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An overview is given of a powerful unifying probabilistic framework for treating modeling uncertainty, along with
input uncertainty, when using dynamic models to predict the response of a system during its design or operation. This
framework uses probability as a multivalued conditional logic for quantitative plausible reasoning in the presence of
uncertainty due to incomplete information. The fundamental probability models that represent the system’s uncertain
behavior are specified by the choice of a stochastic system model class: a set of input—output probability models for
the system and a prior probability distribution over this set that quantifies the relative plausibility of each model. A
model class can be constructed from a parametrized deterministic system model by stochastic embedding which utilizes
Jaynes” principle of maximum information entropy. Robust predictive analyses use the entire model class with the
probabilistic predictions of each model being weighted by its prior probability, or if response data are available, by its
posterior probability from Bayes’ theorem for the model class. Additional robustness to modeling uncertainty comes
from combining the robust predictions of each model class in a set of competing candidates weighted by the prior or
posterior probability of the model class, the latter being computed from Bayes’ theorem. This higher-level application
of Bayes’ theorem automatically applies a quantitative Ockham razor that penalizes the data-fit of more complex model
classes that extract more information from the data. Robust predictive analyses involve integrals over high-dimensional
spaces that usually must be evaluated numerically by Laplace’s method of asymptotic approximation or by Markov
chain Monte Carlo methods. These computational tools are demonstrated in an illustrative example involving the
vertical dynamic response of a car being driven along a rough road.

KEY WORDS: dynamical systems, stochastic modeling, robust stochastic analysis, system identification,
Bayesian updating, model class assessment, stochastic simulation

1. INTRODUCTION

A common practice during dynamic design of any system is to use a single mathematical model to predict its dynamic
response to prescribed external excitations (disturbances). Often this model is developed using finite-element software.
The system model predictions, on their own, are not very useful, however, unless they give information about their
accuracy. The response predictions will have uncertain accuracy not only because of the uncertainty in the future
excitations but also because the mathematical system model will always involve approximations of the real dynamic
behavior that produce uncertain affects in the predicted response; in addition, the system model will usually involve
parameters whose values are uncertain. This modeling uncertainty, in addition to future excitation uncertainty, should
be explicitly treated when making predictive analyses.
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In the case of an existing system where response sensor data are available, the modeling uncertainty can be reduced
by updating the mathematical model of the system, thereby allowing more accurate predictions of its future response
to specified excitations. This process is commonly cadlgstem identificatioand, as usually practiced, it consists
primarily of parameter estimatiarSince any system model is usually only an approximate representation of the real
system behavior, there are no true values of the parameters. Therefore, determining a single “best” value for the
parameter vector, such as its least-squares estimate or maximum likelihood estimate, is a questionable procedure. A
further complication is that complex multiparameter system models are usually unidentifiable based on the sensor
data, meaning there are multiple best estimates of the parameters.

The tasks of explicitly quantifying modeling and excitation uncertainty in response predictions during design and
operation can be done in a rigorous probabilistic manner. The theory for treating excitation uncertainty, known as
random vibrationsor more commonly in recent years, stochastic dynamicér mechanics has a long history.

The theory and computational tools for a probabilistic treatment of modeling uncertainty are more recent. Their
development was hampered by the commonly taught restrictive interpretation of probability as the relative frequency
of “inherently random” events in the “long run,” which does not provide a meaning for the probability of a parameter
value or a model.

Our goal in this paper is to describe a general stochastic (i.e., probabilistic) framework for handling both modeling
and excitation uncertainty when predicting the dynamic response of a system based on mathematical models. It uses an
interpretation of probability as a logic for quantitative plausible reasoning when there is uncertainty due to incomplete
information. The foundations of probability logic are due to the physicists Cox [1, 2] and Jaynes [3, 4]. The vague and
speculative concept of inherent randomness is not needed. We consideribotiobust stochastic analysisvhich
is appropriate during system design, grosterior robust stochastic analysighich can be performed for an existing
system if response sensor data are available. Before giving an overview of the theory for these robust predictive
analyses, we first provide a brief summary of probability logic and then we define a stochastic system model class
which provides the required fundamental probability models for robust stochastic analyses.

2. PROBABILITY LOGIC

In probability logic, probability is viewed as a multivalued conditional logic for plausible reasoning that extends
binary Boolean propositional logic to the case of incomplete information. The probabliiy] B interpreted as the
degree of plausibility of the proposition (statememnt)ased on the information in the propositiomvherec is only
conditionally asserted. This interpretation is consistent with the Bayesian perspective that probability represents a
degree of belief in a proposition; indeed, probability logic provides a rigorous foundation for the Bayesian approach.
Since it is not widely known, we give a brief overview to provide a basis for interpreting the probabilistic framework
presented later.

For a propositional calculus of plausible reasoning involving probabilities, we need to evaluate the following
probabilities in terms of more basic ones~Pc], P[a & b|c] and P or b|c], which correspond, respectively, to the
degree of plausibility based arthatb is not true, that botla andb are true, and that eitharor b (or both) are true.

Cox [1] derivedthe appropriate calculus by extending the axioms of Boolean logic which deal with the special case
of complete information where the truth or falsitylfs known fromc, that is, Pp|c] = 1 or Pp|c] = 0, respectively.

