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Adjoint-based gradient information has been successfully incorporated to create surrogate models of the output of
expensive computer codes. Exploitation of these surrogates offers the possibility of uncertainty quantification, opti-
mization and parameter estimation at reduced computational cost. Presently, when we look for a surrogate method
to include gradient information, the most common choice is gradient-enhanced Kriging (GEK). As a competitor, we
develop a novel method: gradient-enhanced sparse grid interpolation. Results for two test functions, the Rosenbrock
function and a test function based on the drag of a transonic airfoil with random shape deformations, show that the
gradient-enhanced sparse grid interpolation is a reliable surrogate that can incorporate the gradient information effi-
ciently for high-dimensional problems.
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1. INTRODUCTION

A surrogate model provides an approximation of the output of an input-output system, such as an expensive compu-
tational fluid dynamics (CFD) solver. The surrogate approximation is based on a set of training data—a small set of
evaluations of the solver—sampled at certain points in the input parameter space. Since their introduction by Sacks et
al. [1], surrogate models have been shown to be effective in reducing the computational cost of uncertainty quantifi-
cation, optimization, and parameter estimation. The common objective is to arrive at an accurate surrogate using only
a small number of training data.

The main problem with surrogate models is that when we increase the number of input parameters, the number of
required training data increases exponentially. This effect is known as the “curse of dimensionality” [2]. A promising
approach to mitigate this curse of dimensionality is to use gradient information [3–5]. When gradient information is
obtained from an adjoint solver, the full gradient is available at the cost of only one additional solve. Adjoint-based
gradients are now becoming available in a range of CFD solvers, such as Stanford University’s SU2 [6], NASA’s
FUN3D [7], the German Aerospace Center (DLR)’s TAU [8], OpenFOAM [9], Rolls-Royce’s HYDRA [10], and
ANSYS’ Fluent [11]. One practical problem with adjoint-based gradients is that they can contain numerical noise [12–
14], an issue which we will address in Section 3.

Most research on gradient-enhanced surrogate models has focused on gradient-enhanced Kriging (GEK). Kriging
was developed independently by Matheron [15] and Gandin [16], in the fields of geology and meteorology, respec-
tively. A complete discussion of Kriging can be found in [17, 18]. GEK is a form of co-Kriging, where the partial
derivatives are added as co-variables. GEK has been used in a number of applications, for example drag minimization
for a supersonic business jet [19], prediction of the drag of a transonic airfoil [20], uncertainty quantification for a
transonic airfoil [8], prediction of the performance of nuclear reactors [21], uncertainty quantification for a pitching
airfoil [22], uncertainty quantification for thek-ε turbulence model [23], shape optimization of a high-pressure jet
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engine turbine [24], and high-dimensional uncertainty quantification for a transonic airfoil [25]. Because GEK has
been widely used in engineering problems, we presently consider it as the reference gradient-enhanced surrogate
method. Other gradient-enhanced surrogate methods include weighted least squares [26] and gradient-assisted radial
basis functions [27].

In this paper, we develop gradient-enhanced sparse grid interpolation. Sparse grids were developed to reduce the
curse of dimensionality [28]. The sparse grid combination technique combines a number of low-frequency grids in
order to approximate the interpolation based on a single high-frequency grid, without significant loss of accuracy [29–
31]. The combination technique approach enables the construction of a sparse grid without using a hierarchical basis.
An important difference between Kriging and sparse grids is the way one constructs the sampling plan: Kriging usually
uses a latin-hypercube sampling plan, which is random and can be computationally expensive, while the sparse grid
sampling plan is created deterministically and is relatively cheap to construct.

Sparse grids were first used for uncertainty quantification by Ganapathysubramanian and Zabaras [32]. Further
use of sparse grids for uncertainty quantification is discussed by Le Maı̂tre and Knio [33] and references therein.
Instead of using the sparse grid directly in a quadrature rule, we treat the sparse grid interpolation as a surrogate
model, which is then exploited for uncertainty quantification. In this framework, extending the sparse grid method to
include gradient information provides an alternative to GEK.

