ̄
(α)
ij(n+1) = (iter)∆µ̄

(α)
ij(n+1),

update∆σ̄ij(n+1) from Eq. (19).

10. Check the residual in macroanalysis. IfRmacro(n+1)

< tolmacro go to the next time interval∆t′; other-
wise, letn = n + 1, calculate new∆ε̄ij(n+1), and
go to step 1.

In step 10, once the strain increment∆ε̄ij(n+1) has
been updated, the consistent tangent(∂∆σ̄ij(n+1))
/(∂∆ε̄kl(n+1)) is computed based on Section 3.2.

4. EXAMPLES

From the user’s perspective, the canonical structure of the
reduced-order homogenization allows addition of new

material models without familiarity with the formulation.
The user-defined routine “MDS UMAT” in Fig. 1 follows
the same syntax as the standard UMAT function in
ABAQUS (ABAQUS 6.8 documentation). In this section
and in the Appendix we consider three material models of
microconstituents to demonstrate the implementation of
the formulation. In all examples we consider the fibrous
composite unit cell1 shown in Fig. 2. The elastic proper-
ties of microconstituents are given in Table 1. Numerical

FIG. 2: Fibrous composite unit cell.

1The user can define any shape of unit cell. Here we give an
example which is also the most common one.
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TABLE 1: Elastic properties of micro unit cell.

Vol. Frac. =22% Young’s
modulus

Poisson
ratio

Matrix 1.31E+5 MPa 0.36
Fiber 2.62E+5 MPa 0.36

results are compared against the direct homogenization
for verification purposes. For simplicity, the superscripts
denoting partition number are omitted. Constitutive mod-
els of continuum damage mechanics, plasticity, and vis-
coplasticity are detailed in the Appendix.

4.1 Continuum Damage Mechanics Example

The damage parameters considered in this study are sum-
marized in Table 2. Two tension tests are performed. The
first is loading along the fiber direction; the second is
loading orthogonal to the fibers. Figures 3 and 4 depict
the strain/stress responses for the two cases, respectively.
For the first case, there is almost no difference between
the reduced-order homogenization and direct homoge-
nization. For the second case, the reduced-order homoge-
nization with one partition per phase gives rise to higher

TABLE 2: Damage parameters for the fiber and matrix
phases.

S (MPa) G (MJ/m3) c
Matrix 300 0.1 0
Fiber 600 0.2 0
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FIG. 3: Tension test under damage law (along fiber di-
rection).
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FIG. 4: Tension test under damage law (orthogonal to
fiber direction).

failure stress than the direct homogenization. To alleviate
the problem one can either increase the number of parti-
tions or calibrate the phase partition properties [see Fish
and Yuan (2008), Oskay and Fish (2007), and Yuan and
Fish (2009) for details].

4.2 Plasticity Example

We use the same tension tests as in the previous example.
Plasticity parameters for the matrix phase are given in Ta-
ble 3. Simulation results are shown in Figs. 5 and 6. It can
be seen that as in the previous example, in the orthogonal
to the fibers loading case the results are less accurate.

4.3 Viscoplasticity Example

In this example we consider the viscoplasticity law based
on the overstress (VBO) (Tachibana and Krempl, 1995,
1997, 1998). The VBO parameters for the fiber and ma-
trix phases are listed in Table 4. Creep simulation is per-
formed with a constant stress load (20 MPa) applied
in the orthogonal fiber direction. Figure 7 compares the
reduced-order homogenization against the direct homog-
enization. Thex-axis is the elapsed time and they-axis
denotes the strain evolution in the loading direction.

TABLE 3: Plasticity parameters for the matrix phase.

σY (MPa) H̄ (MPa) θ

Matrix 50 1000 1.0
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FIG. 5: Tension test under plasticity law (along fiber direction).
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FIG. 6: Tension test under plasticity law (orthogonal to fiber direction).

TABLE 4: VBO parameters for the fiber–matrix phases.

ψ (MPa) k1 k2 (MPa) k3 A0 (MPa) Ac Af (MPa) R (1/s)
Matrix 32750.0 0.305 26.0 5.0 28.0 213.0 1.0 1.97E-5
Fiber 65500.0 0.610 52.0 10.0 56.0 1260.0 2.0 1.97E-5
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FIG. 7: Creep simulation under VBO law (orthogonal to fiber direction).
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APPENDIX

A. CONTINUUM DAMAGE

We consider a piecewise isotropic damage law for both
phases. Letω be the damage parameter. The inelastic
strain (or eigenstrain)εin

ij is given byωεij , whereεij

is the total strain. Consider the(n + 1)th iteration. Fol-
lowing Fig. 1, given∆εij(n+1), we need to calculate
the stress increment∆σij(n+1) and consistent tangent
(∂∆σij(n+1))/(∂∆εkl(n+1)) for each micro phase. From
the stress definition, we have

∆σij(n+1) = Lijkl

(
∆εkl(n+1) −∆εin

kl(n+1)

)

= Lijkl

(
∆εkl(n+1)−ω(n+1)εkl(n+1)

+ω(n)εkl(n)

)
(A.1)

and the consistent tangent is given by

∂∆σij(n+1)

∂∆εkl(n+1)
=Lijkl−Lijmn

∂
(
ω(n+1)εmn(n+1)

)

∂∆εkl(n+1)

= Lijkl −ω(n+1)Lijkl − Lijmnεmn(n+1)

× ∂ω(n+1)

∂∆εkl(n+1)

(A.2)

The last term in (A2) depends on the evolution of damage
parameterω. Here we adopt a linear stress/strain relation
as shown in Fig. 8.

In Fig. 8,S is the critical stress at the end of the elas-
tic process andG is the area under the stress/strain curve
or the strain energy density. The evolution of the damage
parameter is defined as

ω=





0, ‖ε‖eq
< ki

ωmaxkf

‖ε‖eq
‖ε‖eq−ki

kf − ki
, ki ≤ ‖ε‖eq≤kf

ωmax, ‖ε‖eq
> kf

(A.3)

ki =
S

Ea
, kf =

2G

S
(A.4)

where Ea is the elastic modulus in the loading direc-
tion. The equivalent strain is defined as‖ε(t)‖eq =

FIG. 8: Damage parameter evolution.

max
(√

[[ε̂I(T )]] · [[ε̂I(T )]], T ≤ t
)

where ε̂I are the

principal components.[[x]] is defined as follows:

[[x]] =
{

x, if x ≥ 0
cx, otherwise

(A.5)

wherec is a material parameter.
Derivation of (∂ω(n+1))/(∂∆εij(n+1)) in Eq. (A2)

follows from the chain rule.

∂ω(n+1)

∂∆εij(n+1)

=
∂ω(n+1)

∂ ‖ε‖eq
(n+1)

∂ ‖ε‖eq
(n+1)

∂
[[

ε̂I(n+1)

]]

× ∂
[[

ε̂I(n+1)

]]

∂ε̂J(n+1)

∂ε̂J(n+1)

∂εkl(n+1)

∂εkl(n+1)

∂∆εij(n+1)

(A.6)

where
∂ω

∂ ‖ε‖eq =
kikf

(‖ε‖eq)2 (kf − ki)
(A.7)

∂ ‖ε‖eq
(n+1)

∂
[[

ε̂I(n+1)

]] =

[[
ε̂I(n+1)

]]

‖ε‖eq
(n+1)

(A.8)

∂ [[ε̂I ]]
∂ε̂J

=
{

δIJ , if ε̂I ≥ 0
cδIJ , otherwise

(A.9)

∂ε̂J(n+1)

∂εij(n+1)

=
[
3

(
ε̂J(n+1)

)2−2I1ε̂J(n+1) +I2

]−1

×
[

∂I1

∂εij(n+1)

(
ε̂J(n+1)

)2 − ∂I2

∂εij(n+1)

(
ε̂J(n+1)

)

+
∂I3

∂εij(n+1)

]
(A.10)
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In Eq. (A10),I1, I2, I3 are the three invariants given by

I1 = trace (εij) = ε̂1 + ε̂2 + ε̂3

I2 =
1
2

[
(trace (εij))

2 − trace (εikεkj)
]

= ε̂1ε̂2 + ε̂2ε̂3 + ε̂3ε̂1

I3 = det (εij) = ε̂1ε̂2ε̂3

(A.11)

and their derivatives with respect toεij(n+1) are

∂I1

∂εij(n+1)

= δij

∂I2

∂εij(n+1)

= I1δij − εij(n+1)

∂I3

∂εij(n+1)

=εik(n+1)εkj(n+1)−I1εij(n+1) +I2δij

(A.12)

Since(∂εij(n+1))/(∂∆εkl(n+1)) = Iijkl, the derivation
of (∂∆σij(n+1))/(∂∆εkl(n+1)) follows from Eq. (A2).

