Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Druckformat: 2152-5102
ISSN Online: 2152-5110

Volumes:
Volumen 46, 2019 Volumen 45, 2018 Volumen 44, 2017 Volumen 43, 2016 Volumen 42, 2015 Volumen 41, 2014 Volumen 40, 2013 Volumen 39, 2012 Volumen 38, 2011 Volumen 37, 2010 Volumen 36, 2009 Volumen 35, 2008 Volumen 34, 2007 Volumen 33, 2006 Volumen 32, 2005 Volumen 31, 2004 Volumen 30, 2003 Volumen 29, 2002 Volumen 28, 2001 Volumen 27, 2000 Volumen 26, 1999 Volumen 25, 1998 Volumen 24, 1997 Volumen 23, 1996 Volumen 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.2018019672
pages 75-91

INFLUENCE OF TEMPERATURE-DEPENDENT CONDUCTIVITY ON CONVECTIVE HEAT TRANSFER IN A VERTICAL DUCT

Jawali C. Umavathi
Department of Mathematics, Gulbarga University, Kalaburgi-585106, Karnataka, India

ABSTRAKT

An analysis has been carried out to study the flow and heat characteristics of a Newtonian fluid in a vertical rectangular duct. One of the vertical walls of the duct is cooled to a constant temperature, while the other wall is heated to constant but different temperature. The thermal conductivity is assumed to vary as a linear function of temperature. The basic equations governing the flow and heat transfer are highly non-linear coupled partial differential equations. Numerical solution of the problem is obtained by using finite difference method of second-order accuracy. The effects of various physical parameters such as conductivity parameter BK (-1 ≤ BK ≤ 1.0), Grashof number Gr (1.0 ≤ Gr ≤ 25.0), Brinkman number Br (0.01 ≤ Br ≤ 2.0), and aspect ratio A(0.5 ≤ A ≤ 2.0), which determine the velocity and temperature contours, are shown pictorially. Results are also presented for the skin friction, volumetric flow rate, and heat transfer rate for representative values of different key parameters. It is found that the intensity of the velocity contours is dense in the lower half region of the duct for negative values of conductivity variation parameter and in the upper region of the duct for positive values of conductivity variation parameter. The 3D contours on temperature are concave for negative values of BK and convex for positive values of BK.


Articles with similar content:

EFFECT OF THE ASPECT RATIO ON NATURAL CONVECTION IN A POROUS CAVITY WITH A SINUSOIDAL ACTIVE THERMAL WALL
Heat Transfer Research, Vol.47, 2016, issue 3
Gang Wang, Feng Wu, Wenjing Zhou, Xiaoxun Ma
Natural Convection from a Horizontal Annulus Filled with Porous Medium of Variable Permeability
Journal of Porous Media, Vol.12, 2009, issue 7
Taha K. Aldoss
CONJUGATE NATURAL CONVECTION IN AN INCLINED SQUARE POROUS ENCLOSURE WITH FINITE WALL THICKNESS AND PARTIALLY HEATED FROM ITS LEFT SIDEWALL
Heat Transfer Research, Vol.47, 2016, issue 4
Sameh Elsayed Ahmed, M. M. Abd El-Aziz, Sivanandam Sivasankaran, Ahmed Kadhim Hussein
FREE CONVECTION FLOW IN A DUCT FILLED WITH NANOFLUID AND SATURATED WITH POROUS MEDIUM: VARIABLE PROPERTIES
Journal of Porous Media, Vol.21, 2018, issue 1
Maurizio Sasso, J. C. Umavathi
NON-DARCY BUOYANCY FLOW IN A SQUARE CAVITY FILLED WITH POROUS MEDIUM FOR VARIOUS TEMPERATURE DIFFERENCE ASPECT RATIOS
Journal of Porous Media, Vol.14, 2011, issue 7
Tanmay Basak, Satyajit Roy, M. Sathiyamoorthy