2. METHOD

A general, robust, and non-intrusive method for uncertainty quantification is the Monte Carlo method of statistical
sampling [34]. For an input-output system, given a multivariate input distributionp(~x), the Monte Carlo method al-
lows us to accurately estimate the statistical moments of the outputu(~x). For example, the mean of the output is
estimated by

E[u] ≈ 1
M

M∑

i=1

u(~xi), (1)

where~xi areM random vectors, which are sampled according to the input distribution.
However, an accurate Monte Carlo estimate requires thatM is very large. Therefore, if the evaluation of the input-

output systemu is expensive, direct evaluation of (1) becomes impracticable. One approach is to approximateu with
a much cheaper surrogate modelum, which is based on a small set ofm ¿ M training data, obtained from evaluating
the input-output system onlym times. Instead of (1) we then estimate

E[u] ≈ 1
M

M∑

i=1

um(~xi), (2)

at much lower computational cost, by randomly sampling the cheap surrogate instead of the expensive input-output
system. The challenge is then to find an efficient surrogate method, that provides an accurate approximation using
only a small numberm of training data. In the following subsections, we present gradient-enhanced sparse grid
interpolation. This method can provide an efficient surrogate in high-dimensional problems.

2.1 Sparse Grids

In d dimensions consider approximating a functionu : [0, 1]d 7→ R as piecewise multi-linear. Fori ∈ N we define the
equidistant points

Ωi :=




{j2−i : j = 0, 1, . . . , 2i} if i > 0,{

1
2

}
if i = 0,

and fori ∈ Nd we define the uniform gridΩi = Ωi1 × · · · ×Ωid
. We denote the piecewise multi-linear interpolant of

the samplesu(Ωi) by ui. Given the piecewise linear basis functions

φik,jk
(xk) :=

{
max{0, 1− |2ikxk − jk|} if ik > 0,

1 if ik = 0,
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then piecewise multi-linear nodal basis functions are defined by

φi,j(~x) :=
d∏

k=1

φik,jk
(xk) .

Defining the index setBik
:= {0, 1, . . . , 2ik} if ik > 0, B0 := {0} andBi := Bi1 × · · · ×Bid

, then we may express
ui as

ui(~x) =
∑

j∈Bi

ui,jφi,j(~x) ,

whereui,j := u(~xi,j) with ~xi,j = (xi1,j1 , . . . , xid,jd
) such that eachxik,jk

is thejkth member ofΩik
, i.e.,

xik,jk
:=





jk2−ik if ik > 0,
1
2

if ik = 0.

This definition differs from classical piecewise multi-linear approximations in that the basis function is constant when
ik = 0 and is determined by the value atxk = 1/2 (as opposed to a linear approximation determined by the value at
the endpoints0 and1).

The combination technique constructs the sparse grid interpolant ofu with depthn ∈ N via

uc
n :=

d−1∑

k=0

(−1)k

(
d− 1

k

) ∑

|i|=n−k

ui . (3)

Error estimates for sparse grid interpolation have been well established, see for example [29–31]. It is well known that
the approximation error of sparse grids as described above isO(nd−14−n).

2.2 Gradient-Enhanced Sparse Grids

Here we are concerned with incorporating gradient information into the sparse grid interpolant to improve our approx-
imation of the functionu. While there are several ways in which one might construct an interpolant using gradient
information we focus on piecewise cubic Hermite interpolation in this paper. This approach is related to high-order
quadrature on sparse grids, which has been studied in [35]. The difference here as that in dimensionsd > 1 we do
not have enough information to construct a full multi-dimensional piecewise cubic Hermite interpolant ofu on each
of theui (which requires all mixed derivativesDiu with 0 < i ≤ 1 in addition to the function values onΩi). In par-
ticular we only have estimates of∂u/∂x1, . . . , ∂u/∂xd at each sample point. To get around this we construct several
interpolants which each use piecewise cubic Hermite interpolation on at most one of the spatial dimensions and then
use the inclusion-exclusion principle overp space to construct a gradient-enhanced interpolant for eachui. These are
then combined using the classical combination technique (3) to obtain a gradient enhanced sparse grid interpolant.

