International Journal for Uncertainty Quantificatiodn0(4):351-373 (2020)

YIELD OPTIMIZATION BASED ON ADAPTIVE
NEWTON-MONTE CARLO AND POLYNOMIAL
SURROGATES

Mona Fuhrlinder,”?* Niklas Georg,>* Ulrich Rémer,*> &
Sebastian Schips'?

nstitut fiir Teilchenbeschleunigung und Elektromagnetische Felder (TEMF), Technische
Universitit Darmstadt, Schlossgartenstr. 8, 64289 Darmstadt, Germany

2Centre for Computational Engineering, Technische Universitiit Darmstadt, Dolivostr. 15,
64293 Darmstadt, Germany

SInstitut fiir Dynamik und Schwingungen, Technische Universitiit Braunschweig, Schleinitzstr.
20, 38106 Braunschweig, Germany

*Address all correspondence to: Mona Fuhrladnder, Institut fiir Teilchenbeschleunigung und
Elektromagnetische Felder (TEMF), Technische Universitdt Darmstadt, Schlossgartenstr. 8, 64289
Darmstadt, Germany, E-mail: fuhrlaender@temf.tu-darmstadt.de

Original Manuscript Submitted: 12/20/2019; Final Draft Received: 6/27/2020

In this paper we present an algorithm for yield estimation and optimization consisting of Hessian-based optimization
methods, an adaptive Monte Carlo (MC) strategy, polynomial surrogates, and several error indicators. Yield estimation
is used to quantify the impact of uncertainty in a manufacturing process. Since computational efficiency is one main
issue in uncertainty quantification, we propose a hybrid method, where a large part of a MC sample is evaluated with
a surrogate model, and only a small subset of the sample is reevaluated with a high-fidelity finite element model. In
order to determine this critical fraction of the sample, an adjoint error indicator is used for both the surrogate error and
the finite element error. For yield optimization we propose an adaptive Newton-MC method. We reduce computational
effort and control the MC error by adaptively increasing the sample size. The proposed method minimizes the impact
of uncertainty by optimizing the yield. It allows one to control the finite element error, surrogate error, and MC error.
At the same time it is much more efficient than standard MC approaches combined with standard Newton algorithms.

KEY WORDS: adaptivity, failure probability, Monte Carlo, polynomial surrogates, stochastic optimiza-
tion, stochastic sparse grid collocation, uncertainty quantification, yield analysis

1. INTRODUCTION

There are many applications where uncertainty quantification and optimization under uncertainty is important. Un-
certainty in the manufacturing process may lead to deviations in the design parameters, i.e., geometrical or material
parameters, which may lead in turn to rejections due to malfunctioning. In this context, malfunctioning means that
pre-defined performance feature specifications are not fulfilled. In order to quantify the impact of uncertainty we
define the yield according to [1] as the percentage of functioning realizations in a manufacturing process. Thus, yield
is mathematically equivalent to the concept of reliability and the relation between yield and failure probability is
given in the formyield = 1 — failure probability The topic of yield optimization is motivated by high-frequency
electromagnetics and circuit design.

In general, it is not possible to carry out yield calculations exactly. Hence, many algorithms have been introduced
to this end and the Monte Carlo (MC) method is probably the most popular one [2]. The main challenge of yield
estimation is its high computational cost, since it requires numerous evaluations of the underlying model. In prac-
tice, these models are often given by partial differential equations (PDE) of high complexity and can only be solved
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NOMENCLATURE
Ap . general system matrix Nyt initial size of the MC sample for adaptive
Ag . Hermitian transpose A, ;. yield optimization
Ay system matrix of waveguide model Ny updated size of the MC sample in
a waveguide width adaptive yield optimization
b waveguide height NG old size of the MC sample in adaptive
c upper bound to define the performance yield optimization
feature specifications Np number of uncertain input parameters
D computational domain Nsc number of interpolation nodes
E’ test functions Na, number of accepted sample points
E, electric field phasor n outer unit normal vector
En° incident wave phasor (excitation) p vector of uncertain input parameters
Ew.n finite element approximation &, (p=[p1, - Pny))
Ey amplitude of incident wave pi realization of the input parameter
El§ fundamental transverse electric mode vectorp
ew vector of degrees of freedom p® interpolation nodes
ew,j degree of freedom Dj uncertain input parameter
ey unit vector iny-direction P1, P2 length of the inlay, length of the offset of
eff computational effort for yield estimation the waveguide
or optimization p3,...,p12 Material parameters of the waveguide
err error of the yield estimator compared D mean value of the uncertain input
to the reference solution parameter vectop
f frequency Po mean value of the starting point for yield
f. general discrete right-hand side optimization
fo discrete right-hand side of waveguide modpl, mean value of the considered point for
gr forcing term yield estimation
H(curl, D) complex function space of square integrabfs,_ mean value of the accepted sample pojnts
functions with square integrable curl ﬁszs MC approximation of the mean value of
h mesh size for FEM the accepted sample points
inc incremental factor for the adaptive Newtonpdf probability density function
method Q quantity of interest
j imaginary unit Qn finite element approximation of quantity
K stiffness matrix of interest
k.10 propagation constant q parameter for angular condition in
Lo » parametric differential operator Newton method
L5, adjoint operator of.p, , (¢r,)D general linear functional defining the
LE(D) complex function space of square integrable quantity of interest
functions onD (dr,-)crn  general discrete linear functional defining
L>(D) complex function space of essentially the discrete quantity of interest
bounded functions o (dw, -)cmn  discrete linear functional of the
M:e mass matrix waveguide model
Mport system-matrix contribution stemming fromy range parameter
port boundary conditions 5 range parameter point
N; second order, first kind &Elec basis S scattering parameter of the fundamental
functions transverse electric mode aip;
Ny, number of degrees of freedom Sh finite element approximation of
Nue size of the Monte Carlo sample s safety factor
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NOMENCLATURE (continued

search direction in the-th step of the
Newton method

T, range to define the performance feature = image space of uncertain parameters of
specifications waveguide model
Ty discretized range to define the performancer, 7t tangential trace operators
feature specifications b)) covariance matrix of the uncertain input
Uy solution of the model problem parameter vectqgp
u, discrete primal solution Y0, covariance matrix of the accepted sample po
Vv function space defined in Eq. (20) Yo MC approximation of the covariance matrix
Vi finite-dimensional subspace bf of the accepted sample points
w weight function oF step size in thé-th step of the Newton methog
Y yield oy standard deviation of the yield estimator
Yuc MC estimator of the yield Oymax Upper bound for the standard deviation of the
YRet reference value of the yield for numerical yield estimator
tests T relaxation time
VpYpg gradient of the yield according to differentiadp,; global polynomial basis functions
quotient @1, @2 parameters for angular condition in Newton
VsYs  analytical gradient of the yield according method
to Eq. (12) w angular frequency
Zy general discrete dual solution 01,03 domain of the vacuum of the waveguide
Zw discrete dual solution of waveguide model (), domain of the dielectrical inlay of the
waveguide
Greek Symbols Qs safe domain
o coefficients for stochastic collocation
B parameter for Armijo rule in Newton methodther Symbols
I'p1, I'p2, waveguide ports X stochastic collocation approximation of a
I'pec waveguide walls function X
Y parameter for Armijo step size in Newton 71 trusted interval (with estimated FE and SC
method error)
5 step size for differential quotient 72 trusted interval (with FE error)
Efe finite element error #HF, number of high-fidelity (FE) evaluations with
€sc stochastic collocation error grid refinement

E':07 £I‘
Ho, tr

vacuum and relative permittivity
vacuum and relative permeability

numerically, with the finite element method (FEM), for instance. Since each high-fidelity evaluation with FEM itself
may be computationally challenging, a standard MC analysis becomes rapidly prohibitive due to limits of computa-
tional and/or time resources. In this paper we present a hybrid approach for yield estimation combining the efficiency
of stochastic collocation (SC) with the accuracy of MC for probability estimation. We then present an algorithm for
yield maximization, based on a globalized Newton method.