B. PLASTICITY

In this example we adopt the classical isotropic/kinematic
hardening plasticity law for matrix phase with fibers be-
ing elastic. Consider the(n+1)th iteration. The stress in-

crement is given by∆σij(n+1) = Lijkl

(
∆εkl(n+1)−

∆εin
kl(n+1)

)
, where∆εin

kl(n+1) is the plastic strain incre-

ment. The radial return algorithm is typically employed
to ensure consistency.

Let α be the equivalent plastic strain that represents
isotropic hardening of the von Mises yield surface,βij

the back stress,ςij the relative elastic stress, and∆γ

the consistency parameter. For simplicity, we assume
isotropic/kinematic hardening with a constant hardening
modulusH̄. We denoteK (α) = σY +θH̄α as an isotropic
hardening andH (α) = (1− θ) H̄α as a kinematic hard-
ening. For pure isotropic hardeningθ = 1; for pure kine-
matic hardeningθ = 0. The stress update procedure and
consistent tangent are summarized in the box below.

Algorithm 2 Radial return algorithm for plasticity
with isotropic/kinematic hardening

1. Compute trial elastic stress.

eij(n+1) = εij(n+1) −
1
3
δijεkk(n+1)

strial
ij(n+1) = 2µ

(
eij(n+1) − ε

p
ij(n)

)

ςtrial
ij(n+1) = strial

ij(n+1) − βij(n)

2. Check yield condition

f trial
(n+1) ≡

∥∥∥ςtrial
ij(n+1)

∥∥∥−
√

2
3
K

(
α(n)

)

If f trial
(n+1) ≤ 0, then set(·)(n+1) = (·)trial

(n+1) and exit.

3. Compute the unit vectornij(n+1) ≡ ςtrial
ij(n+1)

‖ςtrial
ij(n+1)‖ .

4. Use Newton method to solve for∆γ from

g (∆γ) ≡ −
√

2
3
K

(
αtrial

(n+1)

)
+

∥∥∥ςtrial
ij(n+1)

∥∥∥

−
{

2µ∆γ +

√
2
3

[
H

(
αtrial

(n+1)

)
−H

(
α(n)

)]
}

= 0

whereαtrial
(n+1) = α(n) +

√
2/3∆γ.

5. Update the equivalent plastic strainα(n+1) =
αtrial

(n+1).

6. Update the back stress, plastic strain and stress.

βij(n+1) = βij(n) +

√
2
3

[
H

(
α(n+1)

)

−H
(
α(n)

) ]
nij(n+1)

ε
p
ij(n+1) = ε

p
ij(n) + ∆γnij(n+1)

∆σij(n+1) = Lijkl

(
∆εkl(n+1) −∆γnkl(n+1)

)

7. Compute the consistent tangent

∂∆σij(n+1)

∂∆εkl(n+1)

= Lijkl − 2µ

×
(
nij(n+1)

∂∆γ(n+1)

∂∆εkl(n+1)

+∆γ(n+1)

∂nij(n+1)

∂∆εkl(n+1)

)
.

where

∂∆γ(n+1)

∂∆εkl(n+1)

=

[
1+

K ′
(n+1)+H ′

(n+1)

3µ

]−1

nkl(n+1)

∂nij(n+1)

∂∆εkl(n+1)

=
2µ∥∥∥ςtrial

ij(n+1)

∥∥∥

×
(

Iijkl − 1
3
δijδkl − nij(n+1)nkl(n+1)

)
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C. VISCOPLASTICITY

As in the previous two models the basic assumption is that
the rate of total strain can be additively decomposed into
elastic and inelastic parts, which gives

ε̇ij = ε̇el
ij + ε̇in

ij (C.1)

The corresponding deviatoric expression is given as

η̇ij = η̇el
ij + η̇in

ij (C.2)

where

η̇ij = ε̇ij − 1
3
δij ε̇kk (C.3)

The inelastic part of strain is assumed to be volume pre-
serving; thus, the inelastic strain rate is deviatoric

η̇in
ij = ε̇in

ij (C.4)

The rate form of the stress–strain relation is given as

σ̇ij = Lijklε̇
el
kl = Lijkl

(
ε̇kl − ε̇in

kl

)
(C.5)

The material is assumed to be isotropic

Lijkl = λδijδkl + µδikδjl + µδilδjk (C.6)

The corresponding deviatoric expression is given as

ṡij = 2µη̇el
ij = 2µ

(
η̇−ij η̇

in
ij

)
(C.7)

where

ṡij = σ̇ij − 1
3
δij σ̇kk (C.8)

C.1 Overstress and Evolution of Inelastic Strain

In order to evaluate the evolution of the inelastic strain,
the concept of overstress is introduced. The overstress
deviator is given as

oij = sij − gij (C.9)

wheregij is defined as the equilibrium stress deviator.
The scalar invariant of the overstress deviator (or equiva-
lent overstress) is defined as

Γ =

√
3
2
oijoij (C.10)

and the normalized tensor of overstress deviator is given
as

nij =

√
3
2

oij

Γ
(C.11)

With the introduction of overstress, the inelastic strain
rate is given as

η̇in
ij =

√
3
2
¯̇ηinnij (C.12)

where¯̇ηin is the equivalent inelastic strain rate defined as

¯̇ηin =
Γ

Ek (Γ)
(C.13)

where E is Young’s modulus;k is positive and a de-
creasing function of the equivalent overstressΓ and acts
as a repository for nonlinear viscous behavior. A recom-
mended form is given as

k = k1

(
1 +

Γ
k2

)−k3

(C.14)

wherek1, k2, andk3 are model parameters.
With the definition of the inelastic strain rate, the rate

form of stress–strain relation can be rewritten as

σ̇ij = Lijklε̇kl −
√

6µ¯̇ηinnij (C.15)

The corresponding deviatoric expression is given as

ṡij = 2µη̇ij −
√

6µ¯̇ηinnij (C.16)

C.2 Evolution of Equilibrium Stress

The high-homologous temperature VBO model has the
equilibrium stress evolution equation expressed in rate the
form as

ġij =
ψ

E

[
ṡij +

oij

k
− Γ

k

gij

A

]
−R ‖gij‖ gij (C.17)

whereψ andR are model constants, andA is the isotropic
stress introduced to model the cyclic hardening or soften-
ing behavior. The evolution form is given as

Ȧ = Ac (Af −A) ¯̇ηin (C.18)

with the initial condition

A (t = 0) = A0 (C.19)

whereAc, Af , andA0 are model parameters.
Now, with the explanation of all parameters, the VBO

model for high homologous temperature has been intro-
duced.
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C.3 Integration Scheme of the VBO Model

The problem of stress update can be stated as follows:
given the value of at the timet(n) and the strain increment
∆εij(n+1), find the value of at the timet(n+1).

