ATOMIZATION AND SPRAYS
Journal of the International Institutes for Liquid Atomization and Spray Systems

Volume 9
1999
CONTENTS OF VOLUME 9

NUMBER 1

1 Simple Description of the Combustion Structures in the Stabilization Stage of a Spray Jet Flame A. Cessou, P. Goix, and D. Stepowski

29 A Predictive Model for Droplet Size Distribution in Sprays and Xianguo Li Sushanta K. Mitra

51 The Effect of Manifold Cross-Flow on the Discharge Coefficient of Sharp-Edged Orifices P. A. Strakey and D. G. Talley

69 Evaporation of a Salt Water Drop with Crystallization Izumi Taniguchi, Tsuguo Inoue, and Koichi Asano

87 Unsteadiness in Effervescent Sprays John T. K. Luong and Paul E. Sojka

NUMBER 2

111 Scaling of Spray Penetration with Evaporation Yuepeng Wan and Norbert Peters

153 Air Dilution Effects on Tetradecane Spray Autoignition in Transcritical and Supercritical Regimes M. de Joannon, A. Cavaliere, and R. Ragucci

NUMBER 3

231 A Drop-Shattering Collision Model for Multidimensional Spray Computations
Thierry L. Georjon and Rolf D. Reitz

255 A Fully Compressible, Two-Dimensional Model of Small, High-Speed, Cavitating
Nozzles David P. Schmidt, Christopher J. Rutland, and M. L. Corradini

277 Characteristic Study on the Like-Doubled Impinging Jets Atomization
W. H. Lai, W. Huang, and T. L. Jiang

291 Primary Breakup of Nonturbulent Round Liquid Jets in Gas Crossflows
J. Mazallon, Z. Dai, and G. M. Faeth

313 Improvement of Pattern Recognition Algorithm for Drop Size Measurement
Joo Youn Kim, Jeong Ho Chu, and Sang Yong Lee

NUMBER 4

331 Detection of Aerodynamic Effects in Liquid Jet Breakup and Droplet Formation
Michael P. Moses, Steven H. Collicott, and Stephen D. Heister

343 Imaging Measurement of the Structure of a Twin Overlapping Spray for Ice-Slurry
Making Jongsoo Jurng, Chan Woo Park, and Chan Bum Park

355 A Theory on Excess-Enthalpy Spray Flame Shuhn-Shyurng Hou and
Ta-Hui Lin

371 High-Energy-Density Fuel Blending Strategies and Drop Dispersion for Fuel Cost
Reduction and Soot Propensity Control J. Bellan and K. Harstad

385 Dilute Emulsions and Their Effect on the Breakup of the Liquid Sheet Produced by
Flat-Fan Spray Nozzles M. C. Butler Ellis, C. R. Tuck, and P. C. H. Miller

399 Atomization Characteristics of Jet-to-Jet and Spray-to-Spray Impingement Systems
Masataka Arai and Masahiro Saito

419 Turbulence Under Quasi-cavitating Conditions: A New Species?
Francisco Ruiz and Lu He

431 Numerical Studies of Sprays Impacting Normally on an Infinite Plate
K. Su and S. C. Yao
NUMBER 5

445 Cavitating Injector Flows: Validation of Numerical Models and Simulations of Pressure Atomizers
 R. A. Bunnell, S. D. Heister, C. Yen, and S. H. Collicott

467 Transient 3D Analysis of a DI Gasoline Injector Spray
 M. A. Comer, P. J. Bowen, C. J. Bates, S. M. Sapsford, and R. J. R. Johns

483 Uniformity of Swirled Sprays Formed with Nozzles of Varying Surface Roughness
 K. Ramamurthi and R. Patnaik

497 Modeling the Effects of Gas Density on the Drop Trajectory and Breakup Size of High-Speed Liquid Drops
 C. H. Lee and Rolf D. Reitz

519 Linear Spatial Stability Analysis of Slurry Sheets Subjected to Gas Flow
 R. N. Parthasarathy

NUMBER 6

541 Valve-Covered-Orifice (VCO) Fuel Injection Nozzle Delivery Analysis
 Edward D. Klomp

581 Atomizers for Molten Metals: Macroscopic Phenomena and Engineering Aspects
 L. A. Núñez, T. Lobel, and R. Palma

601 Production of Highly Uniform Solder Spheres Using a Digital Integral Control Scheme
 Juan C. Rocha and Jung-Hoon Chun