The classical MC approach consists in sampling the original high-fidelity model, i.e., the highly resolved random
finite element (FE) model. The efficiency of this approach is independent of the number of uncertain parameters and
the method does not suffer from the “curse of dimensionality.” Still, the sample size required for accurate estimation
can be quite large [3]. There is a lot of research on reducing the computational effort of failure probability or yield
estimation. The common goal is to reduce the number of high-fidelity evaluations. There are sampling-free methods
such as the first-order reliability method (FORM) or the second-order reliability method (SORM). These methods
determine the most probable point, which is the closest point from the parameter domain origin to the separating
surface between the failure region and the safe region, and employ approximations of the limit state function around
this point [4,5]. Investigations in the context of sampling have led to a sample size reduction, e.g., through importance
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sampling [6] or subset simulation [7,8]. Alternatively or complementarily, the computational effort has been reduced
for each sample point, e.g., with surrogate based approaches. In these surrogate methods an approximation (surro-
gate/response surface) of the original model is built using high-fidelity evaluations of a small training set, followed by
MC sampling of the surrogate model [9]. In order to build the surrogate different methods have been employed, e.g.,
linear regression [10], Gaussian process regression [11], or SC [12]. In [13] a combination of two surrogate models,
Gaussian process regression and SC is proposed. However, the accuracy of the surrogate depends on the size of the
training set and the number of uncertain parameters. For a large number of uncertain parameters, the computational
costs can exceed the costs for MC [14]. Furthermore, as shown in [15], there are examples where the surrogate model
is highly accurate, measured by classical norms or pointwise, but the yield estimator fails drastically. In [15] a hybrid
approach is proposed. Sample points which are close to the limit state function are evaluated based on the high-fidelity
model; for all remaining sample points the surrogate model is used. Here, the assessment of whether @qsant is

to the interface between failure and safe domain is crucial for the accuracy and the efficiency of the algorithm. To
this end, a method using an adjoint error indicator has been presented in [16]. Yield optimization has been carried out
in [1], where a Newton method for optimization was presented, which was combined with the standard MC method.

In this paper, we present an algorithm for efficient yield estimation and optimization. For yield estimation we
propose a hybrid approach similar to [15,16]. Contrary to the approach presented in [15] we use an adjoint error indi-
cator to identify the aforementioned critical MC sample points. Also, contrary to [16] we build a polynomial surrogate
model based on SC. Furthermore, we consider the FE error in addition to the surrogate error as a hybrid distinction
criterion. If required, we refine the FE model for a subset of sample points. We then integrate this hybrid approach
into the yield estimation and optimization framework. The optimization algorithm proposed in this paper is based on
a globalized Newton method reported in [17]. For yield estimation, which is necessary in each iteration, we use our
previously mentioned hybrid method, and during optimization we adaptively adjust the MC sample size. To the best
of our knowledge, these are new elements in the context of yield optimization and we call the resulting algorithm
adaptive Newton-MC. It achieves anpriori defined accuracy of the result and significantly reduces computational
effort. Furthermore, we show the applicability of the presented estimation and optimization approaches to problems
where the performance feature specifications are restrictions involving partial differential equations describing elec-
tromagnetic fields, i.e., Maxwell's equations in frequency domain.

This paper is structured as follows. After setting up the problem in Section 2, in Section 3 we will focus on yield
estimation. We briefly review standard MC and SC. We then present the hybrid approach combining the two previous
ones. In Section 4 we propose the new adaptive Newton-MC method for yield optimization, including the numerical
algorithm. Numerical results for the application of electromagnetic field simulation are presented in Section 5 before
the paper is concluded in Section 6.

2. PROBLEM SETTING

In this paper we consider a PDE with uncertainty in the input data. Details on the differential operator, geometry and
boundary conditions will be postponed to the Section 5.1, which allows us to focus on the main algorithmic aspects
for yield estimation and optimization. The starting point is the parametric model problem

Lprur(p) =g, in D, 1)

whereL, .. is a linear parametric differential operatgy, is a forcing term,D c R¢ is a simply connected bounded
domain,p € R™» is the input parameter vector, ands the range parameter. The range parameter may refer to
frequency or to a temperature, for instance, which are not affected by uncertainties. We assume that the problem is
well-posed for allp and thatp — u(p) is @ smooth function, which is often reasonable for parametrized differential
equations; see [18] for the case of elliptic problems and [19] for other problem classes, for instance. Design objectives
are frequently expressed through global quantities, which are modeled in our case as linear functionals of the solution.
More precisely, we introduce a quantity of interest (QOI) as

Q(pa T’) = (qra UT(p))D7
whereq, € L?(D) andL?(D) denotes the space of complex square-integrable functions with inner pfedist
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A FE approach leads to the linear parametric system

Ap7TuT(p) = fT7 (2)

whereA ;. € CN»xNr denotes the system matrix ang the number of degrees of freedom. We denote with the
interpolated discrete FE solution, without explicitly introducing the underlying polynomial FE space. Furthermore,
we define the discrete linear Qol by

Qh(pa T’) = (qm uT‘)CNh, ) (3)

where(-, -)cw~, refers to the finite-dimensional inner product.

We assume that the uncertainties originate in the manufacturing process which lead to deviations in the design
parameters. These uncertainties are often classified as aleatory. The setting could be generalized by interpreting the
computed yield to be conditioned on epistemic uncertainties and by further quantifying these uncertainties as outlined,
for instance, in [20,21]. However, since the focus of the present work is on adaptivity and error control in the context
of yield estimation, this will not be considered here. The percentage of functioning realizations in mass production
is called the yield [1]. To give a mathematical definition, we mgplels a randondesign parametevector, with
independent distributed elements j = 1, ..., N,. Typically thep; are assumed to follow a normal distribution, i.e.,

p; ~ N (pj, 0;) with mean valug; € R and standard deviation; € R and probability density function

L o (wmeo?).
2 0%

Py (5,0,) =

Then, the uncertain parametprfollows a multivariate normal distribution, i.ep ~ N (p, X) with mean value
p € R¥» and a diagonal covariance matdxc R¥»*"e and probability density function

1 o 1/2((p-5)= " (p-B))

(var) " vass

The normality assumption may be justified by the central limit theorem in the presence of averaging processes. Note
that, in order to simplify notation, we do not distinguish between a random vector and its realization, whenever there
is no confusion in a specific context. Following [1] we further defimarsge parameter € T, = [r1,72] and the
performance feature specification

pdfy .5 =

Qp,r)<cVreTl, (4)

wherec is a constant and) the Qol introduced above. Note that, without loss of generality, we defined the perfor-
mance feature specification with an upper bound. For the sake of notation simplicity, we consider only one. This may
be read component-wise, as is usual in optimization.S&fe domairf) is the set of all parameters, which fulfill the
performance feature specifications, i.e.,

Qs:={p: Q(p,r) <c VreT.}.

Then we can express the yield as

Y(p) i~ Elto.(p)] = | T / " loy(p) Py 5.5, (0) dp, (5)

whereE denotes the expected value dhg(p) the indicator function defined by

1 peq
To.(p) = {O else )

Note thatp will be a design parameter during optimization, whereas the covariance is fixed, which is taken into
account by our notation in Eq. (5).
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3. YIELD ESTIMATION

We proceed by describing a numerical method for yield estimation. The starting point will be a brief description of the
MC method, followed by an outline of surrogate modeling based on SC. The section will conclude with a description
of a hybrid MC method.