Using the backward Euler integration scheme, the
stress update is given as

σij(n+1) = σij(n) + ∆tσ̇ij(n+1) (C.20)

Referring to Eqs. (C15) and (C16), the stress and stress
deviator at timet(n+1) can be expressed as

σij(n+1) = σtrial
ij(n+1) −

√
6µ∆η̄in

(n+1)nij(n+1) (C.21)

sij(n+1) = strial
ij(n+1) −

√
6µ∆η̄in

(n+1)nij(n+1) (C.22)

where

σtrial
ij(n+1) = σij(n) + Lijkl∆εkl(n+1) (C.23)

strial
ij(n+1) = sij(n) + 2µ∆ηij(n+1) (C.24)

∆η̄in
n+1 = ∆t¯̇ηin

(n+1) (C.25)

The equilibrium stress at timet(n+1) is given as

gij(n+1) = gij(n) +
ψ

E

[
2µ∆ηij(n+1)

−
√

6µ∆η̄in
(n+1)nij(n+1) + ∆t

oij(n+1)

k(n+1)

− E∆η̄in
(n+1)

gij(n+1)

A(n+1)

]
−∆tR

∣∣gij(n)

∣∣ gij(n+1)

(C.26)

where

A(n+1) =
A(n) + AcAf∆η̄in

(n+1)

1 + Ac∆η̄in
(n+1)

(C.27)

Recallingoij(n+1) =
√

2/3Γ(n+1)nij(n+1), Eq. (C26)
can be rearranged as

gij(n+1)

(
1+

ψ

A(n+1)
∆η̄in

(n+1)+∆tR
∣∣gij(n)

∣∣
)

=
(
gij(n)+

2ψµ

E
∆ηij(n+1)

)
+

ψ

E

(
−
√

6µ

+

√
2
3
E

)
∆η̄in

(n+1)nij(n+1)

(C.28)

Define

gij(n+1) = C1g
trial
ij(n+1) + C2nij(n+1) (C.29)

where

C1 =
A(n+1)

A(n+1)+ψ∆η̄in
(n+1)+A(n+1)∆tR

∣∣gij(n)

∣∣ (C.30)

C2 = C1
ψ

E
∆η̄in

(n+1)

(
−
√

6µ +

√
2
3
E

)
(C.31)

gtrial
ij(n+1) = gij(n) +

2ψµ

E
∆ηij(n+1) (C.32)

Sinceoij(n+1) = sij(n+1) − gij(n+1) and sij(n+1) =
strial

ij(n+1) −
√

6µ∆η̄in
(n+1)nij(n+1), we have

(√
2
3
Γ(n+1)+C3

)
nij(n+1) =strial

ij(n+1)−C1g
trial
ij(n+1)(C.33)

where
C3 =

√
6µ∆η̄in

(n+1) + C2 (C.34)

Take the inner product for both sides of Eq. (C33), we
have

F (Γ(n+1))
.=

(√
2
3
Γ(n+1)+C3

)2

−
(

strial
ij(n+1)

− C1g
trial
ij(n+1)

)(
strial

ij(n+1)−C1g
trial
ij(n+1)

)
= 0

(C.35)

Γ(n+1) can be found by solving a nonlinear Eq. (C35)
using the Newton method. A consistent tangent for the
Newton method is

∂F
(
Γ(n+1)

)

∂Γ(n+1)
=2

(√
2
3
Γn+1+C3

)(√
2
3

+
∂C3

∂Γ(n+1)

)

+ 2
(
strial

ij(n+1) − C1g
trial
ij(n+1)

) ∂C1

∂Γ(n+1)
gtrial

ij(n+1)

(C.36)

∂C3

∂Γ(n+1)
=
√

6µ
∂∆η̄in

(n+1)

∂Γn+1
+

∂C2

∂Γ(n+1)
(C.37)

∂∆η̄in
(n+1)

∂Γ(n+1)
=

∆t

Ek2

(
k − Γ(n+1)

∂k

∂Γ(n+1)

)
(C.38)

∂k

∂Γ(n+1)
= −k1k3

k2

(
1 +

Γ(n+1)

k2

)−k3−1

(C.39)

∂C2

∂Γ(n+1)
=

ψ

E

(
−
√

6µ +

√
2
3
E

)

×
(

∂C1

∂Γ(n+1)
∆η̄in

(n+1) +
∂∆η̄in

(n+1)

∂Γ(n+1)
C1

) (C.40)
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∂C1

∂Γ(n+1)
=

∂A(n+1)

∂Γ(n+1)

[(
1+∆tR

∣∣gij(n)

∣∣)A(n+1)

+ ψ∆η̄in
(n+1)

]−1

−A(n+1)

[ (
1+∆tR

∣∣gij(n)

∣∣)

×A(n+1)+ψ∆η̄in
(n+1)

]−2
[ (

1 + ∆tR
∣∣gij(n)

∣∣)

× ∂A(n+1)

∂Γ(n+1)
+ ψ

∂∆η̄in(n+1)

∂Γ(n+1)

]

(C.41)

∂A(n+1)

∂Γ(n+1)
=

(
Af −A(n)

)
Ac(

1 + Ac∆η̄in
(n+1)

)2

∂∆η̄in
(n+1)

∂Γ(n+1)
(C.42)

A summary of the implicit back-Euler method for the
VBO integration scheme is given in the Algorithm 3.

Algorithm 3 Implicit integration scheme for VBO

1. Database:σij(n), gij(n), A(n).

2. Given the strain fieldεij(n+1) = εij(n) +∆εij(n+1).

3. Compute the trial stress.

σtrial
ij(n+1) = σij(n) + Lijkl∆εkl(n+1)

strial
ij(n+1) = σtrial

ij(n+1) −
1
3
δijσ

trial
kk(n+1)

4. Solve for the nonlinear functionF
(
Γ(n+1)

)
= 0 for

Γ(n+1) using the Newton method.

5. Compute∆η̄in
(n+1) andnij(n+1).

η̄in
(n+1) = ∆t

Γ(n+1)

Ek
(
Γ(n+1)

)

nij(n+1) =

(
strial

ij(n+1) − C1g
trial
ij(n+1)

)
(√

2/3Γ(n+1) + C3

)

6. Update the stress and all the internal variables.

σij(n+1) = σtrial
ij(n+1) −

√
6µ∆η̄in

(n+1)nij(n+1)

gij(n+1) = C1g
trial
ij(n+1) + C2nij(n+1)

A(n+1) =
A(n) + AcAf∆η̄in

(n+1)

1 + Ac∆η̄in
(n+1)

C.4 Formulas for ∆σij(n+1) and Consistent

Tangent ∂∆σij(n+1)

∂∆εkl(n+1)

Recallσij(n+1) = σtrial
ij(n+1) −

√
6µ∆η̄in

(n+1)nij(n+1), we
have

∆σij(n+1) = σij(n+1) − σij(n) = σtrial
ij(n+1)

−
√

6µ∆η̄in
(n+1)nij(n+1) − σij(n)

(C.43)

The consistent tangent is given by

∂∆σij(n+1)

∂∆εkl(n+1)
=

∂

∂∆εkl(n+1)

(
σtrial

ij(n+1)

−
√

6µ∆η̄in
(n+1)nij(n+1) − σij(n)

)

= Lijkl−
√

6µ
∂

∂∆εkl(n+1)

(
∆η̄in

(n+1)nij(n+1)

)

= Lijkl −
√

6µ

(
∂∆η̄in

(n+1)

∂∆εkl(n+1)
nij(n+1)

+ ∆η̄in
(n+1)

∂nij(n+1)

∂∆εkl(n+1)

)
= Lijkl −

√
6µ

×
(
∂∆η̄in

(n+1)

∂Γ(n+1)
nij(n+1)+∆η̄in

(n+1)

∂nij(n+1)

∂Γ(n+1)

)

× ∂Γ(n+1)

∂∆εkl(n+1)

(C.44)

where

∂nij(n+1)

∂Γ(n+1)
= −

gtrial
ij(n+1)

∂C1

∂Γ(n+1)(√
2/3Γ(n+1) + C3

)