623 Modeling Spray Atomization with the Kelvin-Helmholtz-Rayleigh-Taylor Hybrid Model
 Jennifer C. Beale and Rolf D. Reitz

651 Effervescent Atomization at Injection Pressures in the MPa Range
 Robert A. Wade, Jennifer M. Weerts, Paul E. Sojka, Jay P. Gore, and W. A. Eckerle

Following page 667:

Title page to Volume 9
Contents of Volume 9
Author Index to Volume 9
Subject Index to Volume 9
Announcing a New

Heat Transfer Web Site
(www.heat-transfer.net)

New and current data for those interested in heat transfer research and/or applications. Topics covered include books, journals, education issues, links to International Centre of Heat and Mass Transfer and Eurotherm, short courses, software programs, videos and CDs, industrial equipment, heat transfer fluids, emerging technologies, meetings calendar, and other topics to be added.

Ad Hoc Organizing Committee on Heat Transfer Web Site

Co-Chairs:
Y. Cho, Drexel University
W. Minkowycz, University of Illinois - Chicago

Members:
F. Arinc, International Centre of Heat and Mass Transfer
W. Begell, Begell House, Inc.
P. Cheng, Hong Kong University of Science and Technology
R. Cotta, Federal University of Rio de Janeiro
G. Greene, Brookhaven National Laboratory
J. Hartnett, University of Illinois - Chicago
J. Howell, University of Texas - Austin
T. Irvine, State University of New York - Stony Brook
A. Leontiev, Russian Academy of Sciences
C. Tien, University of California - Berkeley
AUTHOR INDEX TO VOLUME 9

Arai, Masataka, 399
Asano, Koichi, 69

Bates, C. J., 467
Beale, Jennifer C., 623
Bellan, J., 371
Bowen, P. J., 467
Bunnell, R. A., 445

Cavaliere, A., 153
Cessou, A., 1
Chu, Jeong Ho, 313
Chun, Jutg-Hoon, 601
Chung, S. H., 193
Collicott, Steven H., 331, 445
Comer, M. A., 467
Corradini, M. L., 255

Dai, Z., 291
de Joannon, M., 153
Drallmeier, J. A., 215

Eckerle, W. A., 651
Ellis, M. C. Butler, 385

Faeth, G. M., 291

Georjon, Thierry L., 231
Goix, P., 1
Gore, Jay P., 651

Harstad, K., 371
He, Lu, 419
Heister, Stephen D., 331, 445
Hou, Shuhn-Shyurng, 355
Huang, W., 277

Inoue, Tsuguo, 69

Jiang, T. L., 277
Johns, R. J. R., 467
Jung, Y. H., 193
Jung, Jongsoo, 343

Kim, Jo-Youn, 313
Klomp, Edward D., 541

Lai, W. H., 277
Lee, C. H., 193, 497
Lee, Sang Yong, 313
Li, Xianguo, 29
Lin, Ta-Hui, 355
Lobei, T., 581
Luong, John T. K., 87

Mazzalon, J., 291
Miller, P. C. H., 385
Mitra, Sushasta K., 29
Moses, Michael P., 331

Nemecek, L. M., 215
Núñez, L. A., 581

Palma, R., 581
Park, Chan Bun, 343
Park, Chan Woo, 343
Parthasarathy, R. N., 519
Patnaik, R., 483
Peters, Norbert, 111

Raggi, R., 153
Ramanurthi, K., 483
Reitz, Rolf D., 231, 497, 623
Rocha, Juan C., 601
Ruiz, Francisco, 419
Rutland, Christopher J., 255

Saito, Masahiro, 399
Sapsford, S. M., 467
Sivathanu, Y. R., 133
Schmidt, David P., 255
Schmidt, U. T., 173
Sojka, Paul E., 87, 133, 173, 651
Sovani, S. D., 133
Strakey, P. A., 51
Stepowski, D., 1
Su, K., 431

Talley, D. G., 51
Taniguchi, Izumi, 69
Tuck, C. R., 385

Wade, Robert A., 651
Wagner, R. M., 215
Wan, Yuepeng, 111
Weerts, Jennifer M., 651