3.1 Monte Carlo

The most straightforward approach in order to estimate the yield, i.e., compute the integrals of Eq. (5), is a MC
analysis [2,22]. In a MC approach, we consider a large number of independent random variables, distributed in the
same way ap. The set{pi}ﬂf, where eaclp; represents a realization of the corresponding random variable, is
called a sample anyic represents the sample size. At each sample pginte evaluate the high-fidelity FE model

and count the sample points, which fulfill our performance feature specifications. Then we obtain a yield estimator as

# sample points ifg

Y(p) ~ Yue(p) = sample size
or, equivalently,
Nwmc
Yuc (P N Z]IQS Pi).- (6)

MC estimation is based on the law of large numbers, WhICh ensures convergenggfes oo under mild regularity
assumptions on the integrand. Since in practice, the sample size is always finite, we need to estimate the associated
error. To this end, we use an error indicator from [3]. An estimator of the approximated yield variance is derived as
follows. Since all observations are independent, we obtain

Nwc
V[Yumc(P) N2 VY o (pi ]
MC i=1
Nwuc
o > Vllo, (o)
MC i=1
1 _ _
= TNMCY(p)(l - Y(p))
NMC
_Y(P(L-Y(p)
Nmc ’
where the expectation and variance are now defined with respect to the i.i.d. observations. Then, we derive the standard
deviation of the yield estimator as
Y(p)1-Y(p)) _ 05
oy = < . 7
v \/ Nue ~ VNumc ")

The standard deviation depends on the size of the yield. Its maximum is attained for a yield of 50%, which yields the
upper bound for the standard deviation given in Eq. (7). Since the MC estimator is unbiased, the variance is equal
to the mean-square error. In view of Eq. (7), this approach guarantees a high accuracy for a large sample size, but it
converges slowly witl© (1/\/NMC). In many cases this is unaffordable due to the large number of expensive function
evaluations required [3].

3.2 Stochastic Collocation and Error Estimation

To reduce the computational complexity of sampling the underlying FE solver, surrogate models can be employed.
Based on the assumption that a m&p: RVr x T, — C (where X might refer to the QolY;, for instance) is
well-defined and sufficiently smooth, we denoteXythe surrogate approximation defined by
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Nsc

=3 a(r)@:(p), ®)
i=1

where Nsc is the number of interpolation nodeB; : RV» — R are multivariate global polynomial basis functions
with respect top, andw; : 7, — C denotes the corresponding coefficients. Such a construction is appealing, as
spectral convergence with respect to the polynomial degree can be expected [23]. In this work, we compute such
approximations based on the SC method [18,24]. In particular, the surrogate model is obtained by evaluating (2) for
a set of multivariate interpolation nod@p(i)}f\fg_l and enforcing the corresponding collocation conditions on the
surrogate model. The choice of the multivariate nopl€s is crucial for the efficiency of SC. To this end, we first
consider the tensor grid of univariate interpolation no@eié)}i X {p;”}i X ... X {pM} Employing all points of
the grid is computationally intractable for many parameters. Sparse—grids [25] are a viable alternative, where a subset
of points, which do not significantly contribute to the approximation accuracy, is neglected. In this work, we use
an algorithm proposed in [26, Algorithm 2], which constructs the sparse-grid adaptively. For the convenience of the
reader, we recall the main ideas in the following.

The algorithm is based on weighted Leja nodes [27] which are defined recursively by an optimization problem;

i.e., univariate weighted Leja nodéﬁﬁ)}i C R are obtained as

Pl = arg maX\/mH [pm — P
pmER
where the weight functiom(p,,) is typically chosen as the probability density function of the corresponding input
parameter; i.ey(p,,) = pdfy 5 o,y and for the first node we sgig) = 0. Leja nodes are well suited for adaptive
approximations in higher dlmensmns since they are, by construction, nested and allow for a granular refinement [27].
To steer the adaptive selection of the corresponding multivariate nodes, an adjoint error indicator [28,29] is employed.
To this end, we introduce the dual problem to Eqg. (2), which is given by

AL -2 (P) = qr,

where A* denotes the Hermitian transposeAf In addition to the polynomial approximation of the Q@},, we
construct polynomial approximations of the mappings : RV» x T; — C, where the same collocation points as for
the Qol are employed, cf. [30]. The resulting approximations are denotedza¥Ve are then interested in the error,

esce(p, 7 ‘Qh p.r) — Qu(p,7)
|(q7 ur(p )m (ar, 0 (P)) o,
= [(z+(p), Ap.r ur(p))cNh, — (20(p), Ap,r ﬁr(p))CNh, |
= | (2 ( prur(p))cNh|' (9)

The evaluation of Eq. (9) would always require the computation, éfe., the solution of the high-fidelity adjoint
problem. Hence, following [30], we employ the error indicator,

€sc(ps7) = |(ir(p), f, —Apr ﬁr(p))CNh . (10)

It should be noted that, under mild assumptions, cf. [26,28], the error ocurring wiemneplaced withz is of
higher-order. The error indicator is then used to select interpolation nodes which are admissible for refinement of the
approximations until a given computational budget is reached and the algorithm terminates. For further details on the
employed adaptive sparse-grid interpolation scheme, we refer to [26]. Once an accurate surrogate model is available,
it can then be used as an inexpensive substitute of Eq. (3) for an extensive MC analysis (6).

Adjoint techniques can further be used to estimate the FE error following [31,32]. However, in this case, the
continuous adjoint equation is required, which reads

L, .z(p)=¢q InD,
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whereL;, . denotes the adjoint operator with respect to the inner pradugh . With this notation at hand, we derive
the following identity for the FE error:

|(qr,ur( ) un;(P))p|

= [(L} 20 (P), ur(P) — unir (P)) D

= |(z(p), pr(ur(p)_uh;r(p)))D|
= [(2-(P); 9r — Lp+tn:-(P))D|-

A computable expression can only be obtained if the adjoint is replaced with a FE approximation. However, we
cannot simply employ;,., as it is orthogonal to the residual. Hence, a higher-order adjoint is required for the FE
error, contrary to the surrogate error (10). A discussion can be found in [28]. Hence, we approximate the adjoint
solution on a refined grid, but other options, such as higher polynomial degrees or recovery techniques [33], are
equally applicable.

Finally, an error identity comprising both SC and FE contribution is obtained as

Q(p,r) — Qn(p,r ‘Q p,7) — Qu(p, 7 ’Qh p,7) — Qn(p;7)
~ ‘ Zh/Z;r( )s Gr — Lp,ruh r ) | + |(Zr ), £ — Agp ﬁ'r(p))CN}L . (11)

The second term is immediately identified&s(p, ), which uses the surrogate approximati@nép) anda,.(p),

and can therefore easily be evaluated fopalHowever, the first term is identified as a computable approximation to
(P, r), Which we use, along with Eq. (8), to build the surrogate approximatigip, ). The separation of the FE

error and the SC error by the triangle inequality is a rather conservative choice to define the total error. We come back
to this point at a later stage. We note, that the combined estimation of deterministic and stochastic discretization errors,
has, for example, also been considered in [29], in the context of the stochastic Galerkin method for time-dependent
forward and inverse problems.

efe(pv )

(
) —

3.3 Hybrid Approach

The number of collocation point¥, for which the high-fidelity FE model needs to be solved, depends on the number

of uncertain parameters and the polynomial degree the surrogate model is supposed to have. This number grows
rapidly with the number of parameters (“curse of dimensionality”) [34]. For adaptive sparse grids the required FE
solver calls can be reduced significantly. However, we know from [15] that yield estimation may produce erroneous
results even though the surrogate model may be highly accurate.