−

(√
2/3+

∂C3

∂Γ(n+1)

)(
strial

ij(n+1)−C1g
trial
ij(n+1)

)

(√
2/3Γ(n+1) + C3

)2

(C.45)

Equation (C44) has a single unknown(∂Γ(n+1))/
(∂∆εkl(n+1)) (the other terms have already been calcu-
lated in the process of solving forΓ(n+1) described in the
previous section). DifferentiatingF

(
Γ(n+1)

)
= 0 gives

dF =
∂F

∂Γ(n+1)
dΓ(n+1) +

∂F

∂∆εij(n+1)

× d∆εij(n+1) = 0
(C.46)

From Eq. (C35) it follows that

∂F

∂∆εij(n+1)
= −2

(
strial

ij(n+1) − C1g
trial
ij(n+1)

)

×
(

∂strial
ij(n+1)

∂∆εkl(n+1)
− C1

∂gtrial
ij(n+1)

∂∆εkl(n+1)

) (C.47)

where

∂strial
ij(n+1)

∂∆εkl(n+1)
=2µ

∂∆ηij

∂∆εkl(n+1)
=2µ

∂eij(n+1)

∂∆εkl(n+1)
(C.48)
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∂gtrial
ij(n+1)

∂∆εkl(n+1)
=

2ψµ

E

∂∆ηij

∂∆εkl(n+1)

=
2ψµ

E

∂eij(n+1)

∂∆εkl(n+1)

(C.49)

∂eij(n+1)

∂∆εkl(n+1)
= Iijkl − 1

3
δijδkl (C.50)

Since(∂F )/(∂Γ(n+1)) has been already computed, from
Eq. (C36) we have

∂Γ(n+1)

∂∆εij(n+1)
= −

(
∂F

∂Γ(n+1)

)−1
∂F

∂∆εij(n+1)
(C.51)

And finally, (∂∆σij(n+1))/(∂∆εkl(n+1)) follows from
Eq. (C44).
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Image fusion is used to integrate multiple images into a composite image which contains complementary information
from each of the source images. In defense applications, fusion is widely employed to obtain images pertaining to the
object under surveillance and also for mapping terrain for navigation purposes. Although there are a many fusion
algorithms reported in the literature, the need is for a computationally efficient fusion rule that can be implemented
easily in hardware. Driven by this motivation we have formulated a discrete wavelet transform–based fusion technique
that uses the energy of the wavelet coefficients to determine the fusion weights for the approximate image and choose
maximum intensity rule for the detail image. Surveillance imaging generally uses two imaging sources, one an infrared
camera and the other a conventional digital camera, and the images are usually captured under low lighting and night-
time conditions. We used the structural similarity index, mutual information, and standard deviation as metrics to
evaluate the performance of our fusion scheme with existing algorithms. Our experiments have shown that the algorithm
developed produces good results under the constraints imposed by this application.

KEY WORDS: image fusion, surveillance and navigation, discrete wavelet transform, energy of wavelet
coefficients, structural similarity index, mutual information

1. INTRODUCTION

Image fusion finds widespread application in night-time
surveillance and navigation systems used by the military.
These require the ability to detect targets and obstructions
under low-light conditions. Night vision images are usu-
ally obtained by means of conventional charge-coupled
device (CCD) cameras which produce a low-intensity im-
age, or forward-looking infrared (FLIR) cameras which
give an infrared image. However, both these cameras do
not capture all available information due to the charac-
teristics of the sensors employed. While the FLIR cam-
era responds to variations in heat, they cannot capture the
variations in intensity. The CCD cameras, on the other
hand, respond to the illumination of the scene and give an

image that has visible details as perceived by the human
visual system. Hence, the need arises for a data fusion
technique that can combine the information from each of
these images to produce a composite output image that
can be processed for further analysis.

The pixel level image fusion algorithms reported in
the literature are broadly classified as statistical fusion
schemes and multiresolution analysis-based fusion. Das
and Krebs (2000) proposed a principal component anal-
ysis (PCA)–based fusion scheme for navigation and
surveillance. Apart from this, experimental tests have
been carried out for various fusion algorithms using night-
time images and the results have been reported in Chen
and Blum (2005) and Canga et al. (2005). The PCA-based
fusion rule (Das et al., 2000) is efficient in terms of the
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output fused image quality; however, implementing it in
real time is more involved. This arises due to the matrix
multiplication operations involved in the computation of
the principal components. As the size of the input image
increases, the matrix dimensions increase, making cost-
effective implementation not feasible. According to our
literature survey, there have not been many publications
reported in this area. This has been a motivation for our
research, to present a new and efficient algorithm.

In this paper we present a multiresolution-based fu-
sion scheme using the discrete wavelet transform (DWT).
This algorithm proposes a weighted fusion scheme for the
approximation sub-images, where the weights are calcu-
lated based on the energy of the DWT coefficients. The
detail sub-images are fused using the rule of choosing the
maximum intensity pixels. The paper is organized as fol-
lows: Section 2 details the image fusion methodology us-
ing wavelet transform and the proposed fusion scheme is
described. In Section 3, the various quality metrics de-
ployed to evaluate the performance of the fusion scheme
are outlined. Section 4 gives the results obtained and com-
pares the performance with existing fusion techniques.

2. DISCRETE WAVELET TRANSFORM-BASED
FUSION

The multiresolution image fusion algorithms used widely
follow two stages: First, they decompose the input im-
age into multiple resolution levels using different decom-
position methods. Then they combine the decomposition
images of specific levels using fusion rules to obtain the
fused output. The pyramid decomposition and wavelets
are the commonly used multiresolution image decompo-
sition schemes. The pyramidal decomposition has been
implemented using various algorithms such as Toet’s ra-
tio pyramid (1989), the contrast pyramid–based fusion
of Toet et al. (1989), the generalized Laplacian pyramid
(GLP) method put forward by Kim et al. (1993), and
Burt’s Gaussian pyramid (GP) and the enhanced Lapla-
cian pyramid (ELP) (1984). However, in these methods
the computations involved increase rapidly with an in-
crease in the decomposition levels, and hence a tradeoff
is sought between the accuracy and the computation in
applications.

The DWT-based fusion techniques involve the initial
multiresolution decomposition of the input images, com-
bining the coefficients of the corresponding levels using
fusion rules and finally, synthesizing the fused image us-
ing inverse discrete wavelet transform (IDWT). The flow
of a DWT-based fusion scheme is illustrated in Fig. 1.

FIG. 1: Flow of DWT-based data fusion method.

Actually the fusion rules adopted in images select
maximum or minimum for detail images. Averaging the
approximation of images results in a problem in that the
fused images are inconsistent. Detailed images contain
important information such as image edges, lines, and
region boundaries. The approximation image represents
the low-frequency component of the image. Hence, while
combining these images, the useful low-frequency com-
ponent information must be transferred from the sources
to the fused output image. To better meet the need of hu-
man visual systems, fusion rules of detail images usually
acquire salient information and sharper contrast that is
easier for observation. The fusing of detail information
requires preserving the edges in the source images and
avoiding the introduction of artifacts in the fused image
due to the high-frequency components.

Numerous fusion rules have been published in the lit-
erature, and most of these techniques used a weighting
scheme to combine the coefficients. Our fusion scheme
uses the energy of the wavelet coefficients to determine
the fusion weights.

2.1 DWT Energy-Based Weighted Fusion
Algorithm

This algorithm proposes a weighted fusion scheme for the
approximation sub-images, where the weights are calcu-
lated based on the energy of the DWT coefficients. The
detail sub-images are fused using the rule of choosing
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the maximum intensity pixels. This effectively makes use
of the energy of the source images upon knowing the
weights of the corresponding source images at the fused
output image.

Here we assume the images to be designated as Ivis and
Iir, corresponding to the inputs from the CCD camera and
the IR camera. The approximation sub-images are Avis

and Air, and the detail components are Hvis and Hir (hor-
izontal details), Vvis and Vir (vertical details), and Dvis

and Dir (diagonal details). All the individual detail com-
ponents can be represented by Detvis and Detir in general.