Cox’s results can be stated as a minimal set of axioms for probability logic. For any propoajtiprs

(i) Plbjc] >0
(i) P[~b|c]=1-Ppc] (Negation function)
(iii) P[a&b|c] = P[a|b&c]P[b|c] (Conjunction function)

Using the last two axioms and De Morgan'’s law from Boolean logic, we can derive
Pla or b|c] = P[alc] + P[b|c] — Pla & bjc] (Disjunction function)
The axioms for a probability measulR¢A) on subsetd\ of a finite setX, as stated by Kolmogorov [5] and com-
monly given in textbooks on probability theory, can be derived as a special case of the probability logic axioms where

International Journal for Uncertainty Quantification



Prior and Posterior Robust Stochastic Predictions 273

the propositions refer to uncertain membership of an object in a set [6]. For exan¥ldeifotes the set of possible
values for an uncertain-valued variallehen for any subsék of X, P(A) can be interpreted agd< A|x], wherer
denotes the proposition that stateg X and specifies the probability model fequantifying the relative degree of
plausibility of each value af in X. Kolmogorov also defines conditional probability in terms of unconditional proba-
bilities, but in probability logic all probabilities are inherently conditional and so the corresponding result appears as
an axiom (conjunction function).

The probability logic axioms therefore provide a calculus for handling variables whose values are uncertain be-
cause of missing information. The vague concepinberentrandomness, whose existence is often postulated but
cannot be proved, is not needed. The axioms apply not only to variables that correspond to physical quantities but also
to models and model parameters, in contrast to the relative frequency interpretation of Kolmogorov’s axioms. This
allows robust probabilistic predictions that account for modeling uncertainty.

3. STOCHASTIC SYSTEM MODEL CLASSES
3.1 Definition of a Model Class

In modeling the 1/O (input—output) behavior of a real system, one cannot expect any chosen deterministic model to
make perfect predictions, and the prediction errors of any such model will be uncertain. This motivates the introduc-
tion of astochastic systeifor Bayesian)nodel classM that consists of fundamental probability models to describe

the uncertain 1/0 behavior of the system: a sel/Of probability models{p(y|u,0,M): @ € © c R} (sometimes
calledforward modely and aprior probability model §6|A)dOthat expresses the initial probability of each model
p(y|u,0,M), that is, the prior gives a measure of the initial relative plausibility of the I/O probability models cor-
responding to each value of the parameter ve@tdrdere,u andy denote the system input and output vectors that
consist of discretized time histories of the excitation and corresponding system response. The prior probability model
is taken to be independent of inpuaind we use(.) for a PDF (probability density function) of a variable but P[.] for

a probability of a statement.

The probability models defining the model clak$ are viewed as representing a state of knowledge about the
system conditional on the available incomplete information and not as its inherent properties. All probabilistic predic-
tions for the system are conditional on these chosen fundamental probability models, which we make explicit in the
notation by conditioning oM.

3.2 Model Class Construction by Stochastic Embedding

Any deterministic dynamic model of a system that involves uncertain parameters (e.g., a finite-element model) can be
used to construct a model clasg for the system bptochastic embeddifd]. Suppose that the deterministic model
defines an implicit or explicit mathematical relationshif,0) between the input and model outpugj where both

are discretized time histories and the uncertain model parameters are denétetingyfirst step is to introduce the
uncertain prediction-error time histog[8] as the difference between theal system output and themodel output

g for the same input, i.e.,

y=q-+e 1)

soe provides a bridge between the model world and the real world.

The next step is to establish a parametrized probability mode figrusing the principle of maximum informa-
tion entropy [3], which states that the probability model should be selected to produce the most uncertainty (largest
Shannon entropy) subject to parametrized constraints that we wish to impose; the selection of any other probability
model would lead to an unjustified reduction in the amount of prediction uncertainty. The maximum-entropy prob-
ability model is therefore conservative in the sense that it gives the greatest uncertainty in the prediction-error time
history, and hence in the system-output time history, conditional on what one is willing to assert about the system.
This is a very principled way of choosing the fundamental I/O probability model for a system in order to cover missing
information about the system’s behavior.
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A simple choice for the probability model feris produced by choosing the following constraints during entropy
maximization: zero prediction-error mean at each time (any uncertain bias can be adgdad smother uncertain
parameter), and a parametrized prediction-error variance or covariance matrix at each time. The maximum entropy
PDF for the prediction erroe over an unrestricted range is then discrete-time Gaussian white noise. Therefore, the
I/O probability model for the system outpytc R at discrete time,,, conditional on the parameter vec®y is
given by the following Gaussian PDF with the mean equal to the model ogtpu®)c R™> and with a parametrized
covariance matrix(0)c RNoxNo:

1 1 _
P(Ynlu, 0, M) = WGXP {—Q(yn - Qn)TE l(yn —n) (2

The 1/O probability model for the system output histgrgverN discrete times is then given by

N

p(ylu, 0, M) = Hp(yn‘wew/\/l) 3)

n=1

The stochastic independence exhibited here comes from the fact that no joint moments in time are imposed as
constraints during the entropy maximization. It refers to information independence which is not necessarily causal
independence. It asserts that if the prediction errors at certain discrete times are given, this does not influence the
plausibility of the prediction-error values at other times.

Another choice for stochastic embedding [7, 9] is to use a state-space model of the system and introduce prediction
errors into the state vector evolution equation, as well as in the output equation, again modeled with a Gaussian PDF
based on the principle of maximum information entropy. This alternative allows updating of the prediction-error
uncertainty at unobserved points in the system, not just at the measurement points.

Either choice for the stochastic modeling of the prediction errors produces a set of parametrized 1/0 probability
models{p(y|u,0,M): © € ©}, where the uncertain parameté&sow also include those involved in specifying the
probability models for the prediction errors, such as the prediction-error variances. To complete the specification of
the model class\, a prior distributionp(0|.M) is chosen to express the relative plausibility of each I/O probability
modelp(y|u,0,M) specified by the parameter vectr

3.3 Bayesian Updating within a Model Class

Suppose dat® = {0,y} are available from sensors on the system that consist of measured puttlite system

and possibly the corresponding system inputhese data can be used to update the relative plausibility of each 1/0
probability modelp(y|u,0,M), 8 € © C R, in the set defined by a model clasg by computing theposterior
PDFp(8|D, M) from Bayes’ theorem:

p(8|D, M) = c~'p(D|8, M)p(8| M) (4)

wherec = p(D|M) = [g p(D|6,M)p(0|.M)dO is the normalizing constant, apdD|0,M), as a function 0, is the
likelihood functionwhich expresses the probability of getting datédased on the PDB(y|u,0,M) for the system
output. The constart= p(D|M) is also called thevidencdor the model clasg\1 given by dataD. Although it is a
normalizing constant in (1) and so does not affect the shape of the posterior distribution, it plays an important role in
computing the posterior probability of the model class, as described later.

