Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Druckformat: 2152-5102
ISSN Online: 2152-5110

Volumen 47, 2020 Volumen 46, 2019 Volumen 45, 2018 Volumen 44, 2017 Volumen 43, 2016 Volumen 42, 2015 Volumen 41, 2014 Volumen 40, 2013 Volumen 39, 2012 Volumen 38, 2011 Volumen 37, 2010 Volumen 36, 2009 Volumen 35, 2008 Volumen 34, 2007 Volumen 33, 2006 Volumen 32, 2005 Volumen 31, 2004 Volumen 30, 2003 Volumen 29, 2002 Volumen 28, 2001 Volumen 27, 2000 Volumen 26, 1999 Volumen 25, 1998 Volumen 24, 1997 Volumen 23, 1996 Volumen 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v35.i6.10
pages 493-509

MHD Flow and Heat Transfer Past a Semi-Infinite Vertical Plate Embedded in a Porous Medium of Variable Permeability

Dulal Pal
Department of Mathematics, Visva-Bharati University Santiniketan, India


A numerical model is developed to study the effects of variable permeability and magnetic field on mixed convection from a vertical plate embedded in a porous medium incorporating the variation of thermal conductivity. The conservation equations that govern the problem are reduced to a system of nonlinear ordinary differential equations. Because of nonlinearity, the governing equations are solved numerically by employing shooting algorithm with Runge-Kutta-Fehlberg integration scheme. The effects of magnetic field on velocity and temperature distributions are studied in detail by considering uniform permeability (UP) and variable permeability (VP) of the porous medium and the results are depicted graphically. The important finding of the present work is that the magnetic field has considerable effects on the boundary layer velocity and on the rate of heat transfer for both the cases of permeability (i.e., UP and VP) of the porous medium. The present numerical results are in good agreement with those provided by other numerical method on a special case.