In one dimension a cubic Hermite spline may be expressed via the sum of two cubic nodal basis functions, one
which incorporates the function value and a second which incorporates the gradient. We define the basis functions

ψik,jk,`(xk) :=

{
(2φik,jk

(xk)− 1)φik,jk
(xk)2 if ` = k and ik > 0,

φik,jk
otherwise,

and

ζik,jk,`(xk) :=





(xk − jk2−ik)φik,jk
(xk)2 if ` = k and ik > 0,

0 if ` = k and ik = 0,

φik,jk
otherwise,
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for constructing piecewise cubic Hermite splines (or constant functions ifik = 0). In d = 1 dimension withu(x1) :
[0, 1] → R, i1 > 0 and` = 1 we have the piecewise cubic Hermite interpolant between samplesΩi1 via

ũi1,`

∑

j1∈Bi1

u(xi1,j1)ψi1,j1,`(x1) +
∂u(xi1,j1)

∂x1
ζi1,j1,`(x1) .

For d > 1 dimensions we haved different interpolants which each incorporate the gradient information into one
of thed dimensions. Specifically for̀= 1, . . . , d we define the basis functions

ψi,j,`(~x) =
d∏

k=1

ψik,jk,`(xk) and ζi,j,`(~x) =
d∏

k=1

ζik,jk,`(xk) ,

with which we obtain the interpolants

ũi,` :=
∑

j∈Bi

u(~xi,j)ψi,j,`(~x) +
∂u(~xi,j)

∂x`
ζi,j,`(~x) .

Eachũi,` consists of a piecewise linear approximation along the dimensionsk ∈ {1, . . . , d}, with k 6= ` and piecewise
cubic Hermite spline interpolation along the dimensionk = ` (with the exception whenik = 0 corresponds to a
constant function). To construct an approximation ofu that uses all of the gradient information we compute

ûi := −(d− 1)ui +
d∑

`=1

ũi,` . (4)

With respect tohp-approximation theory, one may interpret (3) as an inclusion-exclusion principle overh space
while (4) may be interpreted as an inclusion-exclusion principle overp space. Notice also that coefficients of (4) are
analogous to those of the combination technique with a depth of one. Given a functionu(~x) which can be decomposed
as a sum of functions in each dimension, that isu(~x) = v1(x1)+ · · ·+vd(xd), thenûi is precisely a sum of piecewise
cubic Hermite interpolants over each of thevk(xk).

The classical combination technique (3) is now applied over theseûi to obtain the gradient-enhanced sparse grid
interpolant

ûc
n :=

d−1∑

k=0

(−1)k

(
d− 1

k

) ∑

|i|=n−k

ûi .

In Fig. 1 we depict the computation ofûc
2 in d = 2 dimensions. Figure 1(a) shows the sparse grid, which is the result

of the combination technique illustrated in Figs. 1(b)–1(f). Figure 1(b) depicts the basis functions used to constructui

for each combination grid, with the basis functions shown in blue at the top and the left. The second and third rows,
i.e., Figs. 1(c)–1(d) and 1(e)–1(f), depict the basis functions used to constructûi,1 and ûi,2, respectively, for each
combination grid, with the left figures depictingψi,j,` and the right figures depictingζi,j,`.