The likelihood function should strictly be denoted pgy|0,0,M) but the notation used in (4) is convenient.
Furthermore, we have assumed either (a) that the measurement errors are negligible compared to the prediction errors
due to modeling the system, or (b) that the sum of these errors is modeled probabilistically when constructing the
likelihood function in (4) by choosing a measurement noise model in addition to the maximum entropy model for the
prediction errors. These two alternatives correspond to a subtle difference in what is being probabilistically predicted:
for (a),y denotes the predicted output time history of the actual system whereas fpdénotes the predicted output
time history from the sensors.
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4. ROBUST PREDICTIVE ANALYSIS USING A MODEL CLASS

A model class can be used to perform both prior (initial) and posterior (updated using system sensor data) robust
predictive analyses based purely on the probability axioms [10]. Prior robust analyses are of importance in the robust
design of systems whereas posterior robust analyses can be used to improve predictive modeling of already operating
systems. These prior and posterior robust predictions correspond to a type of integrated global sensitivity analysis
where the probabilistic prediction of each I/O probability model specified by the model class is considered but it is
weighted by the relative plausibility of the model according to the prior or posterior PDF, respectively, in accordance
with the total probability theorem.

4.1 Prior Robust Predictive Analysis

Based on a selected model clast all the probabilistic information for the prediction of the discrete response time
historyy for a specified discrete input time histanis contained in the prior robust predictive PDF given by the total
probability theorem as

plylu, M) = / p(y|u, 8, M)p(8|M)de 5)

This PDF is a weighted average of the probabilistic predicgi¢yiu,0,M) for each model specified by € © in
model class\ where the weight is given by the prior probabilfigo | AM)do.

Usually in assessing a system’s design, the response time histieryot directly used but instead system
performance measuis selected which, because of the modeling uncertainty, is expressed as the prior expected value
of somesystem performance functigyy):

Elg(y)|u, M] = / oy)p(y|u, M)dy ®)

If there is also uncertainty in the excitation it can be described by a stochastic input mddehat specifies a
joint PDF p(u|i/) for the discrete-time input histony. This uncertainty in the excitation can then be incorporated by
evaluating the additional integral:

Elg(y) /. M] = / Elg(y)|u, M]p(ulid)du @)

Combining (5), (6), and (7)

K
V), M] = /g (ylu, 8, M)p(ultd)p(8| M) dydud® ~ Z ®)

k:

where, as shown, the high-dimensional integral can be approximated using standard MCS (Monte Carlo simulation)
by using samplesy(*), u®, ) k = 1, 2,... K, where the parameter vectdt*’ is drawn from the priop(6|M),
the input time history*) is drawn from the joint PDB(u|i/) implied by the stochastic input modé| and the system
output time historyy*) is drawn fromp(y|u<’“>,e(k),/\/l). When there are no state prediction errors in the model, the
y*) can be readily drawn as independent Gaussian samples at each discrete time according to (2) and (3). When both
state and output prediction errors are in the model, independent Gaussian samples of them at each discrete time can
be drawn and then the corresponding samplgl®fcan be computed based off) ande*); an example of how to
do this efficiently for a linear state-space model is given in [7, 9].

An important special case is where the system performance furgydr= | ~(y), an indicator function which
is equal to 1 ify € F and O otherwise, wherE is a region in the response space that correspondadatisfactory
system performancehen (8) gives therior robust failure probabilityP[F|i/, M] [10]. If this failure probability is
very small, a more computationally efficient algorithm than MCS should be used, such as subset simulation based on
MCMC (Markov chain Monte Carlo) simulation [11, 12].
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In optimal robust stochastic design, the system performance measure in (8) serves as the objective function in
the optimization over the design variables specifying each design choice; for example, the performanced{yction
could represent the life-cycle costs for a structural design and include future uncertain economic losses from seismic
damage over a specified time period as well as the up-front construction costs [13]. In this application, using stochastic
simulation to evaluate the objective function in (8) for each iteration of the design variables given by an algorithm for
the optimization of the system performance measure leads to a huge computational effort. A very efficient MCMC
algorithm, SSO (stochastic subset Optimization), has been developed to mitigate this effort [14, 15] which uses a
strategy of finding a small set of near-optimal design variables containing the optimum design, rather than trying
to converge on the optimal point estimate. The study by Taflanidis and Beck [15] further examines how the model
prediction error impacts optimal decisions in this robust design setting, and demonstrates that the influence can be
significant.

4.2 Posterior Robust Predictive Analysis

If sensor datéD are available from the system, the postep(@|D, M) can be computed from Bayes’ theorem as in
Section 3.3, then the posterior robust predictive PDF is given by

P91 D M) = [ plylu. 0,0, M)p(O[D, M)do ©
and the posterior system performance measure is given by
Elg(y)|D, U, M] = / 9(y)p(y|u, D, 8, M)p(ujtd)p(8|D, M)dydud® (10)

If the system performance functiaify) = |1x(y) as above, this measure is the posterior robust failure probability
PIF|D, U, M] [10].

