Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Druckformat: 2152-5102
ISSN Online: 2152-5110

Volumes:
Volumen 46, 2019 Volumen 45, 2018 Volumen 44, 2017 Volumen 43, 2016 Volumen 42, 2015 Volumen 41, 2014 Volumen 40, 2013 Volumen 39, 2012 Volumen 38, 2011 Volumen 37, 2010 Volumen 36, 2009 Volumen 35, 2008 Volumen 34, 2007 Volumen 33, 2006 Volumen 32, 2005 Volumen 31, 2004 Volumen 30, 2003 Volumen 29, 2002 Volumen 28, 2001 Volumen 27, 2000 Volumen 26, 1999 Volumen 25, 1998 Volumen 24, 1997 Volumen 23, 1996 Volumen 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v32.i1.10
pages 1-20

Modeling of Multi-Species Contaminant Transport with Spatially-Dependent Dispersion and Coupled Linear/Non-Linear Reactions

Ali J. Chamkha
Department of Mechanical Engineering, Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952, Kingdom of Saudi Arabia; RAK Research and Innovation Center, American University of Ras Al Khaimah, United Arab Emirates, 10021

ABSTRAKT

A one-dimensional four-species sequential reactive contaminant transport model with spatially-dependent dispersion coefficient and transport velocity is considered. The sequential reactions which take place are assumed to be nonlinear and of arbitrary order. Two types of variations of the dispersion coefficient with the downstream distance are considered. The first type assumes that the dispersivity increases as a power function with distance while the other assumes an exponentially-increasing function. The transport velocity is also assumed to follow a general power-law function with the space coordinate. The general governing equations are non-dimensionalized and solved numerically by an efficient implicit iterative tri-diagonal finite-difference method. Comparisons with previously published analytical solutions for special cases of the problem are performed and found to be in excellent agreement. A parametric study of all physical parameters is conducted and the results are presented graphically to illustrate interesting features of the solutions. It is found that the chemical reaction order, the scale-dependent dispersion coefficient and the non-uniform transport velocity have significant effects on the multi-species concentration profiles.


Articles with similar content:

Double-Diffusive Convective Flow of a Micropolar Fluid Over a Vertical Plate Embedded in a Porous Medium with a Chemical Reaction
International Journal of Fluid Mechanics Research, Vol.31, 2004, issue 6
Ali F. Al-Mudhaf, Ali J. Chamkha, Jasem Al-Yatama
Reactive Contaminant Transport with Space-Dependent Dispersion and Time-Dependent Concentration Source
Journal of Porous Media, Vol.10, 2007, issue 4
Ali J. Chamkha, Jasem Al-Humoud
INFLUENCE OF THERMAL RADIATION AND THERMOPHORESIS ON VISCOELASTIC FLUID FLOW OVER A VERTICAL CONE
Special Topics & Reviews in Porous Media: An International Journal, Vol.7, 2016, issue 2
Sreedhara Rao Gunakala, B. Rushi Kumar, R. Sivaraj, Victor M. Job
EFFECTS OF MAGNETO-MARANGONI CONVECTION WITH VARIABLE PROPERTIES ON NON-NEWTONIAN BIVISCOSITY FLUID OVER STRETCHING SHEET IN POROUS MEDIUM
Journal of Porous Media, Vol.17, 2014, issue 10
Mohamed F. El-Sayed, N. S. Elgazery
EFFECTS OF CHEMICAL REACTION ON THIRD-GRADE MHD FLUID FLOW UNDER THE INFLUENCE OF HEAT AND MASS TRANSFER WITH VARIABLE REACTIVE INDEX
Heat Transfer Research, Vol.50, 2019, issue 11
Rahmat Ellahi, Syeda Rida Bukhari, Marin Marin, Ambreen Afsar Khan