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White noise is a very common way to account for randomness in the inputs to partial differential equations, especially
in cases where little is know about those inputs. On the other hand, pink noise, or more generally, colored noise having
a power spectrum that decays as 1/fα, where f denotes the frequency and α ∈ (0, 2] has been found to accurately
model many natural, social, economic, and other phenomena. Our goal in this paper is to study, in the context of simple
linear and nonlinear two-point boundary-value problems, the effects of modeling random inputs as 1/fα random fields,
including the white noise (α = 0), pink noise (α = 1), and brown noise (α = 2) cases. We show how such random
fields can be approximated so that they can be used in computer simulations. We then show that the solutions of the
differential equations exhibit a strong dependence on α, indicating that further examination of how randomness in
partial differential equations is modeled and simulated is warranted.
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1. INTRODUCTION

Given a subsetD ∈ Rd and/or an intervalI ∈ R, a random field is a function of position and/or time whose value
at any pointx ∈ D and/or at any timet ∈ I is randomly selected according to an underlying probability density
function (PDF), most often a Gaussian PDF. Hered denotes the spatial dimension. Thus a random field is expressed
asη(x, t;ω) to indicate that the value ofη not only depends on position and time, but also probabilistically on the
associated PDFρ(ω). Random fields come in two guises: uncorrelated and correlated, the former type commonly
referred to as white noise, the latter as colored noise. Note that choosing the Gaussian PDF allows for a nonzero
probability that the noise may, locally and momentarily, have an arbitrarily large modulus. Other choices for the
PDF may be made, for example, a truncated Gaussian that excludes rare but large modulus samples or a simple
uniform density over a finite interval. Also note that, for the most part, our discussion is made within the context
of spatially dependent random fields, although it holds equally well for fields that instead, or in addition, depend on
time.

A key concept used in this paper is that of the power spectrum or, synonymously, the energy spectral density as-
sociated with realizations of random fields. The power spectrum is a positive, real-valued function of the frequencyf
that gives the power, or energy density, carried by the field per unit frequency. Thus, the integral of the power density
between two values of the frequency provide the amount of energy in the field corresponding to those frequencies.
Mathematically speaking, the energy spectral density is the square of the magnitude of the continuous Fourier trans-
form of the field.

The value of a white noise random field at any point is independent and uncorrelated from the values of that field
at any other point. A white noise random field has a flat power spectrum, so that the energy of the field between
the frequency valuesa andb depends only onb − a; thus, for example, there is just as much energy between the
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frequencies 1,000,100 and 1,000,200 as there is between the frequencies 100 and 200. It is obvious, then, that a white
noise random field has infinite energy.

On the other hand, the value of a colored noise random field at any point may be independent but is correlated
to the values of that field at other points; this explains, of course, why colored noise is also referred to as correlated
noise. A particular class of colored noise fields has a power spectrum that decays as1/fα, whereα ≥ 0 andf denotes
the frequency. White noise corresponds toα = 0, brown noise toα = 2, andα = 1 corresponds to pink noise. Pink
noise has the property that the energy in the frequency intervalb− a depends only onb/a so that the energy between
frequencies 10 and 20 is the same as that between frequencies 1,000,000 and 2,000,0000. Musically speaking, this
means that all octaves have the same energy. Forα 6= 1, the energy in1/fα noise grows asf1−α so that it has infinite
energy forα < 1 and finite energy forα > 1; thus, white noise, that is, the caseα = 0, has infinite energy. For pink
noise, that is, forα = 1, the energy grows asln f so that it is also infinite. Figure 1 provides approximate realizations,
determined using Algorithm 2 introduced in Section 2.2, of zero expectation1/fα noise forα = 0, 0.5, 1, 1.5, and 2
sampled at 1001 equally spaced points on the interval[0, 1]; for the three largest values ofα, we plot two realizations.
In practice, individual realizations are of no interest; rather, statistical information determined over many realizations
is relevant. However, it is instructive to examine, as we do here, the effect that the choice ofα has on realizations.
Clearly, the random fields illustrated in Fig. 1 are very different, so that if one changes the input of a system from one
of the fields to another, one can expect a large difference in the output of the system as well.

As α increases, the realizations of the noise become “smoother,” illustrating the increasing correlation in the
random field asα increases (see Fig. 1). The spatial average of the realizations also provides an inkling about the
effect that increasing correlation can have on realizations. All fields illustrated in Fig. 1 are sampled from a standard
Gaussian PDF, that is, the samples have zero expectation and unit variance. This implies, among many other things,
that the expectation of the spatial average of the all five random fields vanishes. Of course, the spatial average of
individual realizations do not, in general, vanish. In the white noise case, the sample at each point is uncorrelated from
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FIG. 1: Realizations of discretized1/fα random fields with respect to a uniform grid having 1001 equally spaced
points. Top row, left to right:α = 0 (white noise),α = 0.5, andα = 1 (pink noise). Bottom row, left to right:α = 1.5
andα = 2 (brown noise).
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the samples taken at other points, which results in a balance between the positive and negative samples so that the
spatial average of individual realizations do tend to remain close to zero. As one increases the value ofα, that balance
can be increasingly upset so that the spatial average of an individual realization can be very different from zero. This
is clearly seen in Fig. 1, where, in the brown noise case, for example, the spatial average is decidedly not zero.

1/f0 noise is probably referred to as white noise because it contains all frequencies, much the same as white light
contains all colors. Of course, the light spectrum is finite whereas the white noise spectrum, by definition, contains all
frequencies equally.1/f2 noise is called brown not because of any association with color, but because it corresponds
to Brownian noise. A reason, but not the only one, suggested for referring to1/f1 noise as pink noise is that brown
noise is sometimes referred to as red noise and pink is “halfway” between white and red. Pink noise is also referred
to as flicker noise because the noisy fluctuations, that is, the flicker, observed in signals from electronic devices is
observed as having a1/f power spectrum; flicker noise associated with vacuum tubes was studied some time ago, for
example, [1–3].