As in the prior robust predictive case in the previous section, the required evaluation of the multidimensional
integral over the parameter space usually cannot be evaluated analytically, nor evaluated numerically in a straightfor-
ward way if the number of parameters is not very small. Useful methods to approximate such integrals are Laplace’s
method of asymptotic approximation [8, 10, 16] and stochastic simulation methods. In contrast with the prior case,
however, the evaluation of the posterior robust integral in (10) by stochastic simulation, which requires drawing sam-
ples from the posterior PD§{0|D, M), is much more challenging because (i) evaluation of the normalizing constant
c in Bayes’ theorem (4) requires another challenging high-dimensional integration over the model parameter space;
and (i) the high-probability content region pfo|D, /M) occupies a much smaller volume in the parameter space than
that of the prior PDF and this region may be quite contorted because of the correlations between the model parameters
that are induced by the dafa

Fortunately, MCMC methods [17] can be used to draw posterior samples. MCMC algorithms that have been
applied to modeling of dynamic systems include: multilevel Metropolis—Hastings algorithms with tempering or an-
nealing [18, 19], Gibbs sampler [20], and hybrid Monte Carlo (or Hamiltonian Markov chain) simulation [21]. In these
methods, the theoretical mean of the system performance furggyprn (10) is still approximated by the sample
mean ofg(y):

K
Elgy)D.U, M) = = S gy (12)
k=1

where the sampley®), u®), 0¥y, k=1, 2,... K, are drawn as in the prior robust case in the previous section except
that thed ) samples are now drawn from the posterior RR§|D, M) by the MCMC algorithm. Th&@*) samples

are no longer independent since they come from the stationary state of a Markov chain and so to achieve the same
accuracy (e.g., same coefficient of variation on the sample mean estimator), more samples are required than in the
prior case where independent samples can be drawn from the prior PDF.
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5. ROBUST PREDICTIVE ANALYSIS USING MULTIPLE MODEL CLASSES

A set of competing candidate model classes may be chosen to deal with the uncertainty of which model class to
choose to represent the dynamic behavior of a system. The probability logic axioms then lead naturally to prior and
posterior hyper-robust predictive models that combine the predictions of all model classes in this set. These robust
predictions are especially important when calculating failure probabilities because for reliable systems they tend to be
very sensitive to the particular choice of model and this sensitivity is alleviated by considering the integrated robust
or hyper-robust failure probabilities [7, 9].

If M specifies a set of candidate model clasg#$,: j = 1, 2,...,N/} that is being considered for a system,
together with a prior probability distribution over this set, then all the probabilistic information for the prediction of
system responsesubject to inputl is contained in the prior hyper-robust predictive PDF basetamnd the total

probability theorem:
N

p(y|u,M) =" p(ylu, M;)PIM;|M] (12)
j=1

where the prior robust predictive PDF for each model clegsfrom (5) is weighted by the prior probability Rf ;|
M], which can be chosen to beNy, if the model classes are considered equally plausilgeori. In the Bayesian
statistical literature, (12) is callgatior model averaging

However, if response daf are available from the system, the corresponding posterior hyper-robust predictive
PDF based oM (posterior model averagingan be computed:

N
p(y|U,D,M) = Zp(y|u7D7Mj)P[Mj|DvM] (13)

Jj=1

where the posterior robust predictive PDF for each model cldsdrom (9) is weighted by its posterior probability
P[M;|D, M] computed from Bayes’ theorem at the model class level:

p(D|M;)PIM;M]

PLMy 1D M) = Pl

(14)

Herep(D|M,) is theevidencgsometimes called marginal likelihood) fart; provided by the dat®, which is given
by the total probability theorem as

p(DIM;) = / p(D]8;, M;)p(8;1M;)de; (15)

The posterior probability of model clagd! ; in (14) is a measure, based on d&xzof its plausibility relative tdv,
which states the chosen set of candidate model classes for making system response predictions and a prior probability
distribution over this set. There is no implied assumption here that one of the model classes is the “correct” or “true”
one.

5.1 Calculation of the Data-Based Evidence for a Model Class

The computation of the multidimensional integral in (15) for the evidence is nontrivial. Laplace’s method of asymp-
totic approximation can be used when the model class is globally identifiable based on the availabl¢d&2],
which gives

P(DIM;) ~ p(DI8;, M,)p(8, M) (2 2det (H(D)) (16)

whereN; is the number of model parameters (the dimensiod;9ffor the model classV1; andH(0;) is the Hessian
matrix of —Inp(D|0;,M,) if the parameter estimate used in (16) is the unique MLE (maximum likelihood estimate)
that maximizes Ip(D|0;,M ). For a general system, Beck and Katafygiotis [8] defifabal system identifiability
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local system identifiabilityandsystem unidentifiabilitpased on the data in terms of whether the set of MLEs consists

of a single point, discrete points, or a continuum of points in the continuous-valued parameter space, respectively.
When the chosen class of models is unidentifiable based on the available siathat there are multiple MLEs, only
stochastic simulation methods are practical to calculate the model class evidence, such as the Markov chain Monte
Carlo methods: TMCMC, an MCMC algorithm [19, 23] and the stationarity method in [24].