Yao, S. C., 431
Yen, C., 445
SUBJECT INDEX TO VOLUME 9

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerodynamic effects in liquid jet breakup and droplet formation</td>
<td>331</td>
</tr>
<tr>
<td>Air dilution effects</td>
<td>153</td>
</tr>
<tr>
<td>Air-assist pressure-swirl atomization</td>
<td>173</td>
</tr>
<tr>
<td>Atomization</td>
<td></td>
</tr>
<tr>
<td>air-assist pressure-swirl</td>
<td>173</td>
</tr>
<tr>
<td>effervescent</td>
<td>651</td>
</tr>
<tr>
<td>impinging jet</td>
<td>277</td>
</tr>
<tr>
<td>of jet-to-jet and spray-to-spray systems</td>
<td>399</td>
</tr>
<tr>
<td>spray modeling</td>
<td>623</td>
</tr>
<tr>
<td>Atomizers</td>
<td></td>
</tr>
<tr>
<td>for molten metals</td>
<td>581</td>
</tr>
<tr>
<td>pressure</td>
<td>445</td>
</tr>
<tr>
<td>Autoignition of tetradeanne spray</td>
<td>153</td>
</tr>
<tr>
<td>Breakup</td>
<td></td>
</tr>
<tr>
<td>of high-speed liquid drops</td>
<td>497</td>
</tr>
<tr>
<td>of a liquid sheet</td>
<td>385</td>
</tr>
<tr>
<td>primary</td>
<td>291</td>
</tr>
<tr>
<td>Cavitating injector flows</td>
<td>445</td>
</tr>
<tr>
<td>Cavitating nozzle</td>
<td>255</td>
</tr>
<tr>
<td>Collision model for multidimensional spray computations</td>
<td>231</td>
</tr>
<tr>
<td>Combustion structures in the stabilization stage of a spray jet flame</td>
<td>1</td>
</tr>
<tr>
<td>Crossflow, gas</td>
<td>291</td>
</tr>
<tr>
<td>Cross-flow, manifold</td>
<td>51</td>
</tr>
<tr>
<td>Crystallization and evaporation of a salt water drop</td>
<td>69</td>
</tr>
<tr>
<td>Digital integral control scheme</td>
<td>601</td>
</tr>
<tr>
<td>Direct-injection gasoline injector spray</td>
<td>467</td>
</tr>
<tr>
<td>Discharge coefficient of sharp-edged orifices</td>
<td>51</td>
</tr>
<tr>
<td>Drop dispersion and high-energy-density fuel blending</td>
<td>371</td>
</tr>
<tr>
<td>Drop dynamics in a spark ignition engine port</td>
<td>215</td>
</tr>
<tr>
<td>Drop, liquid</td>
<td>497</td>
</tr>
<tr>
<td>Drop size distribution</td>
<td></td>
</tr>
<tr>
<td>prediction from first principles</td>
<td>133</td>
</tr>
<tr>
<td>in sprays</td>
<td>29</td>
</tr>
<tr>
<td>Drop size measurement, pattern recognition algorithm</td>
<td>313</td>
</tr>
<tr>
<td>Drop trajectory, effects of gas density on</td>
<td>497</td>
</tr>
<tr>
<td>Drop-shattering collision model</td>
<td>231</td>
</tr>
<tr>
<td>Effervescent atomization</td>
<td>651</td>
</tr>
<tr>
<td>Effervescent sprays, unsteadiness in</td>
<td>87</td>
</tr>
<tr>
<td>Emulsions, dilute</td>
<td>385</td>
</tr>
<tr>
<td>Enthalpy, excess</td>
<td>355</td>
</tr>
<tr>
<td>Evaporation</td>
<td></td>
</tr>
<tr>
<td>of a salt water drop with crystallization</td>
<td>69</td>
</tr>
<tr>
<td>scaling of spray penetration with</td>
<td>111</td>
</tr>
<tr>
<td>Excess-enthalpy spray flame</td>
<td>355</td>
</tr>
<tr>
<td>Flame</td>
<td></td>
</tr>
<tr>
<td>spray jet, 1</td>
<td></td>
</tr>
<tr>
<td>excess-enthalpy spray</td>
<td>355</td>
</tr>
<tr>
<td>Flat-fan spray nozzles</td>
<td>385</td>
</tr>
<tr>
<td>Flow distribution and mixing</td>
<td>193</td>
</tr>
<tr>
<td>Fuel blending strategies</td>
<td>371</td>
</tr>
<tr>
<td>Fuel injection, valve-covered-orifice</td>
<td>541</td>
</tr>
<tr>
<td>Gas density, modeling effects of</td>
<td>497</td>
</tr>
<tr>
<td>Gas flow, effect on stability of slurry sheets</td>
<td>519</td>
</tr>
<tr>
<td>Gasoline injector spray, direct-injection</td>
<td>467</td>
</tr>
<tr>
<td>High-energy-density fuel</td>
<td>371</td>
</tr>
<tr>
<td>Ice slurry</td>
<td>343</td>
</tr>
<tr>
<td>Ignition spark</td>
<td>215</td>
</tr>
<tr>
<td>Imaging of the structure of a twin overlapping spray</td>
<td>343</td>
</tr>
<tr>
<td>Impingement systems, jet-to-jet and spray-to spray</td>
<td>399</td>
</tr>
<tr>
<td>Impinging jet atomization</td>
<td>277</td>
</tr>
<tr>
<td>Impinging jet sprays, flow distribution and mixing</td>
<td>193</td>
</tr>
<tr>
<td>Infinie plate, impact of spray on</td>
<td>431</td>
</tr>
<tr>
<td>Injection, direct</td>
<td>467</td>
</tr>
<tr>
<td>Injector flows, cavitating</td>
<td>445</td>
</tr>
<tr>
<td>Integral digital control scheme</td>
<td>601</td>
</tr>
<tr>
<td>Jet</td>
<td></td>
</tr>
<tr>
<td>atomization, impinging</td>
<td>277</td>
</tr>
<tr>
<td>breakup, liquid, and droplet formation</td>
<td>331</td>
</tr>
<tr>
<td>flame, stabilization of</td>
<td>1</td>
</tr>
<tr>
<td>sprays, impinging</td>
<td>193</td>
</tr>
<tr>
<td>round liquid</td>
<td>291</td>
</tr>
<tr>
<td>Jet-to-jet impingement systems</td>
<td>399</td>
</tr>
<tr>
<td>Kelvin-Helmholtz model</td>
<td>623</td>
</tr>
</tbody>
</table>
Like-doubled impinging jets atomization, 277
Liquid drops, high-speed, 497
Liquid jet breakup, 331
Liquid jet, round, 291
Liquid physical properties, influence on drop size distribution, 133
Liquid sheet, breakup of, 385