White noise random fields are the most common, indeed, practically ubiquitous, model used in probabilistic meth-
ods for accounting for randomness in the inputs of systems governed by differential equations, especially for cases
in which not much is known about the precise nature of the noise. This is not the case in many other settings, where
instead pink noise, or more generally,1/fα noise, is the model of choice. Pink noise and other1/fα noise signals
with α 6= 0 or 2 have been observed in statistical analyses in astronomy, musical melodies, electronic devices, graphic
equalizers, financial systems, DNA sequences, brain signals, heartbeat rhythms, psychological mental states, human
auditory cognition, and natural images, just to name a few instances. Even fractals are intimately related to1/f noise
[4–6]; in fact, Mandelbrot’s observation of the1/f power spectrum of rainfall at different locations led to the devel-
opment of the much more general fractal modeling of natural phenomena. See the website [7] for a very extensive
bibliography for pink noise going back to the 1910s and the web articles [8, 9] for a discussion of the history, proper-
ties, and applications of1/fα noise; see also the magazine article [10]. An especially illuminating treatment of1/fα

noise is given in [11]. The following quote from that paper is particularly telling (emphasis added here): “Scale invari-
ance refers to the independence of the model from the scale of observation. The fact that1/f noises (and Brownian
motion) are scale invariant is suggested by their autospectral densities. If the frequency scale is changed, the original
amplitude scaling can be obtained by simply multiplying by an appropriate constant. It was Mandelbrot’s observation
of the universality of scale invariance that led to this elevation as a fundamental property.In fact, it can be argued that
it is this property that is universal and accounts for the proliferation of power law noises throughout nature.

Given that very often in actual measurements of fluctuations of signals in engineering, physical, chemical, biologi-
cal, financial, medical, social, environmental, etc. systems, pink noise and not white noise is what is actually observed
(it has even been suggested that1/f noise is ubiquitous; see, for example, [12]) but on the other hand, in mathematical
models of those systems the fluctuations are most often modeled as white noise, it is interesting to ask, Does it make
any difference to the outputs of a system what type of noise one uses in the inputs to the system? The goal of this
paper is to use the setting of a simple two-point boundary-value problem for ordinary differential equations to address
this question, that is, to examine, in that simple setting, the differences in the statistical properties of solutions of
differential equations having1/fα random inputs for different values ofα.

A random vector is a random field defined over a set of discrete points in space and/or time. Random vectors are
of general interest, although for us, the interest is mostly their use in defining approximations to random fields defined
over intervals. The power spectrum of a random vector is again a function of frequency determined by the square of
the coefficients in the discrete Fourier transform of the vector.

Random fields can be defined by providing their expected value and covariance. For example, for a one-dimensional
random fieldη(x;ω) in one spatial dimension, the mean and covariance are defined by

µ(x) = E
[
η(x; ω)

]
=

∫

Γ

η(x;ω)ρ(ω)dω and Cov(x, x′) = E
{[

η(x; ω)− µ(x)
][

η(x′; ω)− µ(x′)
]}

,

as well as, of course, the PDFρ(ω); hereΓ denotes the interval inR over whichρ(ω) is defined, e.g., for a Gaussian
PDF, we haveΓ = (−∞,∞). Computing approximations to correlated random fields is relatively straightforward if
one knows the expected value and covariance of the field. For example, a popular means for doing so is to determine
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the (truncated) Karhunen-Loève expansion of the field [13, 14], something that can be accomplished by solving for
the eigenvalues and eigenfunctions of the (discretized approximate) covariance function.

The covariances of white noise and brown noise (the expected value is usually assumed to be zero) are known;
they are proportional toδ(x − x′) andmin(x, x′), respectively, for random fields in one dimension. We can use
the Karhunen-Lòeve expansion to determine approximate realizations of brown noise. Unfortunately, the covariance
for 1/fα noise forα other than 0 or 2 is not directly defined; all one has to work with is knowledge about the power
spectrum. White noise can be approximated using a sampling method over a discrete set of points. This is also possible
for brown noise as well [see Eq. (13) and (16)]. In this paper we show how a similar method can be developed for
general1/fα noise.

2. GENERATING REALIZATIONS OF 1/fα RANDOM VECTORS AND FIELDS

In this section we study how to generate computable realizations of1/fα random vectors and of approximations to
1/fα random fields.

2.1 Generating Realizations of 1/fα Random Vectors

We consider the algorithm of [11] for generating discrete1/fα noise, that is, for generating1/fα random vectors.
Before we present that algorithm, we provide some motivation. We will use this algorithm as the basis for our approach
toward approximating1/fα random fields.

Let w(x; ω) denote a white noise random field. We define the random fieldξ(x; ω) as the convolution ofw(x; ω)
with an impulse response functionh(x), that is,

ξ(x;ω) =
∫ x

0

h(x− y)w(y; ω)dy.

If h(0)(x) = δ(x), whereδ(x) denotes the Dirac delta function, the correspondingξ(0)(x; ω) = w(y; ω), that is, we
recover white noise. If instead,

h(2)(x) =

{
1 if x ≥ 0
0 if x < 0,

we obtainξ(2)(x;ω) as a brown random field.
We proceed in a similar manner for infinite random vectors. Letwi(ω), i = 0, . . . ,∞ denote the components of an

infinite causal white noise vector~w(ω), that is, the value of eachwi(ω) is sampled from a given PDF independently
and uncorrelated from the value of any other component of~w(ω); we setwi(ω) = 0 for i < 0. We define the
components of the infinite causal random vector~ξ(ω) through discrete convolution of~w(ω) with an infinite response
vector~h, that is,

ξi(ω) =
i∑

k=0

hi−kwk(ω) for i = 0, . . . ,∞. (1)

If

h
(0)
i = δi =

{
1 if i = 0
0 otherwise,

(2)

the corresponding random vector~ξ(0)(ω) = ~w(ω), that is, we recover the white random vector. If instead

h
(2)
i =

{
1 for i ≥ 0
0 for i < 0,

(3)

we obtain~ξ(2)(ω) as a brown random vector.
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We want to “interpolate” between~h(0) and~h(2) to obtain~h(α) so that~ξ(α)(ω) is a1/fα random vector. In order
to obtain the correct power spectrum, we do the interpolation by first taking the Z transform [15] of~h(0) and~h(2) to
obtain

H(0)(z) = 1 and H(2)(z) =
1

1− z−1
. (4)

We then generalize to arbitraryα ∈ (0, 2) by setting

H(α)(z) =
1

(1− z−1)α/2
. (5)

Justification of this choice for the generalization of (2) and (3) is provided by demonstrating that it does indeed induce
a random vector having a1/fα power spectrum as is demonstrated in Section 2.1.1. Taking the inverse Z transform
of (5), we obtain the vector~hα. To this end we representH(α)(z) as the power series

H(α)(z) =
∞∑

j=0

H
(α)
j z−j ,

where

H
(α)
0 = 1 and H

(α)
j = H

(α)
j−1

0.5α + j − 1
j

for i = 1, 2, . . .. (6)

Then, the inverse Z transform ofH(α)(z) is given by the vector~h(α) having components

h
(α)
i =

∞∑

j=0

H
(α)
j δi−j for j = 0, . . . ,∞.