The image of a road has been considered for illustrat-
ing the fusion scheme. Both the IR camera and the CCD
camera source images are decomposed using the DWT
for a single decomposition level, as shown in Fig. 2.

2.1.1 Approximation Sub-Image Fusion Rule

The basic fusion rule for the low-frequency approxima-
tion is the weighted image fusion given by

Appfuse = (w1 ×Avis) + (w2 ×Air) (1)

wherew1 andw2 are the normalized weights computed
from the energy of the approximation coefficients, and
Appfuse is the fused approximation image.

The weights have been computed from the energy so
that the image which has the highest energy has more
weight at the fused output image. This implies that the
fused output image receives more information from the
source image, which has higher energy, and much less in-
formation is taken from a low-energy content source im-
age.

The energies of the approximation images, Ea1 and
Ea2, are calculated using the general expression for en-
ergy

Ea1 =
∑

i,j

(Air(i, j))
2 (2)

Ea2 =
∑

i,j

(Avis(i, j))
2 (3)

The normalization factorEt is then calculated as the max-
imum energy value of the two images.

Et = Max





∑

i,j

(Air(i, j))
2
,
∑

i,j

(Avis(i, j))
2



 (4)

Then the weights w1 and w2 are given by

w1 =
Ea1

Et
(5)

w2 =
Ea2

Et
(6)

wherew1 andw2 lie in the range 0 to 1.
From experimentation it has been determined that us-

ing the normalization valueEt for finding out the weights
w1 andw2 gives better results than using the energy of the
source images directly. One of the weighting factors is al-
most equal to one and the other is less than one but not
zero. The result of fusing the approximation components
using the energy-based weighted fusion scheme is shown
in Fig. 3.

2.1.2 Detail Sub-Image Fusion Rule

The detail components of the DWT decomposition are
combined using the method of obtaining the fused out-
put by selecting the maximum intensity pixels from each
of the detail sub-image. This method ensures that the
high-frequency edge details that are present in each of the
sub-images are appropriately retained in the fused image.
Mathematically, the decision map for this is given by

Detfuse(i, j)=





|Detir(i, j)|
if |Detir(i, j)| > |Detvis(i, j)|

|Detvis(i, j)|
if |Detir(i, j)|< |Detvis(i, j)|

(7)

where, i = 1, 2, 3, . . . Si; j = 1, 2, 3, . . . Sj[Si× Sj] is the
dimension of the detail sub-image, and Detfuse(i, j) is the
fused detail image. As per our fusion rule, the detailed
maximum of image coefficients is calculated either from
an IR image or CCD image, so the resultant pixel value
of detailed image is also only 8 bit. The resultant fused
detail image is shown in Fig. 4.

The final fused image is then obtained by taking the
inverse discrete transform using the fused detail and ap-
proximation sub-images. The resultant image as shown
in Fig. 5 shows that information from both the sources is
present in the output and the image also has an apprecia-
bly good subjective quality.

3. FUSION PERFORMANCE METRIC

The multisensor image fusion methods outlined in this
paper are directed toward applications in the areas of
surveillance and navigation. In these applications, due
to the real-time nature of the scene being imaged, there
are no ground truth data available and so evaluating the
performance of such fusion schemes requires the use of
nonreference-quality metrics. We have used the following
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(a)

(b)

FIG. 2: DWT decomposition of(a) CCD and(b) IR image.
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FIG. 3: Weighted fusion of approximation sub-images based on energy.

FIG. 4: Result of fusing detail components using choose
maximum rule.

four metrics to compute the efficiency of our algorithm:
entropy, mutual information (MI), SSIM-based measure
(SI), and standard deviation (SD). Structure, intensity, and
contrast detail gives the better view for human perception.
The SSIM index produces the index value based on struc-
ture similarity of images, intensity, and contrast detail, so

FIG. 5: Result of fusing using the energy-based fusion
algorithm.

it is quite capable of measuring image quality. Entropy
measures the amount of information and is a useful met-
ric to compare source and fused images in a noise-free
environment. SD measures the contrast detail. The eval-
uation of image quality by subjective testing gives addi-
tional support to the above metrics.
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3.1 Mutual Information (MI)

Mutual information has been employed as a means of
assessing image fusion quality. This metric is utilized
to determine the amount of information transferred from
source images to fused images. It is calculated by defin-
ing the joint histogram of the source image Ivis, Iir and the
fused image Ifuse as p(fuse, ir) and p(fuse, vis). The mu-
tual information between the source image and the fused
image is given by Qu et al. (2002) as

Mi1(fuse, ir) = −
∑

p(fuse, ir)

× log2

{
p(fuse, ir)

[p(fuse) ¦ p(ir)]

} (8)

Mi2(fuse, vis) = −
∑

p(fuse, vis)

× log2

{
p(fuse, vis)

[p(fuse) ¦ p(vis)]

} (9)

where p(fuse, ir) and p(fuse, vis) are the joint histograms
of the source image Ivis, Iir and the fused image Ifuse.
Image fusion performance is measured by size, where
a larger measure implies better image quality. The fu-
sion algorithm efficiency is determined by the metric MI
which is defined by

MI = Mi1(fuse, ir) + Mi2(fuse, vis) (10)

3.2 Structural Similarity Index-Based Measure
(SI)

The SSIM index proposed by Wang et al. (2004) is used
as an objective image quality metric to indicate the simi-
larity of the structure information present in the two im-
ages being compared. The SSIM of two images x and y is
defined as

SSIM(x, y) =
(2mxmy + C1)(2σxy + C2)

(m2
x + m2

y + C1)(σ2
x + σ2

y + C2)
(11)

where, mx is the mean intensity of image x,σx is the stan-
dard deviation of image x used as an estimate of image
contrast, and C1 and C2 are constants. However, the SSIM
is a full-reference approach and requires the need for a
complete reference image for its calculation. This imped-
iment is overcome by separately calculating the amount of
structural information transferred from each of the source
images to the fused image, SSIM(fuse, ir) and SSIM(fuse,
vis). Then the SSIM index for the fused image is calcu-
lated by (Maruthi and Suresh, 2007)

SI = SSIM(fuse, ir) + SSIM(fuse, vis) (12)

3.3 Standard Deviation (SD)

For a fused image of size N× M, the standard deviation
is given by

SD =

√√√√ 1
NM

N∑

i=1

M∑

j=1

(Ifuse(i, j)−mfuse)2 (13)

where Ifuse(i, j) is the (i,j) th pixel intensity value and
mfuse is the sample mean of all pixel values of the fused
image. The SD value gives the contrast of the image; a
higher SD value signifies a better contrast in the gray lev-
els of the image. The SD is composed of the signal part
and the noise part, and this measurement is more efficient
in the absence of noise (Chen and Blum, 2005).

4. EXPERIMENTAL RESULTS

The experimental results were obtained using various sets
of images and the results using the proposed new method
compared with existing fusion schemes. Three sets of im-
ages were selected: the road image and the boat image
corresponding to night-time navigation application, and
the house on hill image corresponds to a surveillance ap-
plication. These images were obtained from Image Fusion
(www.imagefusion.org). The Laplacian pyramid scheme
for image fusion (Zhang and Blum, 1999; Burt and Adel-
son, 1983) and the DWT weighted fusion using the princi-
pal components as weights (Zheng et al., 2007) were con-
sidered for a comparative study of the new energy-based
DWT fusion scheme.