5.2 Quantitative Ockham Razor

A comparison of the posterior probability of each model class automatically implements a quantitative version of a
principle of model parsimongr Ockham razoi25, 26], which states qualitatively that simpler models should be
preferred over more complex models that produce only slightly better agreement with the data, although it was not
completely clear how to quantify model complexity. Two common measures for this are AIC (Akaike Information
Criterion) [27] and BIC (Bayesian Information Criterion) [28], which trade off a data-fit measure with a complexity
measure:

A - 1
AIC(M;|D) =1Inp(D|0;, M;) — N; and BIQM;|D) =Inp(D|0;, M;) — §Nj In N a7

whereN is the number of data points in the system sensor @a(aodel classes with a larger AIC or BIC are
to be preferred because of the scaling chosen here). Using these simplified criteria for model assessment requires
caution, however, because their penalty term for model class complexity depends only on the number of uncertain
parameters!;, while the correct penalty term, which can be deduced by taking the logarithm of theNagymptotic
approximation of the evidence in (16), can differ greatly for two model classes with the same number of uncertain
parameters [23]. Rather than using AIC and BIC to assess globally identifiable model classes, it is much better to
approximate the evidence by using (16); for example, Saito and Beck [29] use this approximation to determine the
data-based most probable order of ARX (auto-regressive exogenous) models for the seismic response of a high-rise
building in Tokyo where AIC did not give a maximum over the model order.

A recent interesting information-theoretic result [23, 30] shows that the evidencetfoexplicitly builds in a
trade-off between a data-fit measure of the model class and an information-theoretic measure of its complexity (the
relative entropyor Kullback-Liebler informatiorof the posterior relative to the prior), which quantifies the amount
of information that the model class extracts from the datarhis result gives a deeper understanding of why the
guantitative Ockham razor based on the posterior probability for each model class, as given in (14), has a built-in
mechanism against data overfitting, thereby avoiding the well-known problem that occurs when a model is judged
based only on its data fit using the maximum likelihood estimates of the model parameters.

6. ILLUSTRATIVE EXAMPLE

As an illustrative example, Bayesian updating, model class assessment, and prior and posterior robust and hyper-
robust analyses of various stochastic system model classes are considered that are based on a quarter-car model of
an automobile (Fig. 1). Input to the system is the road surface elevatishich will be described as function of the

distance along the roatl The output of interest for the system is the vertical acceleration of the body of thg,car

which is important for passenger comfort. Bayesian updating of a similar quarter-car model, as well as half-car and
full-car models, was considered by Metallidis et al. [31].

6.1 Model Description

A quarter-car model (Fig. 1) is taken to represent the vertical dynamics of the car system. This model has two degrees
of freedom,x, andx;, corresponding to the vertical displacements of the body of the car with massd the

wheel with massn,, respectively. The two masses are connected through a spring and a dashpot that model the car
suspension and shock absorbers, respectively. The suspension force is derfqtatdyhe shock absorber force by
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FIG. 1: Quarter-car model.

F4. The wheel mass is connected to the road by a linear spring (modeling the tire stiffness) so the tire restoring force
is

Ft = kt(dft - U) (18)

wherek; is the model parameter corresponding to the tire stiffnessi@)ds the vertical elevation of the road surface
above a reference level at a horizontal distasheert, wherev is the uniform speed of the car, taken here as 100 km/h.
For notational simplicity, the dependence on time of all dynamic quantities is not explicitly denoted herein. The state
evolution equation is

ms.’.léS:—FS—Fd and mtii't:—Ft—f—Fs—f—Fd (19)

The model output is
q=1Is (20)

Different models are considered for the suspension restoring fay@nd for the shock absorber forég, ul-
timately defining different model classes. The former is described as a function of the relative displacement of the
car with respect to the wheék, — ;) and the latter similarly as a function of the corresponding relative velocity
(&g — d¢).

The first model clasg1;, which is the simplest, is based on stochastic embedding of a deterministic model that
is defined by linear suspension and shock absorber forces:

Ml : F’s = ksl(zs — It) and Fd = Cdl(its — i?t) (21)

wherek,; andcy are model parameters corresponding to the linear stiffness of the suspension and the linear damping
coefficient of the shock absorber, respectively. The second and third model classes are based on models defined
by, respectively, an additional nonlinear hardening component for the suspension force and an asymmetric damping
component for the shock absorber force:

My Fy = ksl('rs - zt) + ksn(xs - xt)s and Fy = Cdl(i‘s - xt)

Ms: Fy = k‘sl([L‘S — ft) and Fy= Cdl(j;s — L'Ct) + Can |{bs — i‘t| (22)

wherek,,, andc,,, are model parameters corresponding to the nonlinear stiffness of the suspension and the coefficient
for the asymmetric damping of the shock absorber, respectively. The asymmetric damping characteristics correspond
to different levels of damping forces that the absorber generates while moving upward compared to when moving
downward.

The fourth model class is based on a deterministic model that is defined by incorporating all aforementioned linear
and nonlinear components for the suspension and shock absorber forces:

My Fy=kg(xs —x¢) + ksn(zs —24)® and Fy = cqi(is — &) + Can |Ts — &4 (23)
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The fifth and final model class is defined by adding another nonlinear part to the suspension force, with stronger
hardening characteristics:

M5 : Fs = ksl(xs - "L't) + ksn(ws - xt)?) + ksh(ws - xt)s and Fd = Cdl(:ts - xt) + Can |ms - xt' (24)

wherek, is the model parameter introduced to model the new nonlinear stiffness component for the suspension.
Figure 2 illustrates a sample inpuand the corresponding response of model clagddesand M (simplest and

most complex, respectively) for the nominal values of the model parameters (described in the next subsection). It is

observed that the differences in the predicted responses from the two models are moderate.