Substitutingh(α)
i into the discrete convolution (1), we obtain the infinite colored noise vector~ξ(α)(ω) having com-

ponents

ξ
(α)
i (ω)=

i∑

k=0

∞∑

j=0

H
(α)
j δi−k−jwk(ω)=

∞∑

j=0

H
(α)
j

i∑

k=0

δi−k−jwk(ω)=
∞∑

j=0

H
(α)
j wi−j(ω) for i = 0, . . . ,∞, (7)

wherewi(ω) are the components of an infinite white noise vector and the weightsH
(α)
j are determined by (6). Recall

that we have setwi(ω) = 0 for i < 0, so that (7) reduces to

ξ
(α)
i (ω) =

i∑

j=0

H
(α)
j wi−j(ω) for i = 0, . . . ,∞. (8)

A finite-dimensional colored noiseM vector~ξ(α,M)(ω) ∈ RM is defined by selecting from (8) the firstM

components of the infinite noise vector~ξ(α)(ω) so that

ξ
(α,M)
i (ω) =

i∑

j=0

H
(α)
j wi−j(ω) for i = 0, . . . , M − 1. (9)

In matrix form (9) is given by
~ξ(α,M)(ω) = H(α) ~w(α,M)(ω)
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where~w(α,M)(ω) is anM -dimensional white noise vector andH is theM ×M unit lower triangular Toeplitz matrix
given by

H(α) =




1 0 · · · 0
H

(α)
1 1 0 · · · 0

H
(α)
2 H

(α)
1 1 0 · · · 0

...
...

.. .
.. .

...
...

...
.. .

.. . 0
H

(α)
M−1 H

(α)
M−2 · · · · · · H

(α)
1 1




.

Note that for white noise,H(0) = I, the identity matrix, and for brown noise, all the entries on or below the main
diagonal ofH(2) are equal to one. For0 < α < 2 the subdiagonal entries ofH(α) are all nonzero but monotonically
decrease as one moves away from the main diagonal, that is,1 > H

(α)
1 > H

(α)
2 > · · · > H

(α)
M−1 > 0 for 0 <

α < 2. The rate of decrease accelerates asα decreases, which is an indication of the reduction in the correlation asα

decreases.
The finite-dimensional colored noise vector~ξ(α,M)(ω) can be used to determine approximations of a1/fα ran-

dom fieldη(x; ω) (see Section 2.2).
We summarize the above discussion in the following algorithm that produces a realization of the discrete1/fα

noise vector~ξ(α,M) ∈ RM . Because discrete convolution has complexityO(M2), in the implementation of the above
process we use, instead of the discrete convolution, the fast Fourier transform that has complexity ofO(M log M).
The implementation in [11] uses the real Fourier transform procedure given in [16]; we instead use the MATLAB
complex fft() function.

Algorithm 1.
Given a positive integerM , α ∈ (0, 2], and the standard deviationσ of the zero-mean distribution from which
the componentswi, i = 0, . . . , M − 1 of a white noise vector~w ∈ RM are sampled. Then, the componentsξj ,
j = 0, . . . , M − 1 of a discretized1/fα random vector~ξ ∈ RM are determined as follows:

• Determine the weight vector~H ∈ R2M having components

Hj =





1 for j = 0

Hj−1
0.5α + j − 1

j
for j = 1, . . . , M − 1

0 for j ≥ M.

• Generate the vector~w ∈ R2M whose componentswj , j = 0, . . . , M − 1 are independently sampled from a
Gaussian distribution with zero mean and standard deviationσ and for whichwj = 0 for j ≥ M .

• Using the fast Fourier transform algorithm, determine the discrete Fourier transforms~̂H ∈ C2M and ~̂w ∈ C2M

of ~H and ~w, respectively.

• Set the components of the vector~̂f j ∈ C2M to the indexwise product̂fj = ĥjŵj for j = 0, . . . , 2M − 1.

• Scalef̂0 = 1
2 f̂0 andf̂M = 1

2 f̂M and setf̂j = 0 for j > M .

• Determine the vector~f ∈ C2M as the inverse Fourier transform of~̂f .

• Then the components of the discretized1/fα random vector~ξ ∈ RM are given by

ξj = 2<(fj) for j = 0, . . . , M − 1,

where the<(·) denotes the real part.

International Journal for Uncertainty Quantification



Pink Noise,1/fα Noise, and Their Effect on Solutions of Differential Equations 263

Note that Algorithm 1 produces Gaussian random vectors but that it can easily be changed so that it produces random
vectors for other PDFs.

In the Appendix we provide the code for the MATLAB implementation of Algorithm 1. Variations of the code
using uniform or truncated Gaussian distributions can be obtained at [17]. An implementation in C can be obtained at
[18].

2.1.1 Verification of Algorithm for Generating Realizations of 1/fα Random Vectors

We now verify that Algorithm 1 does indeed produce random vectors with the desired1/fα power spectrum, thus
computationally justifying the generalization (5) of (4). We consider random vectors of sizeM = 1000 for five
values ofα, namely,α = 0, 0.5, 1, 1.5, and 2. For eachα we sample 10,000 realizations of the vector~ξ(α,1000)

determined by Algorithm 1. We determine the discrete Fourier transform of every realization of the noise vector and
then compute the expected values of the squares of the real and imaginary parts of the (complex-valued) Fourier
coefficientŝξ(α,1000)

k corresponding to the wave numberk (which is, of course, the Fourier index and is proportional
to the frequency.) These are plotted in Fig. 2, which, because the square of the Fourier coefficients are proportional to
the energy density, is essentially a plot of the power spectrum. Note that the plots extend over only the wave numbers
1–500, because for real vectors such as~ξ(α,1000), the Fourier coefficients occur in complex conjugate pairs. We also
determine the power spectrum through a linear polynomial least-squares fit to|ξ̂(α,1000)

k |2 as a function of the wave
numberk, that is, the sum of the squares of the real and imaginary parts of the Fourier coefficients plotted in Fig. 2.
The slopes of the linear polynomial fits are given in Table 1. We include only the wave numbers from 1 to 400 in
the least-squares fit because the accuracy of the Fourier coefficients deteriorates as the wave number increases. We
observe that the power spectrum does indeed have the proper dependence on the wave number.