The fusion outputs for the different images are shown
in Figs. 6–8. Different parameters such as Entropy, SSIM,
Mutual information and Standard deviation have been
compared and listed out in Table 1. The SSIM values
show that the new energybased rule performs as well as
the Laplacian pyramid and outperforms the DWT PCA
fusion scheme, though the Laplacian fusion shows a
higher SSIM value. MI is lower in all three images. MI
represents the amount of information transformed from
source to fused image. We have considered the highest MI
as the best value when SSIM is only slightly low. From the
tabulated results, SD is higher in our proposed scheme as
compared to the Laplacian pyramid, which gives the high-
est SSIM. Though the SD computed is higher for DWT
PCA, the corresponding SSIM is the least of all three
methods. From a complexity point of view, the wavelet-
based reduction method yields the order of O(MN), where
N is the number of bands and M is the number of pixels in
the spatial domain. On the other hand, the total estimated
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(a) (b) (c)

(d) (e)

FIG. 6: Results of MRA-based fusion algorithms for “boat” image:(a) CCD camera source image,(b) IR camera
source image,(c) DWT PCA max fused image,(d) DWT energy-fused image, and(e)Laplacian fused image.

(a) (b) (c)

(d) (e)

FIG. 7: Results of MRA-based fusion algorithms for “road” image:(a) CCD camera source image,(b) IR camera
source image,(c) DWT PCA max fused image,(d) DWT energy-fused image, and(e)Laplacian fused image.
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(a) (b) (c)

(d) (e)

FIG. 8: Results of MRA-based fusion algorithms for “house on hill” image:(a) CCD camera source image,(b) IR
camera source image,(c) DWT PCA max fused image,(d) DWT energy-fused image, and(e)Laplacian fused image.

TABLE 1: Comparison of fusion quality metrics.

Image Fusion scheme En SSIM MI SD

Boat
DWT energy 7.1679 0.5636 3.8379 78.1263

DWT PCA max 7.0557 0.2275 4.2786 316.506
Laplacian pyramid 6.6104 0.6816 3.2648 45.4758

Road
DWT energy 6.9639 0.5635 2.5039 86.1933

DWT PCA max 7.0566 0.2678 2.7189 200.599
Laplacian pyramid 6.9988 0.7046 2.1312 54.2838

House on hill
DWT energy 6.7851 0.5527 1.5555 44.1744

DWT PCA max 6.9453 0.1836 2.2319 129.664
Laplacian pyramid 6.1980 0.7164 1.3372 30.4117

complexity of PCA isO((MN)2 + N3), which shows that
the computation efficiency of a wavelet reduction tech-
nique is superior to the efficiency of the PCA method.

Subjective test ranking was carried out with 20 human
visual perception, and as seen in the tabulated results, the
DWT energy-based scheme gives the best result. A visual
inspection shows that images fused using the Laplacian
algorithm have a lower contrast compared to the other two
methods. A visual perception assessed by subjective test-
ing also indicates that the energy fusion scheme performs
better than other methods. Also, it can be inferred that
the SSIM index is also used as a quality metric for non-
reference images that reflect the fused image quality as
perceived by the human visual system.

5. CONCLUSION

In this paper, we present a new energy-based fusion algo-
rithm that uses the DWT for multiresolution decomposi-
tion of source images. The approximation sub-image uses
the energy of wavelet coefficients as weights for fusion,
and the detail images are fused by choosing the maximum
intensity pixels from either of the source images. The
structural similarity and MI analytical measure are used
as the parameters to evaluate fusion rule performance. Vi-
sual perception also assessed by subjective testing also in-
dicates that the energy fusion scheme performs better than
other methods. The results are very impressive for night
vision applications such as surveillance and navigation,
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and they prove to be better than existing multiresolution-
based fusion methods.

REFERENCES

Burt, P. J. and Adelson, E. H., The Laplacian pyramid as a com-
pact image code,IEEE Trans. Commun., vol. 31(4), pp. 532–
540, 1983.

Burt, P. J., The pyramid as a structure for efficient computation,
in Rosenfeld, A., Ed.,Multiresolution Image Processing and
Analysis, Berlin: Springer-Verlag, 1984.

Das, S., Zhang, Y.-L., and Krebs, W. K., Color night vision for
navigation and surveillance,Proc. of the Fifth Joint Conf. on
Information Science, 2000.

Canga, E. F., Nikolov, S. G., Canagarajah, C. N., Bull, D. R.,
Dixon, T. D., Noyes, J. M., and Troscianko, T., Characteriza-
tion of image fusion quality metrics for surveillance applica-
tions over band-limited channels,Proc. of the 7th Int’l. Conf.
on Information Fusion, pp. 483–490, 2005.

Chen, Y. and Blum, R. S., Experimental tests of image fusion
for night vision,Proc. of the 7th International Conf. on In-
formation Fusion, pp. 491–498, 2005.

Image Fusion, www.imagefusion.org, December 2008.

Kim, M. G., Dinstein, I., and Shaw, L., A prototype filter de-
sign approach to pyramid generation,IEEE Trans. Pattern
Machine Intell., vol. 15(12), pp. 1233–1240, 1993.

Maruthi, R. and Suresh, R. M., Metrics for measuring the quality
of fused images,Proc. of the Int’l. Conf. on Computational
Intelligence and Multimedia Applications, vol. 3, pp. 153–
158, 2007.

Qu, G., Zhang, D., and Yan, P., Information measure for perfor-
mance of image fusion,Electron. Lett., vol. 38(7), pp. 313–
315, 2002.

Toet, A., Image fusion by a ratio of low pass pyramid,Pattern
Recog. Lett., vol. 9, pp. 245–253, 1989.

Toet, A., van Ruvven, L. J., and Valeton, J. M., Merging ther-
mal and visual images by a contrast pyramid,Opt. Eng., vol.
28(7), pp. 789–792, 1989.

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.,
Image quality assessment: From error visibility to structural
similarity, IEEE Trans. Image Process., vol. 13(4), pp. 600–
612, 2004.

Zhang, Z. and Blum, R. S., A categorization of multiscale-
decomposition-based image fusion schemes with a perfor-
mance study for a digital camera application,Proc. IEEE, vol.
87(8), pp. 1315–1326, 1999.

Zheng, Y., Hou, X., Bian, T., and Oin, Z., Effective image fu-
sion rules of multiscale image decomposition,Proc. of the
5th Int’l. Symp. on Image and Signal Processing and Analy-
sis, pp. 362–366, 2007.

S. Senthil Kumar (Fig. 9) acquired a B.E. degree in
electronics and communication engineering from Vellore
Engineering College, Vellore, in the year 1988, and an
M.Tech. degree in electronics and communication from
Pondicherry Engineering College, Pondicherry, 1997. He
is currently pursuing the PhD in the Department of Elec-
tronics and Communication Engineering, College of En-
gineering, Anna University, Chennai, India. He has pub-
lished over seven research papers in national and interna-
tional journals and conferences. His areas of interest in-
clude image fusion, digital signal processing, and digital
image processing.

Dr. S. Muttan (Fig. 10) is an assistant professor at
Center of Medical Electronics, Department of Electron-
ics and Communication Engineering, Anna University,
Chennai, India. He obtained his Masters and PhD degree

FIG. 9: S. Senthil Kumar

FIG. 10: Dr. S. Muttan

Volume 8, Number 6, 2010



640 Kumar, Muttan, & Bharath

from Anna University, Chennai, India. His area of spe-
cialization is medical informatics and E-health services.
He had his training in medical informatics at Fh. Geis-
sen, Germany. He has published over 40 papers in interna-
tional and national journals and conferences. He is a life
member of Indian Association of Biomedical Scientists,
Biomedical Society of India, and ISTE. He was an Aca-
demic Council member and executive member of Anna

University Research Forum, Anna University, Chennai,
India.

K. Mahesh Bharath acquired a BE degree in elec-
tronics and communication engineering from St. Joseph’s
College of Engineering, Chennai, India, in 2009. He is
currently a research assistant in the R&D Laboratory at
St. Joseph’s College of Engineering. His interests include
image processing and digital signal processing.