The aim of the hybrid approach is to restore the accuracy of the MC method while relying on surrogate modeling
as much as possible to enhance the numerical efficiency. We propose a particular hybrid approach, which is an
extension of the one presented in [15]. The main difference lies in the selection of sample points which have to
be reevaluated with the high-fidelity model. These points are referred to as critical sample points in the following.
In [15] a tube around the boundary of the failure domain is defined, where the tube size is either fixed in advance,
or determined iteratively by an algorithm which adds critical samples points until some error bound is satisfied. In
comparison to [16] the method we propose is using SC with Leja nodes as a surrogate model (see Section 3.2). Also,
in addition to the surrogate model error (SC error), we also consider the FE error in order to determine the critical
sample points. Both error contributions are estimated by the adjoint error indicator, according to Eq. (11).

In the following we assume for simplicity of notation the Qol to be real valued. Our procedure is summarized
in Fig. 1. The first step is to build a surrogate model and to carry out a MC analysis with it. Then, we use an adjoint
error indicator to quantify both the FE and surrogate error as

ésc(pi,”‘j) and éfe(piﬂ"j) Vi = 17. . .7NM(:, V] = 1, Ceey |Td|,

whereTy is a discrete subset @f.. We then verify whether the approximated Qol value, taking into account the
aforementioned errors, meets the requirements. To this end, we define the interval

I (piry) = [Qh(pi; r;) = 8(EsePis 1) + Ere(Pis75)), Qu(Pis 1) + s(Ese(pis75) + éfe(piarj))}v
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Monte Carlo on surrogate model = get Qh(pi,v"j), r; € Tg

\

Estimate SC error and FE error with adjeint error indicator = get €u (P4, ry) and Ew(p;, ry)

; Not accepted\ o :
Accepted sample points / ot s Critical sample points

FEM = Qh(Pi, ’."j)

/ \

Decision Refinement

z Qs
P = P §é Qs

FIG. 1: Scheme of the hybrid approach

wheres > 1 indicates a safety factor. If the performance feature specifications are fulfilled (or not fulfilled) for the
whole intervalZl, we can classify the sample poipt as accepted (or not accepted). If the performance feature
specifications are fulfilled only for a subset of the intetal we classify the sample point as critical.

For all critical sample points the high-fidelity FE model will be evaluated; hence, we abidiy, r;). For these
points, the surrogate error is zero, however, the FE error remains unchanged. The new interval we have to examine is
given by

T2(pi,r5) = [@n(pirrj) — s(0+ Ere(pis 75)), Qu(Pi 1) + s(0+ Ere(pi, 75))]-

Applying the same rules as above, the sample points are again classified eidlceeptedor not acceptedif the

sample point is not identified as critical, we continue with the next sample point. Otherwise, we refine the mesh of the
FE model and reevaluat@y, (p;, ;) and the FE erroel(p;, ;). We continue this procedure until the sample point

is not critical anymore or a maximal number of refinement steps is reached. In this manner we obtain an accuracy
comparable to the pure MC approach, using the finest refinement. The only difference would occur for sample points
whose errors were greatly underestimated with the adjoint error indicators and which were therefore wrongly accepted
or rejected instead of being classified as critical sample points. The decision process for one sampleipoims

range parameter poin} is reported in Algorithm 1.

The following paragraph is dedicated to the choice of the safety faciine FE error indicatoés(p;, r;) and
the SC error indicatogsc(p;, ;) defined in Section 3.2 are not strict upper bounds. Therefore, we introduce the
safety factor. To determine the size of the safety factor, we generate a small random sample and evaluate it on the
surrogate mode@h(ph r;) and on the original mod&);, (p;, ;) (with the finest mesh examined). Next we consider
the maximum of the ratios dte(p;,7;) + €sc(pi, ;) and|Qn(pi, rj) — Q;L(pi,rj)| to derive the safety factor. As
with the computation of the total error (11), we choose the safety factor rather conservatively. This may result in
too many sample points being classified as critical, thus increasing the computational effort of the hybrid approach.
However, it avoids the misclassification of sample points and thus leads to a higher accuracy. Here, the safety factor
has been setto= 2.

The performance feature specifications have to be fulfilled for allT)., or at least for all test range parameter
pointsr; € Ty. Thus, if one sample poin; fulfills the requirements for a specific range parameter point, the test
needs to be carried out for the remaining range parameter points as well. Howpy#&ajls to fulfill the requirements
for a single arbitrary range parameter point, it is immediately classifiewtacceptedThereby, we can avoid the
computational effort of evaluating the remaining range parameter points. This strategy is also applied for the standard
MC method and the SC surrogate-based MC method. In the hybrid method we can further benefit from the fact that
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Algorithm 1: Hybrid decision
1: Input: sample poinp;, range parameter poinj, safety factor
2: Evaluate surrogate model and set
Q= Qh(sz Tj)
€= ésc(piﬂ"j) + éfe(piarj)
3: while max. refinement not reacheld
4: ifQ—se>cthen
5: classifyp; asnot acceptedi.e.,p; ¢ Qs (middle picture in Fig. 1)
continue with next sample poit; ;1

6. elseif@ + se < cthen
7: sample poinp; accepted for this range parameter paint
8: if all r; checkedhen
o: classifyp; asacceptedi.e.,p; € Qs (left picture in Fig. 1)
continue with next sample poiipt; | ;
10: else
11: check next range parameter poifit
12: end if
13: else
14: sample poinp; is critical
15: if first loopthen
16: Evaluate FE model and set
Q = Qn(pi,Ty)
€ = €r(Pi;7j)
17: else
18: Refine the mesh with = h/2
Evaluate FE model and set
Q = Qun(pi, Tj)
€= é?e(ph Tj)
19: end if
20.  endif
21: end while

22: if sample poinp; still critical with last refinementhen
23: classifyp; according taQ with the finest mesh intacceptedr not accepted
24: end if

we know the SC results for the Qol. As the performance feature specification is defined as an upper bound, we assume
that for larger values af), (p;, ;) itis more likely thatQ),, (p;, r;) does not fulfill the requirements. Hence, we order
the range parameter points according(p;, ;) and start examining the range parameter point satisfying

arg maxQn, (pi, 75)-
rj €Ty

In total, three different errors have to be considered within the yield estimation process: the MC error, the FE
error, and the error of the surrogate model, in our case the SC error. The hybrid approach proposed in this paper takes
into account the surrogate and FE error. The FE error depends on the refinement of the mesh. Instead of evaluating
the entire MC sample (or all critical sample points in a hybrid approach) with the finest mesh, we start with a coarse
mesh, calculate the error indicator and refine the mesh if necessary. Thereby, the FE error is controlled and reduced
if required and unnecessary computational effort avoided. The SC error is controlled by calculating an adjoint error
indicator after building the surrogate model. If the sum of both indicators is too large, a sample point may be classified
as critical. In this case, we evaluate the FE model and the associated SC error vanishes. In order to control the MC
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error, we define a target accuracy by a maximum value of the standard dewatiand determine the minimum
sample size needed by Eq. (7).

4. YIELD OPTIMIZATION

4.1 General Newton Approach

The idea of yield optimization is to change the mean value of the uncertain parametgt, ineoyder to maximize
the yield. We can formulate the optimization problem as follows:

maxY max / / Io,(p) pdfy (5, =) (P) dp.