2.2 Generating Realizations of Approximate 1/fα Random Fields

We now show how to use the random vectors produced by Algorithm 1 to generate approximations of1/fα random
fields. In so doing, we ensure that the statistical properties of the approximations are largely independent of the number
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FIG. 2: For five values ofα, plots of the expected values over 10,000 realizations of the square of the real (left) and
imaginary (right) parts of the Fourier coefficients of the output of Algorithm 1 withM = 1000 plotted against the
wave number.

TABLE 1: Slopes of the curves in Fig. 2 between wave num-
bers 1 and 400

α 0.0 0.5 1.0 1.5 2.0
Slope 0.002 −0.492 −0.990 −1.504 −1.958
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of degrees of freedom used in the approximation. A necessary step for meeting this goal is a rescaling of the random
vectors.

We consider the spatial domain[0, L] which we subdivide intoN equal intervalsIj = (xj , xj+1), j = 0, . . . , N−
1, wherexj = j∆x with ∆x = L/N . We use Algorithm 1 withM = N to generate realizations of the discrete

random vectors~ξ(α,N)(ω), whose componentsξ(α,N)
j (ω), j = 0, . . . , N − 1 we associate with the intervalIj ,

j = 0, . . . , N − 1, respectively. (We note that often, especially when using finite difference methods for discretizing
partial differential equations, random vectors are instead associated with grid points. See Section 3.1.1 for an example.)
We then set

η(α,N)(x; ω) = Cα

N−1∑

j=0

χj(x)ξ(α,N)
j (ω), (10)

whereχj(x) denotes the characteristic function for the intervalIj . We wantη(α,N)(x; ω) to approximate a1/fα

random fieldη(α)(x; ω). Note that because the componentsξ
(α,N)
j (ω) all have zero mean, we have, for anyα, that

E
[
η(α,N)(x; ω)

]
= 0.

Thus we determineCα by matching the variance of the approximate random field (10) to that of the corresponding
random fieldη(α)(x; ω).

The variance ofη(α,N)(ω) is given by

E
{[

η(α,N)(x; ω)
]2} = C2

αE




N−1∑

j=0

χj(x)ξ(α,N)
j (ω)

N−1∑

k=0

χk(x)ξ(α,N)
k (ω)




= C2
α

N−1∑

j=0

N−1∑

k=0

χj(x)χk(x)E
[
ξ

(α,N)
j (ω)ξ(α,N)

k (ω)
]
.

We have that

χj(x)χk(x) =
{

χj(x) if j = k
0 if j 6= k

so that

E
{[

η(α,N)(x; ω)
]2} = C2

α

N−1∑

j=0

χj(x)E
{[

ξ
(α,N)
j (ω)

]2}
. (11)

We now try to match the result in (11) to the variance of the continuous random fieldη(α)(x; ω); we do so for white
and brown random fields.

For a white random field, that is, forα = 0, the variance ofη(0)(x; ω) is infinite; however, the integral of the
variance over any finite spatial interval is finite and independent of the length of that interval, that is,

∫ x+∆x

x

E
{[

η(0)(x; ω)
]2} = σ2. (12)

For white noise, we have that the variance of the approximate random fieldη(0,N)(x; ω) if given by

E
{[

η(0,N)(x; ω)
]2} = C2

0

N−1∑

j=0

χj(x)E
{[

ξ
(0,N)
j (ω)

]2} = C2
0σ2

N−1∑

j=0

χj(x) = C2
0σ2.

Then ∫ x+∆x

x

E
{[

η(0,N)(x;ω)
]2} = C2

0σ2∆x
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so that comparing with (12), we have

C2
0 =

1
∆x

=
N

L

Thus forα = 0, the approximation (10) ofη(0)(x; ω) is given by

η(0,N)(x; ω) =
1√
∆x

N−1∑

j=0

χj(x)ξ(0,N)
j (ω). (13)

For a brown random field, that is, forα = 2, the variance ofη(2)(x; ω) is given by

E
{[

η(2)(x; ω)
]2} = σ2x (14)

and the variance of the approximate random fieldη(2,N)(x;ω) is given by

E
{[

η(2,N)(x; ω)
]2} = C2

2

N−1∑

j=0

χj(x)E
{[

ξ
(2,N)
j (ω)

]2} = C2
2σ2

N−1∑

j=0

χj(x)(j + 1). (15)

We interpret (15) as a piecewise constant approximation to (14) over the uniform partition of the interval[0, L] into
N subintervals of length∆x = L/N , in which case we see that

C2
2 = ∆x =

L

N
,

so that forα = 2, the approximation (10) ofη(2)(x; ω) is given by

η(2,N)(x;ω) =
√

∆x

N−1∑

j=0

χj(x)ξ(2,N)
j (ω). (16)

We generalize toα ∈ (0, 2) by “interpolating” between the valuesC0 = 1/
√

∆x for α = 0 andC2 =
√

∆x for
α = 2 in the same manner as we did for the Z transform [see Eqs. (4) and (5)]. Thus we set

Cα = (∆x)(α−1)/2 (17)

so that our approximation (10) ofη(α)(x; ω) is given by

η(α,N)(x; ω) = (∆x)(α−1)/2
N−1∑

j=0

χj(x)ξ(α,N)
j (ω). (18)

Justifying this “interpolation” approach requires verification that the induced random fields do indeed have the ex-
pected1/fα power spectra, which we do in Section 2.2.1.

We summarize the above discussion in the following algorithm that produces a realization of the approximate
1/fα random fieldη(α,N)(x; ω).

Algorithm 2.
Given the uniform subdivision of the interval[0, L] into N subintervalsIj , j = 0, . . . , N − 1 of length∆x = L/N
and given the varianceσ2, the approximationη(α,N)(x; ω) is determined as follows:

• Use Algorithm 1 to generate a realization of the1/fα random vector~ξ(α,N)(ω) based on sampling according
to a given zero mean Gaussian PDF with varianceσ2.

• Set
η(α,N)(x; ω) = (∆x)(α−1)/2ξ

(α,N)
j (ω) for x ∈ Ij , j = 0, . . . , N − 1.