This method of interpolation has been implemented in MATLAB and has been tested on two different problems
which are discussed in Section 3. The code includes several options, including the option to use the linear approxi-
mation between the two end points whenik = 0. We chose to use the constant function forik = 0 by default as this
allows the implementation to be used in very high dimensions as the grid forui with i = 0 consists of only one center
point as opposed to the2d corner points. A second option allows one to use the gradient information to obtain a linear
approximation along a dimensionk when using the center point forik = 0 rather than the default approximation as a
constant function. We use constant functions in the following test cases; other options were not investigated.

3. RESULTS

In Section 2 we presented a gradient-enhanced sparse grid algorithm. In the present section, we apply this algorithm
to two different test functions: the multi-dimensional Rosenbrock function and a transonic airfoil with random shape
deformations.
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(a) (b)

(c) (d)

(e) (f)

FIG. 1: Illustration of the basis functions for each of the combination grids ind = 2 dimensions with depthn = 2.
The interpolants are combined by adding the second and third rows and subtracting the first row. (a) Sparse grid
corresponding tôuc

n with n = d = 2. Basis functions for the (b)ui in the combination̂uc
2, (c) φ component of each

ũi,1 in the combination̂uc
2, (d) ζ component of each̃ui,1 in the combination̂uc

2, (e)φ component of each̃ui,2 in the
combinationûc

2, and (f)ζ component of each̃ui,2 in the combination̂uc
2.
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3.1 Rosenbrock Function

The first test function is the Rosenbrock function [36]. It is a well-known test function, which is often used to test
optimization algorithms. The multi-dimensional Rosenbrock function is given by

f(~x) =
d−1∑

k=1

100 (xk+1 − x2
k)2 + (1− xk)2 (5)

on the domain[−2, 2]d. We consider the rescaled Rosenbrock function

g(~x) = f(4~x− 2) (6)

on the domain[0, 1]d. Figure 2 is an illustration of the two-dimensional case. The minimum, located at~x = [3/4, 3/4],
is indicated by the cross hair. Ford > 3 there is a global minimum at~x = [3/4, 3/4, . . . , 3/4] as well as a local
minimum at~x = [1/4, 3/4, . . . , 3/4].

In the case of the Rosenbrock function, we obtain the gradient information by means of a complex step finite
difference method. In terms of function evaluations, this is an unrealistically expensive approach. In Section 3.1.6 we
assume that the gradient information comes at the cost of a single solve, as is the case for adjoint-based derivatives.

3.1.1 Convergence for Increasing Number of Samples

Figure 3 shows the relative prediction error ford = 2 dimensions for an increasing number of samples (i.e., an
increasing sparse grid depth). Compared with the results for a regular sparse grid, the gradient-enhanced sparse grid is
more accurate and shows a higher rate of convergence. For a large number of samples, the prediction error is limited
by machine precision.

3.1.2 Scaling with Number of Dimensions

In Fig. 4 we consider the number of samples required to achieve a relative prediction error of0.05. The number of
required samples increases dramatically with the number of dimensions, an effect known as the “curse of dimension-
ality.” However, in Fig. 4 we see that adding gradient information in the sparse grid reduces the number of required
samples significantly.
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FIG. 2: First test function is the Rosenbrock function. The cross-hair indicates the location of the minimum.
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FIG. 3: Convergence of the relative prediction error of the Rosenbrock function for an increasing number of samples.
The gradient-enhanced sparse grid prediction is more accurate and has a higher rate of convergence.
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FIG. 4: Curse of dimensionality for the Rosenbrock function: a dramatic increase of the number of samples required
to reach a certain target accuracy of the sparse grid prediction. Adding gradient information reduces this effect signif-
icantly.

