Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Interfacial Phenomena and Heat Transfer
ESCI SJR: 0.258 SNIP: 0.574 CiteScore™: 0.8

ISSN Druckformat: 2169-2785
ISSN Online: 2167-857X

Interfacial Phenomena and Heat Transfer

DOI: 10.1615/InterfacPhenomHeatTransfer.2020032806
pages 25-32

MODELING OF NON-STATIONARY TEMPERATURE FIELD IN THE NEIGHBORHOOD OF THE OPTICAL FIBER END UNDER LASER PULSE HEATING

Anatoliy A. Levin
Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia; Melentiev Energy Systems Institute SB RAS, 130 Lermontova St., Irkutsk, Russia
A. S. Safarov
Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia; Melentiev Energy Systems Institute SB RAS, 130 Lermontova St., Irkutsk, Russia
V. M. Chudnovskii
Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia; V.I. Il'ichev Pacific Oceanological Institute, 43 Baltiyskaya St., Vladivostok, Russia
Andrey A. Chernov
Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia; Institute of Thermophysics SB RAS, 1 Ac. Lavrentiev Ave., Novosibirsk, Russia

ABSTRAKT

This paper considers modeling of the non-stationary temperature field for the liquid near the face end of a quartz−quartz polymer fiber with a core diameter of 400 μm at the moment of the vapor bubble appearance. We present a mathematical model that incorporates laws of the radiation propagation and non-stationary forms for laws of conservation of momentum, mass, and energy. We estimated the heating time and the thermal picture in the neighborhood of the fiber end required to reach the conditions for homogeneous nucleation. The results of numerical simulation are compared with the characteristics of the vapor−gas bubble, which were obtained experimentally.

REFERENZEN

  1. Aktershev, S.P., Vapor Bubble Growth in a Liquid at the Superheat Limit Temperature, Thermophys. Aeromech., vol. 3, pp. 415-426,2005.

  2. Christopher, D.M., Wang, H., and Peng, X., Dynamics of Bubble Motion and Bubble Top Jet Flows from Moving Bubbles on Microwires, ASME J Heat Transf, vol. 127, pp. 1260-1268, 2005.

  3. Chudnovskii, V.M., Levin, A.A., Yusupov, V.I., Guzev, M.A., and Chernov, A.A., The Formation of a Cumulative Jet during the Collapse of a Vapor Bubble in a Subcooled Liquid Formed as a Result of Laser Heating, Int. J. Heat Mass Transf., vol. 150, p. 119286,2020.

  4. Levin, A.A. and Khan, P. V., Experimental Observation of the Maximum Bubble Diameter in Non-Stationary Temperature Field of Subcooled Boiling Water Flow, Int. J. Heat Mass Transf., vol. 124, pp. 876-883, 2018.

  5. Li, F., Gonzalez-Avila, R., Nguyen, D.M., and Ohl, C.D., Oscillate Boiling from Microheaters, Phys. Rev. Fluids, vol. 2, p. 014007, 2017.

  6. Lu, J.F. and Peng, X.F., Bubble Jet Flow Formation during Boiling of Subcooled Water on Fine Wires, Int. J. Heat Mass Transf, vol. 50, pp. 3966-3976, 2007.

  7. Marqa, M.F., Mordon, S., and Betrouni, N., Laser Interstitial Thermotherapy of Small Breast Fibroadenomas: Numerical Simulations, Lasers Surg. Med., vol. 44, no. 10, pp. 832-839, 2012.

  8. Nguyen, D.M., Hu, L., Miao, J., and Ohl, C.D., Oscillate Boiling from Electrical Microheaters, Phys. Rev. Appl., vol. 10, p. 044064, 2018.

  9. Padilla-Martinez, J.P., Berrospe-Rodriguez, C., Aguilar, G., Ramirez-San-Juan, J.C., and Ramos-Garcia, R., Optic Cavitation with CW Lasers, Rev. Phys. Fluids, vol. 26, p. 122007, 2014.

  10. Wan, C.A., Zeigarnik, Yu.A., Platonov, D.N., Khodakov, K.A., and Shekhter, Yu.L., The Nature of Microbubble Emission under Subcooled Water Boiling, High Temp., vol. 50, no. 1, pp. 78-83, 2012.

  11. Wang, H., Peng, X.F., Wang, B.X., and Lee, D.J., Jet Flow Phenomena during Nucleate Boiling, Int. J. Heat Mass Transf., vol. 45, pp. 1359-1363,2002.

  12. Wang, H., Peng, X., Christopher, D.M., and Garimella, S.V., Jet Flows around Microbubbles in Subcooled Boiling, ASMEJ. Heat Transf, vol. 127, p. 802, 2005a.

  13. Wang, H., Peng, X.F., Christopher, D.M., Lin, W.K., and Pan, C., Investigation of Bubble-Top Jet Flow during Subcooled Boiling on Wires, Int. J. Heat Fluid Flow, vol. 26, pp. 485-494,2005b.

  14. Yusupov, V.I., Chudnovskii, V.M., and Bagratashvili, V.N., Laser-Induced Hydrodynamics in Water-Saturated Biotissues. 1. Gen-eration of Bubbles in Liquid, Laser Phys., vol. 20, no. 7, pp. 1641-1647, 2010.

  15. Yusupov, V.I., Chudnovskii, V.M., and Bagratashvili, V.N., Laser-Induced Hydrodynamics in Water-Saturated Biotissues: 2. Effect on Delivery Fiber, Laser Phys, vol. 21, no. 7, pp. 1230-1234, 2011.

  16. Zhukov, S.A., Afanas'ev, S.Yu., and Echmaev, S.B., Concerning the Magnitude of Maximum Heat Flux and the Mechanisms of Superintensive Bubble Boiling, Int. J. Heat Mass Transf, vol. 46, p. 3411, 2003.


Articles with similar content:

Bubble Behaviors in Subcooled Pool Boiling
International Heat Transfer Conference 12, Vol.38, 2002, issue
Yaohua Zhao, Takaharu Tsuruta, Chaoyue Ji
Flicker-Noise in Superheated Liquid Jets
Heat Transfer Research, Vol.35, 2004, issue 1&2
Nikolay A. Mazheiko, Vladimir P. Koverda, A. V. Reshetnikov, V. P. Skripov, Andrey V. Vinogradov
BUBBLE DYNAMICS IN NUCLEATE BOILING
International Heat Transfer Conference 6, Vol.1, 1978, issue
S. A. K. Abayawardana, G. H. Anderson
NUMERICAL SIMULATION OF BUBBLE GROWTH IN NUCLEATE BOILING - EFFECTS OF SYSTEM PARAMETER
Multiphase Science and Technology, Vol.12, 2000, issue 3&4
Yasunobu Fujita, Qiang Bai
STRUCTURE FORMATION IN ACOUSTIC CAVITATION
Multiphase Science and Technology, Vol.17, 2005, issue 4
I. S. Akhatov, S. Konovalova