Again, Algorithm 2 corresponds to Gaussian random fields, but again, it can be easily changed for random fields
having other PDFs.
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2.2.1 Verification of Algorithm 2 for Generating Realizations of Approximate 1/fα Random Fields

To verify that the approximate random fieldη(α,N)(x; ω) given in (18) [which is based on the choice forCα made in
(17)] is a good approximation to the1/fα random fieldη(α)(x; ω), we examine its power spectrum. To this end we
determine the Fourier cosine series forη(α,N)(x; ω), that is, we set

η(α,N)(x; ω) =
∞∑

k=0

η
(α,N)
k (ω) cos(kπx),

where

η
(α,N)
k (ω) =

∫ 1

0

η(α,N)(x; ω) cos(kπx)dx =
∫ 1

0

(∆x)(α−1)/2
N−1∑

j=0

χj(x)ξ(α,N)
j (ω) cos(kπx)dx

= (∆x)(α−1)/2
N−1∑

j=0

ξ
(α,N)
j (ω)

∫ 1

0

χj(x) cos(kπx)dx = (∆x)(α−1)/2
N−1∑

j=0

ξ
(α,N)
j (ω)

∫

Ij

cos(kπx)dx

≈ (∆x)(α+1)/2
N−1∑

j=0

ξ
(α,N)
j (ω) cos(kπxj).

We set the number of intervalsN = 1000 and use Algorithm 2 to determine 10,000 realizations of the approximate
random fieldη(α,N)(x;ω) for each of five values ofα. Those realizations are used to estimate the expected values
of the first 1000|η(α,N)

k (ω)|2, the square of the Fourier coefficients. In Fig. 3 these are plotted vs the wave number

k. We also determine a linear least-squares fit to the first 800 values of|η(α,N)
k (ω)|2 to determine the slopes of the

plots in Fig. 3. These are given in Table 2, where we see that the power spectrum of the approximate random field
η(α,N)(x; ω) indeed has a1/fα dependence.
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FIG. 3: For five values ofα, plots of the expected values over 10,000 realizations of the square of the first 1000
Fourier coefficients of the approximate random field determined by Algorithm 2 plotted against the wave number. For
this figure,N = 1000,σ = 1, andL = 1.

TABLE 2: Slopes of the curves in Fig. 3 between wave num-
bers 1 and 800

α 0.0 0.5 1.0 1.5 2.0
Slope −0.004 −0.480 −0.959 −1.441 −1.927
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Before providing further results about approximate1/fα random fields generated by Algorithm 2, we clarify some
notation we use because, so far, there has no ambiguity possible, but now there is. We, in fact, consider two types of
averages, both of which involve integrals; integral averages with respect to the random variableω, weighted by the
PDFρ(ω), are referred to as expected values, whereas averages with respect to the spatial variablex are referred to as
spatial averages. Likewise, second moments with respect toω are referred to as variances, whereas second moments
with respect tox are referred to as energies. It is important to note that spatial averages and expected values commute,
that is, the spatial average of an expected value is the same as the expected value of a spatial average. However, once
even a single type of second moment is involved, statistical and spatial operations do not commute.

We consider the variance of the spatial average of the approximate random fieldη(α,N)(x; ω), that is, the variance
of
∫ L

0

η(α,N)(x;ω) dx =
∫ L

0

(∆x)(α−1)/2
N−1∑

j=0

χj(x)ξ(α,N)
j (ω) dx = (∆x)(α−1)/2

N−1∑

j=0

ξ
(α,N)
j (ω)

[∫ L

0

χj(x) dx

]

= (∆x)(α+1)/2
N−1∑

j=0

ξ
(α,N)
j (ω). (19)

Note that the expected value of the spatial average vanishes because the approximate random fields also have zero
expected value at every pointx. We use seven values forN ranging from 10 to 50,000 and, for eachN , we generate
a sample of size 10,000. The resulting statistics are given in Fig. 4, for which the Gaussian white noise samples are
chosen to have unit variance. We observe that for a fixed value ofσ in the Gaussian samples, the computed noise
discretizations have statistical properties that differ appreciably as a function ofα. Also, for fixed values ofα, the
statistics are largely insensitive to the value of the spatial discretization parameterN , that is, they are converging with
increasingN .

We next consider the expected value of the “energy”
∫ L

0

|η(α,N)(x; ω)|2dx = (∆x)α−1

∫ L

0




N−1∑

i=0

χi(x)ξ(α,N)
i (ω)

N−1∑

j=0

χj(x)ξ(α,N)
j (ω)


 dx

= (∆x)α−1
N−1∑

i=0

N−1∑

j=0

ξ
(α,N)
i (ω)ξ(α,N)

j (ω)
∫ L

0

χi(x)χj(x)dx

= (∆x)α−1
N−1∑

j=0

[
ξ

(α,N)
j (ω)

]2
∫ L

0

χj(x)dx = (∆x)α
N−1∑

j=0

[
ξ

(α,N)
j (ω)

]2

.
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FIG. 4: Forσ = 1 andL = 1, the variance of the spatial average of the piecewise constant approximate1/fα random
field η(α,N)(x;ω) given in (18) as a function ofN (left) andα (right).
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We use seven values forN and five values forα. For each pair(α, N), we generate 10,000 realizations of the approx-
imate random fieldη(α,N)(x; ω) which we use to estimate the expected value of the energy. The results are given in
Fig. 5. We see that forα < 1, the expected value of the energy increases linearly withN but for α > 1, it remains
bounded and converges. Forα = 1, the expected value of the energy increases logarithmically. That can be seen from
the linearity of the right plot in Fig. 5, which is a semi-log plot of the expected value of the energy vs.N for α = 1;
the slope of the that plot is approximately 0.095. Thus forα ≤ 1, a sequence of approximate1/fα random fields
having increasingly finer grid resolution will have an energy that grows unboundedly. Thus, the behavior of energy of
the approximate random fields with respect toα mimics that of the random fields themselves.

3. DIFFERENTIAL EQUATIONS WITH 1/fα RANDOM FIELD INPUTS

In this section we consider differential equations having1/fα random fields appearing in source or coefficient func-
tions. Our goal is to study how the value ofα in such random inputs affects statistical properties of the solutions of
the differential equations.

3.1 Linear Two-Point Boundary Value Problem with 1/fα Source Term

We consider the two-point boundary value problem

− d2

dx2
u(α)(x;ω) = η(α)(x; ω) for x ∈ (0, 1), u(0) = 0, u(1) = 0, (20)

whereη(α)(x; ω) is a1/fα random field. The solutionu(α)(x;ω) of (20) is itself a random field. How the statistical
properties of that field are affected by the choice forα is what is of interest here.