3.1.3 Effect of gradient noise

An important issue with adjoint-based gradients is that they can contain a significant amount of numerical noise [12–
14]. Therefore, we consider the effect of adding gradient noise. In Fig. 5 the blue line indicates the sparse grid
prediction error for a two-dimensional grid of depth2 (the gradient noise has no effect as the gradient information
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FIG. 5: Effect of gradient noise on the prediction error of the Rosenbrock function. The red line is the median, the
shaded area indicates0.2 and0.8 quantiles.

is not used in this case). The red line indicates the effect of gradient noise on the gradient-enhanced sparse grid
prediction error. Because the noise is random, we have repeated this experiment20 times; the red line is the median
and the shaded area indicates the0.2 and0.8 quantiles. For a relative noise magnitude of>0.01, the error starts to
increase.

3.1.4 Comparison with Kriging

We compare the sparse grid interpolation with a Kriging surrogate model [15–17]. In a Bayesian framework, it is
straightforward to incorporate gradient information in the Kriging prediction, resulting in GEK [23]. Figure 6 shows
the prediction error of the sparse grid interpolation and the Kriging surrogate, both cases with and without gradient
information. Because we use a random latin-hypercube design of experiment [37] for Kriging and GEK, we repeat the
experiment20 times, and plot the median and0.2 and0.8 quantiles. Interestingly, Kriging is more accurate than the
sparse grid prediction. However, the gradient-enhanced sparse grid prediction is more accurate than GEK, although it
shows a similar rate of convergence.

3.1.5 Computational Cost

In order to effectively use the gradient-enhanced sparse grid algorithm in a computer experiment, the computational
cost of running the sparse grid algorithm should be lower than the cost of running the solver. Figure 7 shows CPU
timings on a Intel Core2.8 GHz processor, for a sparse grid of depth2. For an increase in the number of dimensions,
we see an increase of the computational cost required to construct the grid and make either a sparse grid or gradient-
enhanced sparse grid prediction. The discontinuity in the cost of constructing the grid, at36 dimensions, is likely
where we have completely filled the CPU cache.

For high dimensions, incorporating the gradient information makes the algorithm roughly5 times as expensive.
The cost at64 dimensions is considerable, however, we should consider that this corresponds to8 × 103 samples,
which is likely to come at a significant solver cost as well.

3.1.6 Uncertainty Quantification

We conclude this subsection on the Rosenbrock function with an uncertainty quantification analysis. We consider the
d = 2 dimensional case, with an uncertainty in the input parameters of

International Journal for Uncertainty Quantification



Gradient-Enhanced Sparse Grid 461

10
0

10
1

10
2

10
3

10
−8

10
−6

10
−4

10
−2

10
0

10
2

# Samples

R
el

at
iv

e 
pr

ed
ic

tio
n 

er
ro

r

 

 

Sparse grid
GE sparse grid
Kriging
GE Kriging

FIG. 6: Sparse grid versus Kriging prediction of the Rosenbrock function ford = 2 dimensions. For Kriging, we
show the median as well as0.2 and0.8 quantiles.
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FIG. 7: Computational cost of creating a sparse grid and making either a sparse grid or gradient-enhanced sparse grid
prediction of the Rosenbrock function for an increasing number of dimensions. Timings are on a Intel Core2.8 GHz
processor.

[x1, x2] ∼ N (
[0.5, 0.5], σ2I

)
, (7)

with σ = 0.1. We truncate the distribution to the domain[0, 1]d. We aim to propagate this input uncertainty to obtain
a probability density function (PDF) of the output. Figure 8(a) shows a reference PDF in black, obtained from kernel
density estimate of a Monte Carlo simulation withM = 105 random samples [34]. The PDF is highly non-symmetric,
because at the center of the input PDF the output is close to the minimal value of the test function. The blue and red
lines show the resulting PDF using a sparse grid and a gradient-enhanced sparse grid, respectively, both of a depth
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FIG. 8: Uncertainty quantification for the Rosenbrock function. The gradient-enhanced sparse grid prediction results
in a PDF which is closer to the reference. The red dotted lines indicate the shift of the results when plotting against
the number of solves, instead of the number of samples. (a) Output PDF based on either a sparse grid or gradient-
enhanced sparse grid prediction, (b) relative error in the predicted mean of the output PDF, and (c) relative error in the
predicted standard deviation of the output PDF.

of 4. Here, we use the (gradient-enhanced) sparse grid prediction as a surrogate, in order to propagate the uncertainty.
Clearly, the PDF based on the gradient-enhanced sparse grid is much closer to the reference. To quantify this, Figs. 8(b)
and 8(c) show the relative error in the predicted mean and standard deviation, respectively.