Let the uncertain parametprbe modeled as a normally distributed random variable. Then, since only the probability
density function of the uncertain paramegedlepends on the optimization varialgiefrom Eq. (5) we can derive the
gradient and the Hessian of the yield according to [1]. To this end, we first introduce the mean and covagiance of
conditional to the evenp € €, given as

Po, = Epar,, [P / / p pdf,_(p) dp,

S0, = Epdt,, [(P — Pa,) (P — Do)
/ / (P—Pa.) (P— Psz) pdfo (p) dp,

where 1
pdfe, (p) = Y®) Lo, (p) pdfy 5 ) (P)-

These conditional moments can be estimated by

A Nuc

ﬁQS N Z]IQS pl Pi,

. 1 Nuc R T

Yo, = Lo (pi) (Pi — P i —Pa,) >
S Z; 0.(pi) (Pi — Po,) (Pi — Do)

wherep;,i = 1, ..., Nyc are independent observations of the random variptd@d N, indicates the number of
sample points within the safe domain. Using these formulations, the gradient and the Hessian of the yield with respect
to p can be written as

[ [ 5 0) TPty (P o = Y (B 2 (B, ) (12)
/ / Io,(p) Vapdfy s 5 (p) dp
P) =7 (Za,+ (Po, —P) (Po, —P)' — =) =74 (13)

A detailed derivation can be found in [1]. It should be mentioned that we first differentiate and then discretize. Hence,
this gradient does not necessarily coincide with the gradient obtained by differentiating after discretization.

The fact that we have given the gradient and the Hessian in analytical form allows us to use a Hessian based
optimization algorithm, such as the globalized Newton method [17] as proposed in [1]. A pseudo code is given in
Algorithm 2. The associated parameters have been set as follows:

1 1

Bzfa Y=

1
= o=@y =107% g= —.
2 1007 Q1 Q2 y 4

10
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Algorithm 2: Globalized Newton method
1: Input: Starting poinp? € RV», g € (0,1),y € (0,1), 91,02 > 0,4 >0
2: Output: Optimal solutionp™*
3: while VY (p*) # 0and||p* —p* | > 0do

4:  Calculated” by solving Newton's equatiok?Y (p*)d* = —VY (p*).

5:  if “Calculation ofd* possible”and —VY (p*)d* > min(¢1, ¢o||d*||*) Hd"?H2 then
6: Set search directiost = dF.

7. else

8: Set search directiost = —VY (p*).

9. endif

10:  Determine step size with Armijo rule, i.e., search for largese {p°, p*, 2, ...}
such thatY (p* + o¥s*) — Y (p*) < a*yVY (p*)s".

11:  Setp**! =p* + oFsF andk = k + 1.

12: end while

In this paper we assume that all uncertain parameters are optimization variables and vice versa. Little modifi-
cations in the algorithm also cover other cases. Additional deterministic optimization variables would appear in the
indicator function. Thus, the analytical formulation of the gradient (and the Hessian) does not hold. Instead a finite
difference approximation can be used or a negligible uncertainty (noise) can be assigned. If, instead, there are uncer-
tain parametersi, which are not optimization variables, they have to be considered during yield estimation, which
can be achieved by setting = [p, u]T. Nevertheless, during optimization we only ysee.g., to calculat&, p,_,

EQS, etc.

4.2 Adaptive Newton-MC

The size of the MC sample is crucial, not only for accuracy but also for the efficiency of the algorithm. According
to Eq. (7), for yield estimation we can use the MC error indicator to determine the sample size depending on the
desired accuracy. For yield optimization, the situation is more involved. The accuracy of yield estimators at interme-
diate steps of the Newton algorithm is not essential to obtain a satisfying final result. In each individual iteration, it
is sufficient to obtain a gradient that indicates the right direction. The stochastic gradient approach also deals with
approximated or inexact gradients, used during the optimization process; see [35], for example. However, our ap-
proach uses more sample points than usual in the stochastic gradient approach, but we also calculate the objective
function with the reduced sample. Only towards the termination of the algorithm, a very accurate gradient may be
decisive to accurately determine the optimal solution. Our algorithmic construction ensures that the high, predefined,
accuracy requirements at the final stages of the algorithm are fullfilled. More precisely, we propose the following
adaptive Newton-MC approach. The optimization method is based on a globalized Newton method, as described in
Algorithm 2. We start with a very small sample size and proceed with d&stinitial Newton iterations. If no further
yield improvement is observed during the iteration process, the globalized Newton method described in Algorithm 2
would stop. Here, instead, we increase the number of MC observations until an improved yield is observed or a target
accuracy is reached, then we start the next Newton iteration. Only when the target accuracy has been reached and the
yield is not improving anymore, the algorithm terminates.

A pseudo code for the adaptive Newton-MC is given in Algorithm 3. First, we need to define a target accuracy
in form of a maximal standard deviati@n .« for our terminal solution. Furthermore, we have to define the size of
the initial MC sampleVg2"and an incremental factor ine 0 such that

N = N& + inc Ny

The sample size is increased until the target accuracy is reached (see line 14 in Algorithm 3), and the standard
globalized Newton method terminates because no further yield improvement can be obtained,; i.e., the difference
betweerp” andp”~! tends to zero (see line 15). In line 3 we can see the rules for a sample size increment. This loop is
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Algorithm 3: Adaptive Newton-MC

1: Input: Starting poinp® € RV, max. std.oy max, Starting sample siz&3a" g € (0,1),v € (0,1),
©1,92>0,¢>0

2: Output: Optimal solutionp™

3: while VY (p*) # 0and |[p* —p**|| > 0do

4:  Calculated” by solving Newton’s equatioR2Y (p*)d* = —VY (p*).

5. if “Calculation ofd” possible”and —VY (p*)d* > min(e1, @2/ d*||*) Hd"TH2 then
6: Set search directiost® = d*.

7. else

8: Set search directiost = —VY (p").

9. endif

10:  Determine step size with Armijo rule, i.e., search for large'se {p°, pt, p2, B3}

such thaty (p* + o*s*) — Y (p*) < ckyVY(ﬁ’“)Tsk, else set* = B3.
11:  Setp**! =p" 4 oFsF andk =k + L.
12: end while
13: Calculate standard deviatian =
14: if oy > Oy, max then
15:  while 0y > Oy, max and |Y (P*) — Y/ (P")| < 0y, max dO

Y(1-Y)
Nwuc

16: Increase sample siZ€Y = Nyc + inc N3at
17: CalculateY’ (p*) andoy- with N,
18: SetNyc = N,u%w-

19: end while

20:  SetY (p*) =Y'(p").
21:  Go back to line 3.

22: else

23:  Stop withp* = p*

24: end if

activated, if the two previous mentioned conditions are fulfilled. Then, we increase the sample size stepwise (see
line 16) and reevaluate the yield with the new siZ€p*) and its new standard deviatian, (see line 17). Note
that in order to estimati”’(p") it is not necessary to evalual}2 new sample points. Only the ifé:a" additional
points have to be evaluated and can then be fused wittVifeold points to obtain the new yield estimator. This
procedure is repeated until the new standard deviatipnreaches the target accuracy (i®y; < oy max) Of the
improvement of the yield is large enough (i.e., the difference between the actuaY)(iéﬁj and the yield with the
increased sampliny” (ﬁk) is larger than the target accurasy max). In that case we start a new iteration of the
Newton algorithm, with updated yield and sample size (see line 21). If the target accuracy is fulfilled after a regular
Newton procedure (after line 12), the algorithm terminates (see line 23).