In order to define a computational method for solving (20), we again use the uniform partition of the interval
[0, 1] into theN subintervalsIj , j = 0, . . . , N − 1 of length∆x = 1/N and also use the computable approximation
η(α,N)(x; ω) given in (18) of the random fieldη(α)(x;ω). We seek a piecewise linear finite element approximation
u(α,N)(x; ω) of the solutionu(α)(x;ω) of (20), that is, an approximate solution of the form

u(α,N)(x; ω) =
N∑

j=0

u
(α,N)
j (ω)φj(x), (21)
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FIG. 5: Left: The expected value of the energy of the approximate random fieldη(α,N)(x; ω) as a function ofα and
N . Right: The expected value of the energy of the approximate pink noise random fieldη(1,N)(x;ω) as a function of
N .
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whereφj(x), j = 0, 1, . . . , N denote the usual piecewise linear hat functions corresponding to the partition of the

interval [0, 1] into the subintervalsIj , j = 0, . . . , N . Then, settingu(α,N)
0 (ω) = 0 andu

(α,N)
N (ω) = 0, the standard

Galerkin method results in the linear system

−u
(α,N)
j−1 (ω) + 2u

(α,N)
j (ω)− u

(α,N)
j+1 (ω)

(∆x)2
= (∆x)(α−1)/2

[
ξ

(α,N)
j−1 (ω) + ξ

(α,N)
j (ω)

2

]

for j = 1, . . . , N − 1

(22)

from which the unknown nodal valuesu(α,N)
j (ω), j = 1, . . . , N − 1, of u(α,N)(x;ω) are determined. In (22),

ξ
(α,N)
j (ω), j = 0, . . . , N − 1 denote the components of the random vector~ξ(α,N)(ω) determined by Algorithm 1.

For givenα, we use Algorithm 1 to generate a realization of the vector~ξ(α,N)(ω) and then solve the linear system
(22) to generate the corresponding approximationu(α,N)(x; ω) of the solution of (20). Realizations ofu(α,N)(x; ω)
for five values ofα and forN = 1000 are given in Fig. 6. Comparing with Fig. 1 that provides plots of realizations of
the inputη(α,N)(x; ω), we see that as one expects for elliptic equations, the solution is considerably smoother than
the input [19].

Because the expected value of the1/fα random fieldη(α)(x; ω) vanishes for allx ∈ [0, L], it is easy to see,
from the linearity of the differential operator and from the boundary conditions in (20), that the expected value of the
solutionu(α)(x;ω) vanishes as well. As a result, the expected value of the spatial average ofu(α)(x;ω) also vanishes.
Likewise, the linearity of the discrete system (22), the fact thatu

(α,N)
0 (ω) = u

(α,N)
N (ω) = 0, and the fact that the

expected value of eachξ(α,N)
j (ω) vanishes imply that for allj = 1, . . . , N − 1, the expected value ofu(α,N)

j (ω),
j = 1, . . . , N − 1 vanishes as well, as does the expected value of the finite element approximationu(α,N)(x; ω) for
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FIG. 6: Pairs of realizations of the approximationu(α,N)(x; ω), determined from Eqs. (21) and (22), to the solution
of (20) for a uniform grid havingN = 1000 subintervals and forσ = 1. Top row, left to right:α = 0 (white noise
input),α = 0.5, andα = 1 (pink noise input). Bottom row, left to right:α = 1.5 andα = 2 (brown noise input).
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all x ∈ [0, L]. This holds true for the spatial average ofu(α,N)(x;ω). Thus to study the effects that the choice ofα

have on the statistics of the approximate solutionu(α,N)(x; ω), we examine the variance of the spatial average of that
solution.

For each of several values ofα andN we use Algorithm 1 to sample 10,000 realizations of the the1/fα random
vector~ξ(α,N)(ω) which we then use to compute, from Eq. (22), 10,000 realizations of the finite element approxima-
tion u(α,N)(x; ω) of the solution of Eq. (20). We then compute the variance of the spatial average of the approximate
solutions. The results are given in Fig. 7. From that figure we observe the convergence with respect to increasingN
and, more important, the strong linear dependence on the value ofα.

It is natural to ask if by somehow “tweaking” the variance of the samples from which the input vector~ξ(α,N)(ω)
is determined one can have the variance of the spatial average ofu(α)(x; ω), or more relevant in practice, of its
approximationu(α,N)(x; ω), independent of the value ofα. This is indeed possible (see Section 3.2 for further
discussion). However, other statistical properties, for example, the power spectrum, ofu(α,N)(x;ω) would still remain
stronglyα dependent. By definition, the power spectrum of the1/fα random fieldη(α)(x;ω) decays as1/fα, where
f denotes the frequency. It is also well known (see [19]) that the solution operator of an elliptic equation such as (20)
effects two orders of smoothing on the data so that we expect the power spectrum of the solutionu(α)(x;ω) to decay
as1/fα+4.

We now verify that the power spectrum of the approximate solutionu(α,N)(x; ω) does indeed behave in this
manner. (Recall that we have already shown, in Section 2.2, that the approximate random fieldη(α,N)(x;ω) does
indeed have, for the most part, a1/fα power spectrum.) We apply the same process tou(α,N)(x; ω) that led to Fig. 3
and Table 2 for the approximate input random fieldη(α,N)(x; ω), except that because of the homogeneous boundary
conditions in (20), we now use the Fourier sine series. The analogous results foru(α,N)(x;ω) are provided in the left
plot of Fig. 8 and Table 3. Note that the power spectrum decays at a faster rate for high values of the wave number;
this is mostly due to the smoothing caused by the right-hand side in (22), in which the input noise vector is averaged
over two successive components. This is why, for Table 3, we computed the slopes of the curves in Fig. 8 using only
the first 100 wave numbers. In any case, we clearly observe an approximate1/fα+4 decay in the power spectrum for
the approximate solutionu(α,N)(x; ω). Thus, that power spectrum is strongly dependent on the value ofα.
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FIG. 7: The variance of the spatial average of the approximationu(α,N)(x; ω) determined from Eqs. (21) and (22) to
the solution of (20) as a function ofα andN for σ = 1.

TABLE 3: Slopes of the curves in the left plot in Fig. 8 be-
tween wave numbers1 and100

α 0.0 0.5 1.0 1.5 2.0
slope −4.157 −4.661 −5.175 −5.715 −6.126
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FIG. 8: For five values ofα, plots of the expected values over 10,000 realizations of the square of the first 1000 Fourier
coefficients of the finite element approximation (left) and finite difference approximation (right) of the solution of (20)
plotted against the wave number. For this figure,N = 1000 andσ = 1.