Journal for Multiscale Computational Engineering



International Journal of

Multiscale Computational Engineering

Volume 8 ISBN 1091-028X 2010





2010 INDEX 643

CONTENTS OF VOLUME 8

NUMBER 1

Preface vii

Eigendeformation-Based Homogenization of Concrete 1
W. Wu, Z. Yuan, and J. Fish

Multiscale Simulation Methods in Damage Prediction of Brittle and Ductile Materials 17
C. Könke, S. Eckardt, S. Häfner, T. Luther, and J. Unger

Softening Gradient Plasticity: Analytical Study of Localization Under Nonuniform Stress 37
M. Jirásek, J. Zeman, and J. Vondřejc

Can Multiscale-Multiphysics Methods Predict Softening Damage and Structural Failure? 61
Z. P. Bažant

Multiscale Transformation Field Analysis of Progressive Damage in Fibrous Laminates 69
Y. A. Bahei-El-Din, R. Khire, and P. Hajela

Two-Scale Modeling of Tissue Perfusion Problem Using Homogenization of Dual
Porous Media 81
E. Rohan and R. Cimrman

Upscaling of Permeability of Porous Materials: First Insight into the Effect of Pore-Space
Characteristics 103
X. Liu, M. Zeiml, R. Lackner, and H. A. Mang

Effects of High Temperature on Mesoscale Properties of Concrete 113
P. Kabele, J. Pekař, and J. Surovec

Macroscopic Constitutive Law for Mastic Asphalt Mixtures from Multiscale Modeling 131
R. Valenta, M. Šejnoha, and J. Zeman

NUMBER 2
Preface vii

A Molecular Mechanics Study on the Effect of Surface Modification on the Interfacial
Properties in Carbon Nanotube/Polystyrene Nanocomposites 151
D. Qian, P. He, and D. Shi

A Nonclassical Reddy–Levinson Beam Model Based on a Modified Couple Stress Theory 167
H. M. Ma, X.-L. Gao, and J. N. Reddy

Molecular Dynamics Study of the Specimen Size and Imperfection Effects on the Failure
Responses of Multi-Nanobar Structures 181
L. Shen and Z. Chen



644 2010 INDEX

Hybrid Model for Simulation of Magneto-Optical Response of Layers of Semiconductor
Nano-Objects 195
O. Voskoboynikov

Analysis of Multi-Transmitting Formula for Absorbing Boundary Conditions 207
X. Wang and S. Tang

Dynamic Crack Propagation Using a Combined Molecular Dynamics/Extended Finite
Element Approach 221
P. Aubertin, J. Réthoré, and R. de Borst

Molecular Modeling of Normal and Sickle Hemoglobins 237
T. Wu, X. S. Wang, B. Cohen, and H. Ge

The Stability and Mechanical Properties of Boron Nanotubes Explored through Density
Functional Calculations 245
L. Pan, X. Yang, R. Zhang, and X. Hu

NUMBER 3
Preface vii

A Multiscale Approach to Numerical Modeling of Solidification 251
M. Ciesielski

Generalized Micro/Macro Model of Crystallization and Its Numerical Realization 259
B. Mochnacki and R. Szopa

Internal Variable and Cellular Automata–Finite Element Models of Heat Treatment 267
P. Macioł, J. Gawąd, R. Kuziak, and M. Pietrzyk

A Multiscale Finite Element Approach for Buckling Analysis of Elastoplastic Long Fiber
Composites 287
S. Nezamabadi, H. Zahrouni, J. Yvonnet, and M. Potier-Ferry

Toward Two-Scale Adaptive FEM Modeling of Nonlinear Heterogeneous Materials 303
M. Serafin and W. Cecot

Molecular Statics Coupled with the Subregion Boundary Element Method in Multiscale
Analysis 319
T. Burczyński, A. Mrozek, R. Górski, and W. Kuś

Continuum and Atomistic Modeling of the Mixed Straight Dislocation 331

P. Dłużewski, T. D. Young, G. P. Dimitrakopulos, and P. Komninou

Application of the Automatic Image Processing in Modeling of the Deformation
Mechanisms Based on the Digital Representation of Microstructure 343
L. Rauch and L. Madej



2010 INDEX 645

NUMBER 4

Creep of a C-S-H Gel: Micromechanical Approach 357
J. Sanahuja and L. Dormieux

Mathematical and Biological Scientists Assess the State of the Art in RNA Science at
an IMA Workshop, RNA in Biology, Bioengineering, and Biotechnology 369
T. Schlick

Multiscale Modeling of Viscoelastic Plant Tissue 379
P. Ghysels, G. Samaey, P. Van Liedekerke, E. Tijskens, H. Ramon, and D. Roose

Adaptive Multiwavelet-Hierarchical Method for Multiscale Computation 397
Y.Wang, X. Chen, and Z. He

Coarse Implicit Time Integration of a Cellular Scale Particle Model for Plant Tissue
Deformation 411
P. Ghysels, G. Samaey, P. Van Liedekerke, B. Tijskens, H. Ramon, and D. Roose

Equation-Free Accelerated Simulations of the Morphological Relaxation of Crystal
Surfaces 423
G. J. Wagner, X. Zhou, and S. J. Plimpton

Developing a Novel Finite Elastic Approach in Strain Gradient Theory for
Microstructures 441
H. Farahmand and S. Arabnejad

NUMBER 5
Preface vii

Symmetric Mesomechanical Model for Failure Aanalysis of Heterogeneous Materials 447
R. Crouch and Caglar Oskay

Atomistic Understanding of the Particle Clustering and Particle Size Effect on the Room
Temperature Strength of SiC–Si3N4 Nanocomposites 463
V. Tomar, V. Samvedi, and H. Sung Kim

Random Packs and their Use in Grain-Scale Modeling, with Applications to Energetic
Materials 473
T. L. Jackson and D. S. Stafford

Three-Dimensional Reconstruction of Statistically Optimal Unit Cells of Multimodal
Particulate Composites 489
B. C. Collins, K. Matouš, and D. Rypl

Calibration of Nanocrystal Grain Boundary Model Based on Polycrystal Plasticity Using
Molecular Dynamics Simulations 509
S. Lee and V. Sundararaghavan

Numerical Modeling of Dielectric Breakdown in Solid Propellant Microstructures 523
S. Gallier



646 2010 INDEX

Evaluating the Glass Transition Temperature of Polystyrene by an Experimentally
Validated Molecular Dynamics Model 535
A. Srivastava and S. Ghosh

NUMBER 6

Toward a Nonintrusive Stochastic Multiscale Design System for Composite Materials 549
W. Wu and J. Fish

Tailoring Crystallinity and Nanomechanical Properties of Clay Polymer Nanocomposites:
A Molecular Dynamics Study 561
D. Sikdar, D. R. Katti, K. S. Katti, and R. Bhowmik

Concrete as a Hierarchical Structural Composite Material 585
W. Wu, A. Al-Ostaz, A. H.-D. Cheng, and C. R. Song

Extended Multiscale Finite Element Method for Mechanical Analysis of Periodic Lattice
Truss Materials 597
H. W. Zhang, J. K. Wu, and Z. D. Fu

On the Canonical Structure of the Eigendeformation-Based Reduced-Order
Homogenization 615
W. Wu, Z. Yuan, J. Fish, and V. Aitharaju

Energy-Based Fusion Scheme for Surveillance and Navigation 631
S. S. Kumar, S. Muttan, and K. M. Bharath

INDEX to Volume 8 641



2010 INDEX 647

AUTHOR INDEX TO VOLUME 8

International Journal for Multiscale Computational Engineering

Page Ranges of Issues

Issue 1: 1-149; Issue 2: 151-250; Issue 3: 251-356;
Issue 4: 357-446; Issue 5: 447-547; Issue 6: 549-640