6.2 Definition of Stochastic System Model Classes

The model classes for the quarter-car model are defined through the stochastic embedding process described in Sec-
tion 3.2 by extending the implicit deterministic I/O relationship defined by (19) and (20). The predictioregrror
between the responses of the modgland systeny,, at thenth time instant follows a Gaussian distribution with

zero mean and varianeg and is independent of the previous errors (from maximum entropy PDF selection). This
leads then to a Gaussian white-noise sequence for the model predictiofegfrand so to the 1/O probability model
corresponding to (2) and (3):

N N

1 1

p(ylu, 8, M;) = [ p(ynlu, 0, M;) = oW P |~ > [Yn — qn(u,0,M;)]? (25)
n=1 €

wherey is the vector of the model response for a desired time interval consistiglizcrete time samples.
The prediction-error variance? is an additional model parameter. The wheel mass is taken as known at 40 kg
while all other model parameters are treated as uncertain quantities described by the prior probabilip{@nsdgl,
i ={1,...,5, for each of the five model classes. The parameter vector for the most complex modeltjass
0 = [my, K¢, Kst, Ken» Caty Can, Ksn, 0217 € Ri, while for the other four model classes it is a subvector of éhis
For convenience we us®to denote all these parameters vectors since the conditionivig pim the PDFs makes it
clear which parameters are involved. The number of parameters thbetor for each of the five model classes is
5, 6, 6, 7, and 8. The prior PDFs férare chosen as the product of independent distributions, wjth,, K, K.,

0 ! time (sec) 3 4 5
M, ‘

2r M \ '\ ‘/‘ .

Response . A n ; v i W A o ;
g (misec?) gl i [l 1A ! WY A
f / ~ ' JY VY ‘l \ !

W A I W v
Y N I I
2F A i
-4 1 1 1 1
0 1 2 . 3 4 5
time (sec)

FIG. 2: Sample input and response for nominal models in two model classes.
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Cai» Can, andk,;, each following a lognormal distribution with median equal to the nominal values 290 kg, 190 kN/m,
23.5 kN/m, 2350 kN/m, 700 N s/m, 400 N s/m, and 235 MN/qrespectively, and all with coefficient of variation
40%. These larger coefficients of variation are chosen because in reality there is a great deal of prior uncertainty about
appropriate values for the model stiffness and damping parameters, and we decided to give the same value of the
coefficient of variation to the car mass too. The nominal linear model usgd,ithas modal frequencias; = 1.37
Hz andw, = 11.56 Hz and corresponding damping ratios &re= 1.3% andé, = 0.4%. The prior PDF foo, is
also a lognormal distribution with median equal to 0.1%asd coefficient of variation 70%. The larger coefficient of
variation for the prediction error is adopted because of the limited prior knowledge about it in real problems.

This completes the definition of each model class, i = 1,...,5, which consists of the I/O probability model
p(y|u,0,M;) along with the prior probability modgl(6|M;) for each I/O model within the class.

6.3 Prior Robust Predictive Analysis

Based on the prior information for the model classes, robust predictive analyses are performed. The investigation
focuses on passenger comfort, and specifically on the probability that the vertical acceleration response is unacceptable
because it exceeds some threshblover some time intervd0, T):

PWWJﬂéPMM>Bfmwme%emjﬂ:P{EwNmJ>ﬂéPﬂm (26)

whereF denotes performance failui,is the stochastic road profile model described below, and the system response
is evaluated at discrete timg9,At,... t,,...,T}, with the time stepAt properly chosen to capture the important
dynamic behavior. For this studxAt is taken as 0.005 s and the time horiZbns selected as 20 s. The system
performance measure is then the prior robust failure probabilfyB[M], which corresponds to the expected value
in (8) with

0 max |y.| <P

g(y) =1r(y) = bl (27)
1 otherwise

An alternative expression for the prior robust failure probability which leads to increased efficiency in MCS can
be derived by analytically integrating out the uncertainty stemming from the prediction error. This can be established
by noting that when conditional anand©

P |:n—HllaXN|y" < B:| = P[|yn| < Ba Vt"} =P {mi:;l |Qn + en‘ < B} = HnN:I Pan + en‘ < B]

yeeey

L= T e o (52 o (2]

n=1

(28)

where® is the cumulative distribution function for a standard Gaussian variable and the third equality is established
due to the independence of taewhenu and®© are given. The performance measure conditional ando is then

PP, 0. ) = Elgy)u 8.0 = [ 1rtypivio. o iy =1 T o35 2) o (B3] a9

n=1

To computePr () = P[F|U, M] in (26), MCS is then used to integrate only oweaind® in the integral for the system
performance measure given in (8) because the integralyageieplaced by the analytical expression in (29).

The road surface inpuid) (see Fig. 1) is modeled as a zero-mean Gaussian stochastic process with autocorrelation
function

E[u(d1)u(d2)] = 0‘% min(dl, dg) (30)
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which is equivalently described by the following formula:

Beck & Taflanidis
whereo, is taken to be equal to 0.002 (M3. This model implies a joint PDF on the input at the set of discrete times

u, = u(vnAt) = O‘T\/vAtZwi; u(0)=0
i=1
throughd = vt, wherev = 100 km/h is the uniform speed of the car.

(31)

whereAt = 0.005 s andw; } is a zero-mean Gaussian white-noise sequence. Recall that distance and time are related

The results for the prior predictive analysis based on stochastic simulation are reported in Figs. 3-5 for the pair
Prz(B) — p that shows how the probability of failure changes as the threghaltanges. In particular, the following

results are reported in Fig. 3: prior robust predictive analysis for model clagsesnd M (the ones demonstrated

in Fig. 2); predictive analysis for these model classes ignoring the model prediction error as well as the uncertainty

in the model parameters (i.e., nominal model parameter values are used); and prior hyper-robust predictive analysis
considering all five model classes using equal prior probabilityt3[M] = 1/5 which is covered in Section 6.5.
Figure 4 shows the same results as Fig. 3 but for model clagseand M 4. Figure 5 shows the prior robust predictive
results for all model classes and the prior hyper-robust predictive results.