We have been comparing the sparse grid and the gradient-enhanced sparse grid predictions on based on the number
of samples. Assuming that all gradients are obtained from one adjoint solve having the same cost as the primal solve,
then plotting against the number of solves instead of the number of samples would move the red line in Figs. 8(a)
and 8(b) to the right, as indicated by the red dotted line.

3.2 Transonic Airfoil

As a second test function, we use the response of an actual engineering problem. We consider the aerodynamical drag
coefficient of the transonic airfoil in Fig. 9, which operates at an angle of attack ofα = 1.25◦ and a Mach number
of M∞ = 0.8. The baseline wing geometry is the FFAST airfoil [39, p. 110], however, small deformations of the
geometry might have a considerable effect on the shock locations and, therefore, on the drag. These deformations are
parameterized using the basis functions [25]

ξ̄ =
ξ− c0

1− 2c0
, ξ ∈ [c0, 1− c0]

FIG. 9: Pressure field for the baseline transonic airfoil at Mach =0.8, with visible shocks. From [38].
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fi(ξ) = sin(πξ̄)
sin(iπξ̄)

i
, (8)

with ξ the chordwise coordinate,i ∈ {1, . . . , d/2} andc0 = 0.15 to avoid deformations near the leading and trailing
edge. With these basis functions, the deformations on the top and bottom of the airfoil are, respectively,

∆top(ξ) =
d/2∑

i=1

xi,topfi(ξ), (9)

∆bottom(ξ) = −
d/2∑

i=1

xi,bottomfi(ξ), (10)

with d the total number of shape parameters andxi ∈ [−0.0125, 0.0125] the shape parameters.
For the dimensionsd = [2, 3, 4, 6, 8], [25] provides200 samples on a latin-hypercube design of experiment,

including adjoint-based gradient information, obtained by solving the Euler equations with the open source solver
SU2 [6]. We use these data to train a GEK surrogate, which then serves as the test function for this section. As a minor
modification, we rescale the shape parameters to[0, 1]d, with the baseline geometry remaining in the center.

The resulting test function ford = 2 dimensions is illustrated in Fig. 10. In this figure, the first shape parameter
determines the deformation of the bottom of the airfoil, while the second shape parameter determines the deformation
of the top of the airfoil. Clearly, the optimal design, with minimal drag, is close to the baseline; this is not a surprise,
since the FFAST geometry is based on an optimized transonic wing design.

In the case of the transonic airfoil test function, GEK provides analytical gradient information. In Section 3.2.4
we assume that the gradient information comes at the cost of one additional solve, as is the case for adjoint-based
gradients.

3.2.1 Convergence for Increasing Number of Samples

Figure 11 shows the convergence of the relative prediction error for an increasing number of samples. For a small
number of samples, the gradient-enhanced prediction is more accurate than the sparse grid prediction. However, for a
larger number of samples the accuracy of both methods becomes similar.
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FIG. 10: Drag coefficient of the transonic airfoil as a function of two shape parameters, which define the deformation
of the bottom and top of the airfoil. The optimum is close to the baseline design at[0.5, 0.5].
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FIG. 11: Convergence of the relative prediction error of the transonic airfoil for an increasing number of samples. The
gradient-enhanced sparse grid prediction is more accurate for a small number of samples, but is close to the accuracy
of the sparse grid prediction for a larger number of samples.