The parameters are chosen as for Algorithm 2; additionally we set the maximal standard deviation, the starting
sample size, and the incremental factor as follows:

Oymax = 0.01, Nj2"'= 100 inc=1.
Another difference in comparison to Algortihm 2 is that we bound the number of Armijo backward steps. If the
inequality in line 10 is not fulfilled after three steps, we skt= 33 and proceed with the next iteration.
5. NUMERICAL RESULTS

We apply the methods for yield estimation and optimization discussed in the previous sections to a benchmark prob-
lem in the context of electromagnetic field simulation. In particular, we employ the model of a rectangular waveguide
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with a dielectric inset, similarly to the one used in [36]. This model is well suited for validation purposes, as a closed-
form solution is available [37]. Additionally, it fulfills the assumption of a smooth input-to-output behavior made in
Section 3.2. In the following, we first introduce the problem setting before numerical results for yield estimation as
well as yield optimization are presented.

5.1 Problem Setting

Starting from the time-harmonic Maxwell’s equation on a computational domainR3, one can derive the curl-curl
equation,
Vx (uVxEy) - w%E, =0 inD, (14)

to be solved for the electric field phasBy,, wherew denotes the angular frequengy,= 1o € L (D) the
dispersive complex magnetic permeability, ane e.¢q € L°°(D) the dispersive complex electric permittivity, with
the vacuum permeabilityy and the relative permeability,, respectively vacuum and relative permittivily and
¢;. Further we have assumed the absence of charges and source currents. Relating (14) to the general problem (1)
introduced in the beginning, we note that the angular frequancgrresponds to the range parameter

The boundary of the domaib is split into three parts, i.e9,D = I'pgcUT'p1 UT'py, Since we consider the model
of an electric waveguide with two port%;, I'px and assume perfect electric conductor (PEC) boundary conditions at
the waveguide walls, i.e.,

nx E, = 0 on I'pec (15)

At the waveguide portEp;, I'po We impose lowest-order waveguide boundary conditions [38, Chapter 8.5],

n x (v X Ew) — jkzlo(n X Ew) Xn= —ijzj_oEiSJC on I'py, (163)
n x (v X Ew) — jkzlo(n X Ew) xn=0 on I'py, (16b)

wheren denotes the outer unit normal vector ahthe imaginary unit. The propagation constapi, is given by

k.10 = \/w2poeo — (m/a)2, where, in turng denotes the width of the waveguide, as depicted in Fig. 2. According

to [39], the boundary conditions (16) can be derived based on the assumption that the rectangular waveguide is excited
atT'p; by an incident Tk wave,

inc TE —jk.102 : TE._ .. (7L
ELU = EOEloe Jh=10 W|th ElO = Sln(?)ey,

whereE) refers to the amplitude of the incident wave andlenotes the unit vector in thedirection. Additionally it
is assumed that the waveguide dimensions are chosen s.t. only thm®ée is propagating without attenuation, that
the ports are placed sufficiently far from any obstacles in the waveguide which might excite higher-order modes, and

Q3

g
g
%
x \\\/ \(/ D2

FIG. 2: Finite element model of a rectangular waveguide with dielectric inset of lengfhhe waveguide is excited at the port
T'p1 by an incident Ty wave.
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that the homogeneous material at the pbrsU I'p, fulfills €, = w; = 1. For further details on waveguide boundary
conditions, we refer to [38].
As Qol we consider the fundamental scattering parameter (S-parameter) ofihdde onl'py,

2

Si=—
anb

(Bo —ELLER) ., (17)

PL

where we assumed thBp, is located at = 0 for simplicity (without loss of generality). Note that the Qol (17) is,
in this case, an affine-linear functional Bf,, .
5.2 Weak Formulation and Discretization

In order to solve the boundary value problem (14)—(16) numerically by the FEM, we devise the corresponding weak
formulation. Therefore, we build the inner products of Eq. (14) with test funci&ins V', whereV is to be deter-
mined, and integrate by parts employing [40, Theorem 3.31]

(W 'V X Ew, VX E), — 0’uo(e Ew, E') , + (m[u; 'V x Ey], 77[E']),, = 0. (18)
Note that we introduced the trace operators

mi[u] :=n x ulsp

mr[u] := (n x ulpp) x n

for brevity of notation. The boundary integral in Eq. (18) vanisheEgit, since we impose PEC boundary conditions
(15) for the test function®’ as well. Onl'p; U I'p, we employ the boundary conditions (16) and obtain the weak
formulation: findE € V s.t.

(W 'V X B, VX E) ) — w?po(e Ew, B')  + jkz10(rr[Ew], 71 B ors,

i 19
= 2jk.10(ENC, 7r[E']) VE' € V. (19)

I'p1

The appropriate function spaéeis a subspace of
2 3
H(curl, D) := {u € (IAD))*: (Vxu,V xu)p < oo},
where, in turn,(LZ(D))3 denotes the complex vector function space of square integrable functions, i.e.,

(LZ(D))3 :={u:(u,u)p < oo},

cf. [40]. To account for the PEC boundary conditions (15) and obtain a well-defined boundary integral in EY. (19),
is chosen as

Vo= {u € H(curl, D) : wrful|, € (L3(Tpn)° A mrlul|, € (ZATr2)° A mful|, = o}. (20)

In order to solve (19) with FEM, we introduce a finite-dimensional function space- V' and express the

electric field as
Np,

Ewn= E €w,j Ny,
Jj=1

wheree,, ; € C are the degrees of freedom (DoHj, is the number of DoFs, ani; € V), denotes second-
order, first-kind Necelec basis functions defined on a tetrahedral mesh of the dainalfor further details on the
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curl-conforming discretization, we refer to [41]. The discrete soluégn= [ey 1, - - ,ew,Nh]T is then obtained by
solving the linear system

(K _ wZMs +jkzloMp0n) ew = f(einC)’ (21)
Ao €w fo

whereA ,, € CVN»*Nn s the system matrix anfl, € CV» is the discretized right-hand side. The stiffness maiix
the mass-matrid¢, the matrixMP°", and the right-hand sidg, in the above expression are given by

Kij = (1, 'V x N;,V x N;)p, M;; = uo(eN;, Ni)p,
M = (1 [NG], 71 [Ny [fwli = 2jk-10(EG, 7r[NG]) -

The S-parameter can then be obtained from the discrete counterpart of Eq. (17)
Sp(w) = (qw, ew — ei(T,C)(CNh.
As discussed in the previous sections, we then introduce a parameter peetcE ¢ R™ to account for
variations in the design parameters, which, in this case, might represent changes in the damairthe material
parameters, u. Hence, we obtain the parametrized discrete system

Aw(p) €w (p) = fwv
Sh(p,w) = (qwa €w (p))(cNh - (Qw» ei&)c) CNp* (22)

We note that the S-parameter is an affine-linear functional in this case, while we only considered linear functionals
in Section 3.2 for brevity of notation. However, the method can be straightforwardly adapted to address the constant
offset (qu, i) .x, Such that the adjoint-based error indicators remain valid.

We proceed with a few details on the implementation of the numerical model. To assemble the linear system (22),
we employ the FE librarfFENICS[42]. ASFENICS 2017.2.@oes not support complex numbers, we assemble real
and imaginary parts of the matrices separately. We thernuséry to impose the PEC boundary condition (15)
andscipy to solve the resulting linear system of equations with a sparse-LU decomposition. Employing the readily
available LU decomposition, the corresponding dual solutig(ip) can then also be obtained with negligible costs,
since the dual problem,

AZ) (p)zw (p) =quw,

can again be solved by forward-backward substitution.