3.1.1 Comparison with Finite Difference Discretizations

For comparison purposes, we briefly consider a standard finite difference approximation of the solution of (20). We
use the same grid setup as used for the finite element discretization. We again have thatu

(α,N)
j (ω), j = 0, . . . , N

denotes approximations of the nodal values of the exact solution of (20), that is, ofu
(α)
j (xj ;ω). Now, however, the

components of the random input vector are associated with theN − 1 interior grid nodes instead of grid intervals, that
is, the components of the random vector~ξ(α,N−1)(ω) are associated with the of valuesη(α)(xj ; ω), j = 1, . . . , N−1
of the random fieldη(α)(x; ω) evaluated at the interior grid points. Note that the same(∆x)(α−1)/2 scaling of the
random vector is needed in the finite difference case.

The standard finite difference discretization of (20) leads to the linear system

−u
(α,N)
j−1 (ω) + 2u

(α,N)
j (ω)− u

(α,N)
j+1 (ω)

(∆x)2
= (∆x)(α−1)/2ξ

(α,N−1)
j−1 (ω) for j = 1, . . . , N − 1 (23)

along withu
(α,N)
0 (ω) = 0 andu

(α,N)
N (ω) = 0. Comparing with (22), we see that the left-hand side is the same but

that the right-hand side does not involve the averaging of neighboring components of the random vector~ξ(α,N−1)(ω).
To see how this lack of averaging affects statistical properties of the approximate solution, we repeat the process that
led to the left plot of Fig. 8 and Table 3 for the finite element case. For the finite difference case, the results are given
in the right plot of Fig. 8 and Table 4. Comparing with the finite element results, we do not see any smoothing of the
power spectrum at higher frequencies; in fact, we see a decrease in the rate of decay of the power spectrum. In Table 3,
we again see the expected1/fα+4 power spectrum.

TABLE 4: Slopes of the curves in right plot of Fig. 8 between
wave numbers1 and200

α 0.0 0.5 1.0 1.5 2.0
Slope −3.938 −4.442 −4.957 −5.500 −5.968
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3.2 Linear Two-Point Boundary Value Problem with Random Coefficients

Next we introduce noise into a coefficient of the Poisson problem. Consider the problem

d2

dx2
u(α)(x; ω) +

[
a + bη(α)(x; ω)

]
u(α)(x; ω) = 0 for x ∈ (0, 1), u(0) = 0, u(1) = 1 (24)

with a = (4.5π)2 andb = (π/2)2 and whereη(α)(x; ω) denotes an1/fα random field. Problems of this form arise
in acoustics, for example, where case the coefficient denotes the square of the speed of sound. Of course, for such
problems the coefficient should be positive, but here we consider (24) which has, if for example,η(α)(x; ω) denotes
a Gaussian1/fα random field, realizations with negative coefficient. The deterministic solution corresponding to
η(α)(x;ω) = 0 is given byudet(x) = sin(4.5πx).

In (24) we replace the random fieldη(α)(x; ω) by its approximationη(α,N)(x;ω) and then, as in Section 3.1,
discretize via a finite element method based on piecewise linear polynomials, thus obtaining the linear system

u
(α,N)
j−1 (ω)− 2u

(α,N)
j (ω) + u

(α,N)
j+1 (ω)

∆x
+

∆x

6

{[
a + (∆x)(α−1)/2bξ

(α,N)
j−1 (ω)

] [
u

(α,N)
j−1 (ω) + 2u

(α,N)
j (ω)

]

+
[
a + (∆x)(α−1)/2bξ

(α,N)
j (ω)

] [
u

(α,N)
j+1 (ω) + 2u

(α,N)
j (ω)

] }
= 0 for j = 1, . . . , N − 1 (25)

along withu
(α)
0 (ω) = 0 andu

(α)
N (ω) = 1.

We consider the differenceu(α,N)(x;ω) − udet(x) between the approximate solution and the deterministic so-
lution. Realizations of that difference for five values ofα and forN = 1000 are given in Fig. 9. We then compute
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FIG. 9: Pairs of realizations of the deviation of the approximationu(α,N)(x; ω) to the solution of (24) from the
deterministic solution forN = 1000 andσ = 1. Top row, left to right:α = 0 (white noise input),α = 0.5, andα = 1
(pink noise input). Bottom row, left to right:α = 1.5 andα = 2 (brown noise input).
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10,000 realizations for eachα and different values ofN and gather statistics. In particular, we determine the expected
value and variance of

∫ 1

0

[
u(α,N)(x;ω)−udet(x)

]
dx (see Fig. 10). We also provide, in Fig. 11, plots for the expected

values of
∫ 1

0

[
u(α,N)(x; ω)−udet(x)

]2
dx. In all cases, a strong dependence onα and convergence with respect toN

is observed. We also see, in Fig. 12, a dependence onα in the power spectrum ofu(α,N)(x;ω)− udet(x).
In all of the examples so far, we choseσ = 1, that is, all random vectors were generated from an underlying

standard normal distribution with variance 1. We can adjust the value ofσ so that, for example, the quantities plotted
in Fig. 11 match for different values ofα. For example, if forα = 0 we chooseσ0 = 0.49 and forα = 1 we chooseσ
= 1, we have that

E

{∫ 1

0

[
u(0,N)(x;ω)− udet(x)

]2

dx

}
= E

{∫ 1

0

[
u(1,N)(x; ω)− udet(x)

]2

dx

}
. (26)
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FIG. 10: Expected value (left) and variance (right) of
∫ 1

0

[
u(α,N)(x;ω) − udet(x)

]
dx as a function ofα andN for

σ = 1.
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FIG. 11: Expected value of
∫ 1

0
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u(α,N)(x; ω)− udet(x)

]2
dx as a function ofα andN for σ = 1.
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FIG. 12: For five values ofα, plots of the expected values over 10,000 realizations of the square of the first 1000
Fourier coefficients ofu(α,N)(x;ω)− udet(x) plotted against the wave number. Here,N = 1000 andσ = 1.

However, if we examine the power spectra foru(0,N)(x;ω) − udet(x) andu(1,N)(x; ω) − udet(x) given in Fig. 13,
we see that the two spectra match only at frequencies with the highest energy density. The decay rate for higher and
lower frequencies is quite different.