0 B T T T
10° 655 Prior robust model %,
NS, = Nominal model %,
P t —————— Prior robust model 9
VY ———— Nominal model 9.
10-F vl ’
(R y Prior hyper robust
Pip) \ \.,\ N predictions
LY N
v
107% (R 1
' \ ~.
VoA
|| .\'
)
1
\
10—

-...‘\‘% A N -
6 7 8 9 10 11 12
f (m/sec?)
FIG. 3: Prior predictive analysis results for model clasads and M and prior hyper-robust predictive analysis
100 s ‘ : ‘ ‘
{ Prior robust model M,
----------- Nominal model 9,
; s, —— Prior robust model %,
101 \\ e Nominal model %, |
PAp) “.‘ \-\ - Prior hyper robust
VY predictions
‘\ \ .
\ \
10 \ \ 7]
‘\ \
‘\‘ \
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i \"\ e
0 s 7 8 9 10 11 12
f (m/sec?)
FIG. 4: Prior predictive analysis results for model clasdds and M and prior hyper-robust predictive analysis.
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FIG. 5: Prior robust predictive analysis for all model classes and prior hyper-robust predictive analysis.

The results show the importance of explicitly addressing the uncertainty in modeling the system’s dynamic be-
havior. The robust predictive analysis results in Figs. 3 and 4 are much different from the results corresponding to the
nominal model predictions where the only uncertainty is in the excitation, especially for larger thretlo&dor-
respond to more rare events (smaller probabilities for unacceptable behavior). The latter cases exhibit the well-known
sensitivity of the tails of the probability distributions to the modeling assumptions; in particular, the robust predictive
results reflect the increase in response uncertainty coming from the uncertainty in the values of the model parameters
and the uncertain prediction error.

6.4 Bayesian Updating and Posterior Robust Predictive Analysis

A dynamic data sequend@® = {0,y} (shown in Fig. 6) is now used to update each model class (Bayesian model
updating). This data set consists of measurements for the car absolute acceleration for 10 s with sample interval of

0.15
0.1 | 4
u (m)
0.05 [ B
0 4
_005 Il Il Il Il
0 2 4 time (sec) 6 8 10
4
2k i
B
y (m/sec?) 0 l 1
|
2 F i
-4 L L L I
0 2 4 . 6 8 10
time (sec)

FIG. 6: Input-output data sequencBs= {0, y} used for the Bayesian updating.
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0.01 s, leading td, = 1000 data points for outpgtalong with the corresponding inpatfor the road surface profile.
These synthetic data were not generated by any of the five model classes considered; the model used to generate the
data has restoring and shock absorber forces given, respectively, by

1.14 4.85

Fy = kslsgr(xs - xt) ‘xs - "L't‘ + ksnsgr(xs - wt) “'L's - xt|3V25 + kshsgr(ws - xt) |$5 - xt|

(32)
Fy = caSgr(is — ir)|ds — &0 + can g — o
where sgn(.) stands for the sign function. The model parameter values chosen for generating the synthetic data were
m, = 300 kg,k; = 209 kN/m,k,; = 18.2 KN/m K,,, = 2212 kN/n¥, ¢y = 644 N s/mCz, = 270 N s/m, and,;, = 210
MN/m3. Zero-mean Gaussian noise is also added to the data with standard deviation 6.03 m/s
Based on (25), the likelihood function for the data for each model class is then given by

p(y[0, 6, M;) = (33)

1 1 K )
W exp —@ 7; [In — 4n (0, 0, M;)]?
The prior distributiorp(0|M;) for each model class is then updated to construct the posterior distrip@éitn, M ;)

using (4). Table 1 presents the MAP (maximunposterior) estimatesoyap Of the parameters that maximize

p(0|D, M;) along with the coefficient of variation for each parameter. The MAP estimates are calculated by maximiz-
ing the sum of the log likelihood function and the log prior because the value of the normalizing constant in (4), which

is unknown, is irrelevant to the maximization ov@rThe coefficients of variation in Table 1 are calculated from the
covariance matrix of the Gaussian PDF centere@hatp that has the same curvature as the posterior PR @,

which corresponds to taking the inverse of the Hessian matrix op@iii[,0,M;)p(6|.M;)] at Opap. This Gaussian
approximation can be viewed as the first step in Laplace’s method of asymptotic approximation of the posterior robust
predictive integral in (9), although we will use an MCMC algorithm instead. As expected, Table 1 shows that the
system data substantially reduce the uncertainty in the description of the parameters: the coefficients of variation are
much smaller than those of the prior PDFs (also shown in the table).

The robust analysis presented in Section 6.3 is repeated but now using the posterior probability information from
the Bayesian updating. This provides the posterior predictive analysis results shown in Figs. 7 and 8. Samples from
the posterior distributiop(6|D, M ;) for the posterior analysis are obtained through TMCMC, a Markov chain Monte
Carlo algorithm proposed by Ching and Chen [19].

Figure 7 shows the prior robust predictive analysis for model clas¢egnd M along with the posterior robust
predictive analysis for the same model classes. Figure 8 repeats this analysis for mode/\dasses\1,. Compar-
ison between the prior and posterior robust analysis results shows significant differences, which stress the importance
of updating the performance predictions when monitoring data become available for the dynamic system.