Aitharaju, V., 615

Al-Ostaz, A., 585

Arabnejad, S., 441

Aubertin, P., 221

Bahei-El-Din, Y.A., 69

Bažant, Z.P., 61

Bharath, K.M., 631

Bhowmik, R., 561

Burczyński, T., 319

Cecot, W., 303

Chen, X., 397

Chen, Z., 181

Cheng, A.H.-D., 585

Ciesielski, M., 251

Cimrman, R., 81

Cohen, B., 237

Collins, B.C., 489

Crouch, R., 447

de Borst, R., 221

Dimitrakopulos, G.P., 331

Dłużewski, P., 331

Dormieux, L., 357

Eckardt, S., 17

Farahmand, H., 441

Fish, J., 1, 549, 615

Fu, Z.D., 597

Gallier, S., 523

Gao, X.-L., 167

Gawąd, J., 267

Ge, H., 237

Ghosh, S., 535

Ghysels, P., 379, 411

Górski, R., 319

Häfner, S., 17

Hajela, P., 69

He., P., 151

He., Z., 397

Hu, X., 245

Jackson, T.L., 473

Jirásek, M., 37

Kabele, P., 113

Katti, D.R., 561

Katti, K.S., 561

Khire, R., 69

Komninou, P., 331

Könke, C., 17

Kumar, S.S., 631

Kuś, W., 319

Kuziak, R., 267

Lackner, R., 103

Lee, S., 509

Liu, X., 103

Luther, T., 17

Ma., H.M., 167

Macioł, P., 267

Madej, L., 343

Mang, H.A., 103

Matouš, K., 489

Mochnacki, B., 259

Mrozek, A., 319

Muttan, S., 631

Oskay, C., 447

Pan, L., 245

Pekař, J., 113

Pietrzyk M., 267

Plimpton, S.J., 423

Potier-Ferry, M., 287

Qian, D., 151

Ramon, H., 379, 411

Rauch, L., 343

Reddy, J.N., 167

Réthoré, J., 221

Rohan, E., 81

Roose, D., 379, 411

Rypl, D., 489

Samaey, G., 379, 411

Samvedi, V., 463

Sanahuja, J., 357

Schlick, T., 369

Šejnoha, M., 131

Serafin, M., 303

Shen, L., 181

Shi., D., 151

Sikdar, D., 561

Song, C.R., 585

Srivastava, A., 535

Stafford, D.S., 473

Sundararaghavan, V., 509

Sung Kim, H., 463

Surovec, J., 113

Szopa, R., 259

Tang, S., 207

Tijskens, E., 379, 411



648

Tomar, V., 463

Unger, J., 17

Valenta, R., 131

Van Liedekerke,P.,379, 411

Vondřejc, J., 37

Voskoboynikov, O., 195

Wagner, G.J., 423

Wang, X., 207

Wang, X.S., 237

Wang, Y., 397

Wu, J.K., 597

Wu, T., 237

Wu, W., 1, 549, 615

Wu, Weidong, 585

Yang, X., 245

Young, T.D., 331

2010 INDEX

Yuan, Z., 1, 615

Yvonnet, J., 287

Zahrouni, H., 287

Zeiml, M., 103

Zeman, J., 37, 131

Zhang, H.W., 597

Zhang, R., 245

Zhou, X., 423



2010 INDEX 649

SUBJECT INDEX TO VOLUME 8

International Journal for Multiscale Computational Engineering

Page Ranges of Issues

Issue 1: 1-149; Issue 2: 151-250; Issue 3: 251-356;
Issue 4: 357-446; Issue 5: 447-547; Issue 6: 549-640

absorbing boundary condition, 207
adapt. multiwavelet-hierarchical method, 397
stable completion, 397
adaptive finite element method, 303
approximation order, 397
artificial wave propagation speed, 207
asymptotic numerical method, 287
atomic model, 319
atomistic models, 331
base function, 597
beam vibration, 167
binary image, 131
biological tissue deformation, 379
micromechanics, 379
biological tissue, 411
Biot model, 81
boron nanotubes, 245
boundary element method,319
breakdown, 523
bridging methods, 319
CAFE, 267
carbon nanotubes, 151
cellular automata, 267
classical beam theory, 167
coarse graining, 237
coefficient of thermal conductivity, 113
coefficient of thermal expansion, 113
cohesive elements, 509
composite material design system, 615
composites, 447
compressive strength, 113
computational biology, 369
computational homogenization, 379
concrete model, 1
concrete simulation, 585
control volume method, 251
convective burning, 473
couple stress theory, 167
crack propagation, 221
crack, 181
creep, 357
crystal plasticity, 509
C-S-H, 357

C–S–H, 585
damage localization, 61
damage, 17
discrete wavelet transform, 631
dislocations, 331
domain decomposition, 237
downscaling computation, 597
dual-porous media, 81
eigendeformation, 1
elastic modulus, 113
electrostatic discharge, 523
energetic materials, 473
energy of wavelet coefficients, 631
equation-free, 423
extended finite element method, 221
failure, 447
fibrous composites, 69
field theory, 331
finite element method, 61, 267, 331
first-principles calculations, 245
fracture energy, 113
fracture, 17, 61, 221, 509
free volume, 535
generalized Leonov model, 131
genetic algorithm, 489
glass transition,
gradient theories, 37
Hamilton’s principle, 167
hard sphere, 523
heat treatment, 267
hemoglobin, 237
heterogeneous materials, 17
hierarchical structures, 181
high-res trans. electron microscopy, 331
digital material representation, 343
homogenization method, 597
homogenization,
1, 131, 303, 357, 411, 441, 447, 549
IMA workshop, 369
image fusion, 631
image processing, 343
internal variable, 267
kinetic Monte Carlo, 423



650

laminates, 69
lattice-particle simulation, 61
long fiber composite, 287
macro model of crystallization, 259
magneto-optics, 195
mastic asphalt mixture, 131
material characteristic length, 61
material inelasticities, 615
mathematical biology, 369
mechanical properties, 245, 585
mechanical strength, 463
micro model of crystallization, 259
micro-macro modeling, 251
micromechanics, 357
microporomechanics, 585
microstructure, 523
modeling, 343
molecular dynamics,
151,181,221,237,463,509,561,585
molecular modeling, 561
multi-grid solver techniques, 17
multiscale analysis, 69, 131
multiscale finite element method, 287, 597
multiscale methods, 221
multiscale modeling, 237,267,303,319,489
multiscale simulations, 17
multiscale, 411,447,549,585
multi-transmitting formula, 207
mutual information, 631
nanobar, 181
nanocomposites, 151, 463
nanocrystals, 509
network model, 103
nonintrusive, 549
nonlinear elasticity, 441
nonlinear homogenization, 287
nonlocal elasticity, 167
nonlocal models, 61
nonlocality, 441
n-point probability functions, 489
numerical methods, 259
numerical simulations, 343
packing algorithm, 489
perfusion, 81
periodic homogenization, 81
periodic unit cell, 131
permeability, 103
phase transformation, 267

2010 INDEX

plastic microbuckling, 287
plasticity, 37
polymer matrix, 151
polymer-clay nanocomposite, 561
polystyrene (PS), 151
pore-size distribution, 103
positron annihilation lifetime spectroscopy, 535
progressive damage, 69
projectile penetration, 1
protein, 237
quantum dot molecule, 195
random packs, 473
Reddy–Levinson beam, 167
reduced order homogenization, 615
reduced-order, 447
reflection coefficient, 207
regularization, 37
RNA bioinformatics, 369
RNA folding, 369
RNA structure and design, 369
RVE, 379
scale bridging, 61
scaling, 61
semiconductor, 195
sickle cell, 237
simply supported beam, 167
size effect, 167
softening, 181
solid propellant, 523
solidification, 251
solid-on-solid model, 423
specific heat, 113
SPH, 379, 411
stochastic, 549
strain gradient theory, 441
strain localization, 37
strain softening, 37
structural similarity index, 631
surface diffusion, 423
surface modification, 151
surveillance and navigation, 631
temperature dependence, 113
tensile strength, 113
transformation fields, 69
truss material, 597
unit cell, 489
upscaling, 103
vacancy, 181