3.3 Nonlinear Two-Point Boundary Value Problem with Additive Noise

The final example we consider is the steady-state nonlinear Burgers equation

µ
d2

dx2
u(α,N)(x; ω) +

1
2

d

dx

[
u(α,N)(x;ω)

]2

= 2µ + 2x3 + η(α)(x; ω), u(0) = 0, u(1) = 1. (27)

10
0

10
2

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

k

E

[

(

∫

1 0
s
i
n
(π

k
x
)∆

u
(α

,N
)
(x

;ω
)d

x

)

2
]

 

 

α = 0
α = 1

FIG. 13: For (σ,α) = (0.49, 0) and(σ, α) = (1, 1), plots of the expected values over 10,000 realizations of the
square of the first 1000 Fourier coefficients ofu(α,N)(x; ω) − udet(x) plotted against the wave number. Here,N =
1000.
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The exact noise-free solution isudet(x) = x2. We takeµ = 0.1 to increase the relative influence of the nonlinear term
uux and setσ = 1. We obtain approximations of the solutionu(x;ω) of (27) via a piecewise linear finite element
method, resulting in

µ
u

(α,N)
j−1 (ω)− 2u

(α,N)
j (ω) + u

(α,N)
j+1 (ω)

∆x
+

[
u

(α,N)
j−1 (ω)− u

(α,N)
j+1 (ω)

] [
u

(α,N)
j−1 (ω) + u

(α,N)
j (ω) + u

(α,N)
j+1 (ω)

]

6

= (∆x)
(
2µ− 1

3
x3

j−1 −
4
3
x3

j −
1
3
x3

j+1

)
+ (∆x)(α−1)/2

[
ξ

(α,N)
j−1 (ω) + ξ

(α,N)
j (ω)

2

]
, for j = 1, . . . , N − 1,

along withu
(α,N)
0 (ω) = 0 andu

(α,N)
N (ω) = 1. This nonlinear system is solved via Newton’s method, using the

deterministic solution as an initial guess. Realizations ofu(α,N)(x; ω)−udet(x) for different values ofα are given in
Fig. 14. In Fig. 15 we provide the values for the variance of

∫ 1

0

[
u(α,N)(x; ω) − udet(x)

]
dx and the expected value

of
∫ 1

0

[
u(α,N)(x; ω)−udet(x)

]2
dx. Once again, we observe that the statistical properties of the solution of (27) have

a strong dependence onα.
In Fig. 16, we also plot the power spectrum ofu(α,N)(x; ω) for N = 1000 and for different values ofα. We

observe significant differences between the power spectra forα < 1 and almost no differences forα > 1. We also see
this from the slopes of the least-squares fits given in Table 5.
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FIG. 14: Pairs of realizations of the approximationu(α,N)(x;ω) to the solution of (27) for a uniform grid having
N = 1000 subintervals and forσ = 1 andµ = 0.1. Top row, left to right:α = 0 (white noise input),α = 0.5, and
α = 1 (pink noise input). Bottom row, left to right:α = 1.5 andα = 2 (brown noise input).
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FIG. 15: The variance of
∫ 1

0

[
u(α,N)(x; ω) − udet(x)

]
dx (left) and the expected value of

∫ 1

0

[
u(α,N)(x;ω) −

udet(x)
]2

dx for the Burger’s equation example (27) withσ = 1 andµ = 0.1.
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FIG. 16: For five values ofα, plots of the expected values over 10,000 realizations of the square of the first 1000
Fourier coefficients of the difference between the approximate solutionu(α,N)(x;ω) and the deterministic (noise
free) solution of (27) plotted against the wave number; here,N = 1,000 andσ = 1.

TABLE 5: Slopes of the curves in Fig. 16 between wave numbers1
and400

α 0.0 0.5 1.0 1.5 2.0
Slope −4.1495 −4.7176 −5.4171 −5.9465 −6.0076

4. CONCLUDING REMARKS

Whereas generating approximations of colored1/fα noise is more expensive than that for white noise (α = 0), we
see that noise is used as inputs to differential equations, resulting in solutions with drastically different properties.
Given that many natural, social, financial, and other phenomena are accurately modeled by1/fα random fields and
given that white noise remains the most popular means for modeling unknown random inputs in partial differential
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equations, the differences the two have on the solution of the equations is worth considering. In this paper we attempted
to illustrate and quantify these differences in admittedly simple settings that are meant to motivate further studies of
the use of1/fα noise in the context of partial differential equations.

For example, it is natural to consider the extension of our study to cases in which the spatial domain is multidi-
mensional and in which there is time evolution as well. An immediate observation is that all the observations about
approximating1/fα over a spatial interval carry over unchanged to a one-dimensional time interval. If the domain is
a product region of time and space, then standard Fourier transform methods allow us to construct a multidimensional
noise function as the product of one-dimensional noise functions; the component noise functions, in turn, are each
defined by a number of sample pointsNi, a varianceσ2

i , and a value ofαi, which are then input to a multiple-FFT
version of Algorithm 1. As far as the FFT computations are concerned, no distinction need be made between time and
space dimensions. On the other hand, there may be good reasons to use different values ofσt andαt associated with
the time-wise noise component from those used for the spatial components.

Some guidance in choosing the components of the noise parameters in two or higher space dimensions can be
gained from considering the one-dimensional case. Suppose, for instance, that a three-dimensional spatial domain is
being considered. Then the instantaneous energy of the noise signal, with parametersαx, αy, andαz, will be the same

as that for a noise signal over a one-dimensional region with parameterα =
√

α2
x + α2

y + α2
z. In the common case

where there is no directional preference for the noise in the spatial dimensions, it is natural to choose common values
of σ2

x andαx for all spatial noise components.
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APPENDIX: MATLAB CODE FOR ALGORITHM 1

We provide the code for the MATLAB implementation of Algorithm 1. Note that because MATLAB does not allow
for zero indices, we have shifted the indices by one. An implementation in C can be obtained at [18].

function [ xi ] = f_alpha ( m, sigma, alpha )
hfa = zeros ( 2 * m, 1 );
hfa(1) = 1.0;
for j = 2 : m

hfa(j) = hfa(j-1) * ( 0.5 * alpha + ( j - 2 ) ) / ( j - 1 );
end
hfa(m+1:2 * m) = 0.0;
wfa = [ sigma * randn( m, 1 ); zeros( m, 1 ); ];
[ fh ] = fft( hfa );
[ fw ] = fft( wfa );
fh = fh( 1:m + 1 );
fw = fw( 1:m + 1 );
fw = fh . * fw;
fw(1) = fw(1) / 2;
fw(end) = fw(end) / 2;
fw = [ fw; zeros(m-1,1); ];
xi = ifft( fw );
xi = 2 * real( xi(1:m) );

end
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