TABLE 1: Nominal values and MAP estimates of the parameters for all model classes, along with the nominal and
posterior coefficients of variation of the parameters (in parentheses)

Nominal values My My M3 M,y M
m; (kg) 290 (40%) 302.72 (2%) | 301.32 (2.0%)| 289.61 (1.2%) 291.44 (1.2%)| 291.15 (1.1%)
k; (KN/m) 190 (40%) |214.35(1.2%) 214.23 (1.3%)| 213.11 (1.3%) 213.85 (1.3%)| 213.61 (1.2%)
Ks; (KN/m) 23.5 (40%) | 21.21 (1.2%)| 21.32(1.2%) | 20.61 (1.0%)| 20.32 (0.9%) | 20.62 (0.9%)
Ko (KN/M3)| 2350 (40%) | 0.000 (N/A) | 2658.82 (0.9%) 0.000 (N/A) | 2619.13 (0.7%) 2619.13 (0.7%
Caqr (N s/m) 700 (40%) |472.12 (3.2%) 477.58 (3.2%)| 525.71 (2.1%) 528.48 (2.0%)| 529.15 (2.1%)
Can (N s/m) 400 (40%) 0.000 (N/A) | 0.000 (N/A) |339.10 (0.4%) 337.81 (0.4%)| 334.43 (0.5%)
Ken (MN/M?®)| 235 (40%) 0.000 (N/A) | 0.000 (N/A) | 0.000 (N/A) | 0.000 (N/A) | 219.89 (1.6%)
o. (M/S) 0.1 (70%) 0.297 (3.5%)| 0.269 (2.9%) | 0.104 (1.4%)| 0.102 (1.4%) | 0.102 (1.4%)
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FIG. 8: Prior and posterior predictive analysis results for model clagdegand M .

6.5 Model Class Assessment and Posterior Hyper-Robust Predictive Analysis

The dynamic data sequen@ is used to calculate the posterior probability for each model clagd;Fp,M],

i =1,...,5, through (14). Table 2 presents the log evidencp(Im.M;), and the posterior probability Rft;|D,M],
calculated through both Laplace’s asymptotic approximation (16) as well as through the stationarity method presented
in Cheung and Beck [24] based on MCMC stochastic simulation. For the latter, samples from the posterior distribution

p(0|D, M,) are obtained through the TMCMC algorithm [19].

The results in Table 2 show that the most probable model claggsidut M, also has significant probability.

This illustrates the quantitative Ockham razor established by the Bayesian updating approach. Note that the most
Volume 3, Number 4, 2013

complex model clasd15 is not the most probable one. The three model clagdes M, and M5 have extremely

small probabilities PM;|D,M] based on the data so the posterior hyper-robust prediction of the system performance
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TABLE 2: Bayesian model class assessment results

My Moy Ms My M
log[p(D|M;)] | —255.14| —269.75| 814.33| 813.51| 563.45
PWM;|D,M) 0.000 0.000 | 0.694 | 0.306 | 0.000
log[p(DP|M;)] | —255.32| —277.55| 813.71| 813.09 | 543.22
P(M,|D,M) 0.000 0.000 | 0.650 | 0.350 | 0.000

Laplace approximation

Stochastic simulation

based on (13) and all five model classes effectively consists of a weighted combination of the robust predictions given
by model classed1; and M,. Table 2 also shows that the differences are quite small between the log evidence for
eachM; calculated by Laplace’s asymptotic approximation, which is applicable here because the model classes are
globally identifiable, and by stochastic simulation, which requires much more computation. The hyper-robust results
presented next use the posterior probabilities given in Table 2 for the stochastic simulation approach.

FailureF is again defined as exceedance of the vertical acceleration response above a tBresholdl 77, as in
Section 6.3. Figure 9 shows the failure probability curves from the posterior robust predictive analysis for each model
class along with the posterior hyper-robust predictive analysis results. The failure probability curve for the posterior
hyper-robust case in Fig. 9 is effectively a weighted average of the curves for model dldgsesl M, based on the
posterior probabilities 0.650 and 0.350 in Table 2. Note that a smaller range of thr@deddoeen used in this figure
compared to all previous ones, since the differences between the different model classes are smaller. This smaller
difference is due to the reduction in the uncertainty of the model parameters and prediction errors coming from the
information provided by the dynamic data.

Compared to the prior cases in Fig. 5, the posterior failure probabilities calculated for the different model classes
in Fig. 9 are in much closer agreement. The two model clasgesnd M 4 that were identified to have similar pos-
terior probabilities PJ\;|D,M] based on the dynamic data do not provide the same robust predictions, demonstrating
the importance of a framework that can consider multiple model classes in performance reliability assessment; al-
though.M3 and M, are both consistent with the given dynamic data, this does not necessarily mean that they will
predict similar responses for every possible excitation. This further stresses the importance of posterior hyper-robust
predictions that average over the robust predictions of all model classes using their relative plausibility based on the
data.

100

107!
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102

107
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FIG. 9: Posterior predictive analysis for all model classes and posterior hyper-robust predictive analysis.
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7. CONCLUDING REMARKS

A powerful unifying stochastic framework is available for treating modeling uncertainty, along with input uncertainty,
when using dynamic models to predict the response during design or operation of a system. This framework is a
principled one that is based solely on the probability axioms and Jaynes’ principle of maximum information entropy.

A key concept is a stochastic system model class which defines the fundamental probability models that allow both
prior and posterior robust stochastic system analyses to be performed. Such a model class can be constructed by
stochastic embedding of any deterministic model of the system’s input—output behavior. There is no invocation of
inherent randomness; instead, the approach is a pragmatic one that allows plausible reasoning about system behavior
based on incomplete information.

The prior and posterior robust predictions of system response not only incorparateetric uncertaintyuncer-
tainty about which model in a proposed set should be used to represent the system’s input—output behavior) but also
nonparametric uncertaintglue to the existence of prediction errors because of the approximate nature of any system
model. Robust predictive analysis involves integrals that usually cannot be evaluated in a straightforward way. Useful
computational tools are Laplace’s method of asymptotic approximation and various MCMC (Markov chain Monte
Carlo) algorithms.

These theoretical ideas and computational tools were demonstrated in an illustrative example involving the vertical
dynamic response of a car being driven along a rough road. Multiple model classes were used to characterize the
car dynamics, corresponding to different assumptions for the shock absorbers and the car suspension. The results
demonstrated the importance of addressing model uncertainties when evaluating the dynamic response, as well as the
benefits of using sensor data to update model descriptions to provide posterior robust and hyper-robust predictions.
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