5.3 Numerical Results

We consider 12 uncertain parameters

p=[p1....p12 .
Two of them are geometrical parameters given in mm (length of the dielectricalpnlagd length of the vacuum
offsetp,) and ten are material parameters with effect on the relative permittivity and permeability., |, on the

dielectrical inlay

exla, = ps + (ps — ps)(1+ jwpet) " + (pa — ps)(1+ jwprr)
elo, = P10+ (P8 — p10)(1+ jwpart) ™ + (po — pro)(1 + jwprzt) Y,

where
w = 2nf,
wo = 27(20 x 10° Hz),
1
T= —
wo
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with frequencyf (in Hertz). In order to consider the influence of the number of uncertain parameters, tests with four
uncertain parameters are also performed. For this purpose we consider a modified parameter vector,

;
p™ = [p1, p2, p13, P14

wherep; andp, are the geometrical parameters from above japdndp; 4 are material parameters with the following
effect on relative permeability and permittivity:

eM|g, =1+ pi3+ (1 — p1a) (1 + jw (275 x 109)—1> —17
W, = 14 pra+ (2 — pa) (1 +jw(11- 2720 x 109)—1) -t
For yield optimization we set the starting pojsy for 12 parameters to
Po=19,5,2,05,1,1,1.1,25,1,1,1,2]".
The estimation tests are done for a reference valudose to one optimal solution:
P.=[8.6,3.8,2,0.50.7,0.6,1.4,2.8,1.7,0.8,0.3, 1.4]".
For the tests with four parameters we set the starting points to
P’ =19.51,1,
p™ = [10.36,4.76,0.58,0.64".

The standard deviation is setdo= 0.72 mm for geometrical, and = 0.3? for material parameters. In order to avoid
unphysical values, instead of a normal distribution we use a truncated normal distribution for the MC sample gener-
ation. We truncate with an offsetof + 3 mm and+ 0.3 for the geometrical and material parameters, respectively.
The performance feature specifications are

|
1S(p, w)| < —24dB Yw € Ty, = [2r f1, 21 f2] = [276.5, 277.5] in GHz.

Related to the setup of the performance feature specifications in Eq. (4) this means24dB andQ(p,r) =
|S(p, w)| with the frequencyw as range parameter. We consider eleven equidistant frequency agirdsT’, ; in
the frequency range. The reference solution for yield estimation is

Yre(P) = 74.60%,

for 12 uncertain parameters, and
v (p) = 95.44%,

for four uncertain parameters. Both reference solutions have been calculated with a closed-form solution of the E-field
formulation and standard MC method witfiyc = 2500, which is the smallest sample size fulfilliog . = 0.01
for all sizes of the yield, according to Eq. (7).

5.3.1 Quality of the Gradient

As mentioned in Section 4 there is a difference between differentiating or discretizing first. Furthermore, for the
sample generation we use a truncated normal distribution instead of a normal distribution. Thus, the gradient we use
for optimization deviates from the exact gradient, which can be thought of as an inexact Newton method [43], with
approximations in the root-finding problem itself, i.e., here the gradient (12), and the Jacobian which is in our case
the Hessian (13).
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To ensure that the yield is optimal at the end and no further improvement is possible, an extension can be added
to the optimization algorithm. At the optimal solution, the gradient can be calculated with a finite difference quotient
VsYpqo. The gradient from Eq. (12) will be denotédsYes, to avoid any confusion. We consider the difference
between the two gradients and expect it to be smaller than a constant

|VsYoa(P) — VpYe(P)| <n. (23)

Figure 3 compares the two gradieffg Y andVgYpg for the waveguide example where the only uncertain design
parameter is the length of the inlay. On the left, we see the yield over the parametgron the right we see the
graphs of the gradients over the parameteiFor this calculation we set the sample sizéMigc = 10° and the step

size in the difference quotient to= 10~3. The two gradients show a similar behavior, especially near the optimum
the gradients agree well. Figure 4 shows how the two gradients approach each other f¥kjargéus, if Eq. (23) is

not fulfilled the number of sample points to calculate the gradients can be increased until (23) is fulfilled or an upper
bound forNyc is reached. In the former case, the applied gradvgsits is accurate and the optimal solution reliable.

In the latter case, a further improvement of the yield would still be possible due to the limited gradient accuracy. In

0.6 -
1 e’ ~. -e- VpYo
0.4 ," e » - - V§YDQ
0 4 . "\
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FIG. 3: Comparision of the gradien®8sYs andVgYpg for Nuc = 10° and finite difference step size= 102 for truncated
normal distribution
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FIG. 4: Convergence of the gradientsYs and VYpg for increasingNyc. Calculated inp = 10.8685mm and with finite
difference step siz& = 1073,
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this case the yield optimization could be continued with the gradigyitog. However, this would require additional
computational effort, especially for a large number of uncertain parameters. The optimal solution can also be used as
a starting point for an alternative optimization procedure.

5.3.2 Yield Estimation

We proceed by comparing the proposed hybrid approach with standard MC and a surrogate-based MC approach with-
out hybridization. The surrogate model is constructed based on sparse-grid interpolation as explained in Section 3.2.
In order to achieve a high accuracy in th&® norm, we employ, in this work, uniform weight functions,, in the

ranges given by the nominal parameter valpes truncation offset. The comparison is based on both the com-
putational effort and the accuracy. For the accuracy we use the relative error between the reference solution and the
solution of the considered method, i.e., for the hybrid approach,

(24)

errsc, eriyc for SC and MC, respectively. We measure the computational effort with the number of high-fidelity
evaluations (i.e., matrix factorizations in FEM). Here we have different levels of high-fidelity evaluations due to mesh
refinement within the proposed hybrid approach. We start with a mesthsemed if necessary divide it by 2. The
difference in the computational effort for each refinement level depends on the model structure and the solver used.
Assuming an optimal solver with an effort which is linear in the number of degrees of freedom, the effort increases
by a factor of 4 in the case of a 2D problem and by a factor of 8 in the case of a 3D problem. Since in our case the
E-field is constant in thg-direction, the grid is only refined in- andz-directions. Thus, the computational effort of

a method is measured through

eff = #HF,, + 4#HF), ;5 + 16#HF, 4, (25)

which adds up the number of high-fidelity evaluations on the different levels, each multiplied by the factors mentioned
above.

The standard approach to carry out yield estimation, with the same accuracy as with the proposed hybrid ap-
proach, would be a MC analysis with the finest mesh used within the hybrid approach, referred tg,asiiMiz
mesh refinement strategy is additionally applied, the method is denoted as M@ order to build the surrogate
model both for SC and for the hybrid approach, we use the first grid with mesh sitbout further refinement to
evaluate the model at the Leja nodes. In Table 1 we see the results of the comparison. We consider two versions of
SC, each with different accuracy (number of Leja nodes). The surrogate model used for the hybrid approach is the
same as for SC with 90 Leja nodes. For each approach we use the same MC sample as for the reference solution.
With the hybrid approach and MC we achieve the same result as with the closed-form reference solution. Out of these
three, the hybrid method requires the least computational effort. Compared,tg.M®e can save 73% computing
time compared to Mg, even 98%. Comparing the hybrid and Mge approach, we observe that most of the MC

TABLE 1: Comparison of different yield estimation approaches for 12 uncertain parameters. Different methods: MC,
SC, and hybrid (H)# Leja indicates the number of Leja nodes for one frequency point# HF the number of
high-fidelity evaluations to build the surrogate model (surr.), to evaluate (critical) MC samples (MC) with indicated
refinement, eff the measurement for computational effort according to Eq. (25), and err the relative error according
to Eq. (24)

Approach | #Leja | #HFy surr. # HF;, MC # HF, MC # HF4 MC eff err (%)
MCfine — 0 0 0 22,705 363,280 | 0.0000
MCiefine — 0 22,705 25 6 22,901 0.0000
H 90 990 4812 25 6 5998 0.0000

SC 90 990 0 0 0 990 6.2235
SC 1600 17,600 0 0 0 17,600 0.4290
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sample points are evaluated on the coarsest FE grid. Only for a few points, a refinement of thé (Ri(Posample

points) ork/4 (6 sample points) is necessary. Using the same surrogate model as for the hybrid approach, pure SC
has much less computational effort with eff 990, but the error is larger than 6%. Increasing the number of Leja
nodes to 1600 results in three times higher computational effort compared to the hybrid approach, with an error still
larger than 0.4%.