Manifold cross-flow, effect of, 51
Metals, molten, atomizers for, 581
Multidimensional spray computations, 231

Nonturbulent round liquid jets, 291
Nozzle
cavitating, 255
valve-covered-orifice, 541
flat-fan spray, 385
of varying surface roughness, 483

Orifice, sharp-edged, 51

Pattern recognition algorithm for drop size, 313
Pressure atomizers, 445
Pressure-swirl atomization, air-assist, 173
Primary breakup, 291
Quasi-cavitating conditions, 419
Rayleigh-Taylor model, 623
Relative velocity, influence on drop size distribution, 133
Round liquid jet, 291
Salt water drop, evaporation of, 69
Scaling of spray penetration with evaporation, 111
Sharp-edged orifices, 51

Slurry sheets subjected to gas flow, 519
Solder spheres, 601
Scot propensity, control of, 371
Spark ignition engine, 215

Spray
atomization, modeling with KH/RT hybrid model, 623
autoignition, 153
droplet size distribution in, 29
effervescent, 87
impacting normally on an infinite plate, 431
impinging jet, 193
multidimensional, 231
penetration, scaling with evaporation, 111
Spray flame, excess-enthalpy, 355
Spray jet flame, stabilization of, 1
Spray nozzles, flat-fan, 385
Swirl, 483
twin overlapping, 343
Spray-to-spray impingement systems, 399
Stability analysis of slurry sheets, 519
Stabilization of a spray jet flame, 1
Supercritical regime, 153
Surface roughness of nozzles, 483
Swirl spray, 483

Tetradecane, 153
Transcritical regime, 153
Turbulence under quasi-cavitating conditions, 419

Unsteadiness in effervescent sprays, 87

Valve-covered orifice, 541
Velocity, relative, influence on drop size distribution, 133

Water drop, salt, 69