3.2.2 Scaling with Number of Dimensions

In Fig. 12, for the transonic airfoil the transonic airfoil we see a full curse of dimensionality, with an exponential
increase of the number of samples required to achieve a relative target accuracy of0.05. Adding gradient information
reduces the number of samples, but not as radically as in the case of the Rosenbrock function in Fig. 4.
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FIG. 12: Number of samples required to achieve a given target accuracy, as a function of the number of shape
parameters.
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3.2.3 Effect of Gradient Noise

In the case of the transonic airfoil, the standard deviation of the relative gradient noise was found to be0.09. Because
this is a significant amount of noise, Fig. 13 illustrates the effect of gradient noise on the accuracy of the gradient-
enhanced sparse grid prediction. As we are simulating the gradient noise with uncorrelated Gaussian noise, we repeat
the experiment20 times; the red line is the median, the shaded area shows the0.2 and0.8 quantiles. For a relative
noise level of0.09, indicated by the black dotted line, the accuracy is still close to that of the noise-free prediction.
We note that, for a similar case, Lukaczyk et al. [14] have proposed to reduce the effect of gradient noise by filtering
the surface sensitivities before projecting them into the parameter space.

3.2.4 Uncertainty Quantification

We aim to propagate the same truncated normal distribution (7) as was used for the Rosenbrock function. Along the
same lines, we obtain the black reference PDF in Figure 14(a). In the same figure, we show the PDF obtained from a
regular sparse grid and a gradient-enhanced sparse grid, both for a depth of1. The PDF based on the gradient-enhanced
sparse grid is closer to the reference PDF.

Figures 14(b) and 14(c) show the relative error in the mean and standard deviation, respectively. Again, we have
used a dotted red line to illustrate the shift that would occur if we would plot against the number of solves instead of
the number of samples, again assuming that the gradient would be computed in a single adjoint solve. Both the error
in the mean and in the standard deviation is lower when we use gradient information, although it approaches the error
obtained using a regular sparse grid for a larger number of samples.

4. CONCLUSIONS

We have developed a gradient-enhanced sparse grid interpolation method. We have evaluated the performance of
this method for up to64 dimensions. We have demonstrated that this method can be used as a surrogate model for
uncertainty quantification.

For the Rosenbrock test function, including gradient information significantly reduces the curse of dimensionality.
For two dimensions, the accuracy of the sparse grid and gradient-enhanced sparse grid surrogate is similar to that
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FIG. 13: Effect of gradient noise on the relative prediction error for the transonic airfoil. The dotted black line
indicates the observed noise level. The red line is the median error, the shaded area indicates0.2 and0.8 quantiles.
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FIG. 14: Uncertainty quantification for the transonic airfoil test function. For a small number of samples, the gradient-
enhanced sparse grid prediction results in a PDF which is closer to the reference. The red dotted lines indicate the shift
of the results when plotting against the number of solves, instead of the number of samples. (a) Output PDF based on
either a sparse grid or gradient-enhanced sparse grid prediction, (b) relative error in the predicted mean of the output
PDF, and (c) relative error in the predicted standard deviation of the output PDF.

of Kriging and GEK, respectively. Using gradient information reduces the cost of uncertainty quantification. For the
transonic airfoil test function, including gradient information does not reduce the curse of dimensionality significantly.
Using gradient information reduces the cost of uncertainty quantification when we consider the analysis for a small
number of CFD solves.

Future work will include further investigation of the reduction of the curse of dimensionality for different test
functions, as well as possible development of a direct gradient-enhanced sparse grid quadrature method. Based on the
present results, gradient-enhanced sparse grid interpolation can become a serious competitor of GEK.

SUPPLEMENTARY MATERIAL

GESPGR, the Matlab code for sparse grid and gradient-enhanced sparse grid interpolation, is available on the Jour-
nals website (http://uncertainty-quantification.com/), as well as through: http://www.mathworks.com/matlabcentral/
fileexchange/53386-gradient-enhanced-sparsegrid.
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