Table 2 shows the results for the same waveguide with only four uncertain parameters. The statement remains
unchanged. However, the influence of the number of parameters can be seen. With four uncertain parameters, also
with SC, we can reduce the error to zero, with only about two and a half times the computational effort compared
to the hybrid method. The higher the number of uncertain parameters, the more gain can be expected from the
hybrid approach compared to a SC method. Compared tadyiCwith the hybrid approach, we can save almost
98% computing time compared to Mg, even 99.8%. This means that the advantage of the hybrid approach over
MC increases as the number of parameters decreases. Nevertheless, we know by construction, that even for high
numbers of uncertain parameters, the hybrid method can never become worse than MC, excluding the computational
effort to build the surrogate model (which could scale poorly for a high-dimensional problem) and evaluate the error
indicator.

5.3.3 Yield Optimization

We compare the proposed adaptive Newton-MC from Algorithm 3 with the standard Newton method from Algo-
rithm 2, both with the same limited number of Armijo backsteps and the presented hybrid approach for the yield
estimation. In both cases we set the target accuracy 9. = 0.01 The adaptive approach starts with 100 sample
points and increases this number adaptively until optimality and a target accuracy are achieved. In the nonadaptive
approach, we specify a fixed sample size so that the target accuracy is guaranteed at all times during the optimization
process. This fixed sample sizeNgc = 250Q In Table 3 we see the results for tests with 12 or 4 uncertain param-
eters. The number of iterations of single yield estimations within the optimization process, the computational effort
(eff) and the optimal yield valu&{*) are given. Note that during the optimization process the surrogate model is only
built once, for the starting point. Accepting higher computational effort, the surrogate model can also be recalculated
in each iteration step for the current solution, or built at the beginning in a larger intervgbghan.

With 12 uncertain parameters, we started with a yield of 15%. The adaptive and the nonadaptive approach lead
to different local optima with similar yield values. Both take a bit more than 30 iterations. On average, two and a
half yield estimations are performed per iteration using the adaptive approach. This is due to multiple evaluations
by Armijo backsteps. The nonadaptive approach has only 1.2 estimations per iteration. This can be explained by the
fact that the adaptive approach performs several Newton optimizations with different sample sizes one after the other.
Shortly before a Newton procedure is terminated, there is usually no further improvement, which is why Armijo
backsteps increase and so does the number of yield estimations. This is the case every time before the sample size is
increased in the adaptive algorithm. In the nonadaptive approach, this behavior occurs only once at the end. Potential
for improvement in the adaptive approach lies in further reducing the number of yield evaluations through smoother

TABLE 2: Comparison of different yield estimation approaches for 4 uncertain parameters. Different methods: MC,
SC, and hybrid (H)# Leja indicates the number of Leja nodes for one frequency point# HF the number of
high-fidelity evaluations to build the surrogate model (surr.), to evaluate (critical) MC samples (MC) with indicated
refinement, eff the measurement for computational effort according to Eq. (25) and err the relative error according to
Eq. (24)

Approach | #Leja | #HFy surr. # HF;, MC # HF, MC # HF4 MC eff err (%)
MCfine — 0 0 0 26,360 421,760 | 0.0000
MCiefine — 0 26,360 5 1 26,396 0.0000
H 30 330 165 5 1 531 0.0000

SC 30 330 0 0 0 330 0.1257
SC 120 1320 0 0 0 1320 0.0000
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transitions from one sample size to the other. Nevertheless, the adaptive approach reduces the computational effort
by a factor of 2 compared to standard Newton; see column eff in Table 3. In tests with only 4 uncertain parameters,
the computing effort was even reduced to 10%. In this case, the adaptive approach resulted in significantly fewer
iterations. The ratio between iterations and yield estimations remains unchanged.

For the case with 4 uncertain parameters we also draw a comparison to standard procedures. Standard procedure
means, in this case, combining a standard MC analysis for the yield estimation with a standard Newton method for
the optimization. On the coarsest gfit), 816,816 evaluations with FEM were necessary to optimize the yield; i.e.,
eff = 816,816. Thus, with the proposed adaptive Newton-MC, a saving of 98.3% in computing effort could already
be achieved compared to the standard procedure mentioned above. However, in order to achieve the same accuracy
as with the proposed method, the finest dvid4) has to be used for all sample points. We assume that the number
of function evaluations does not change significantly due to the grid refinement. This can be motivated by the fact
that a similar number of iterations, yield estimations, and function evaluations were needed for calculation with the
closed-form solution as for the FE model with coarser grid. Under this assumption we obtained an effort factor of
eff ~ 13 x 10°. Thus the saving of computational effort is even 99.9%.

For 12 uncertain parameters, in Table 4 we see how many MC sample points have been used in which iteration.
For most of the iterations a low number of MC sample points is sufficient; only in the last iterations we need to expend
more computational effort in order to guarantee the predefined target accuracy.

6. CONCLUSION

In this paper we proposed an adaptive method for yield estimation and optimization. For yield estimation we de-
veloped a hybrid approach combining reliability and accuracy of a high-fidelity MC analysis and the efficiency of

TABLE 3: Comparision of adaptive and nonadaptive Newton’s method with 12 and 4 uncertain paragdiejs:
indicates the number of Leja nodes for one frequency peint# param. the number of uncertain parameters,
optimization the method usedf It the number of iterations# YE the number of yield estimations, eff the
computational effort, an@™ the optimal yield value

Estimation # Leja # param. Optimization #1t #YE eff Y™ (%)
H 90 12 adapt. Newton-MC 33 86 376,073 74.84
H 90 12 Newton 37 42 682,745 78.20
H 30 4 adapt. Newton-MC | 12 27 13,716 95.44
H 30 4 Newton 30 34 138,158 97.92

TABLE 4: Progress of yield optimization with
adaptive Newton-MC for 12 uncertain parameters.
Number of MC sample points for each iteration of
the optimization algorithm

Iteration Nue
0-12 100
13-14 200
15-18 300

19 500
20-22 600
23 900
24-30 1000
31 1800
32-33 1900

Volume 10, Issue 4, 2020



372 Fuhriander et al.

surrogate-based techniques such as stochastic collocation. In case the accuracy of the surrogate model is not suffi-
cient, sample points are reevaluated employing the high-fidelity FE model. Mesh refinement is applied if the accuracy
of the FE model itself is too low. This guarantees error control while only a very small subset of the MC sample is
evaluated based on expensive high-fidelity evaluations. Adjoint error indicators were applied to estimate the errors
of the surrogate model and the FE model. For yield optimization we proposed an adaptive Newton-MC method,
based on a globalized Newton method. During the optimization process, numerous Yyield estimations are performed.
In order to control the MC error and at the same time save computational effort, we adaptively increase the number
of MC sample points used during the optimization. Thus, the adaptive Newton-MC in combination with the hy-
brid approach allows us to control the FE error, the MC error, and the surrogate error. At the same time it is much
more efficient than conventional MC approaches with a standard Newton method. Numerical tests on a dielectrical
waveguide confirm the benefits of the presented method. Future research will deal with the transitions in the adaptive
Newton-MC when the MC sample size is increased. Furthermore, although we already use a hierarchical model for
Monte Carlo analysis within the optimization, we plan to explore a combination of this with a multilevel Monte Carlo
approach [3].
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