Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Druckformat: 2152-5102
ISSN Online: 2152-5110

Volumes:
Volumen 46, 2019 Volumen 45, 2018 Volumen 44, 2017 Volumen 43, 2016 Volumen 42, 2015 Volumen 41, 2014 Volumen 40, 2013 Volumen 39, 2012 Volumen 38, 2011 Volumen 37, 2010 Volumen 36, 2009 Volumen 35, 2008 Volumen 34, 2007 Volumen 33, 2006 Volumen 32, 2005 Volumen 31, 2004 Volumen 30, 2003 Volumen 29, 2002 Volumen 28, 2001 Volumen 27, 2000 Volumen 26, 1999 Volumen 25, 1998 Volumen 24, 1997 Volumen 23, 1996 Volumen 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v32.i4.40
pages 439-453

Mathematical Modeling of Geophysical Vortex Flow

Harmindar S. Takhar
Engineering Department, Manchester Metropolitan University, Oxford Rd., Manchester, M15GD, UK
O. Anwar Bég
Fluid Mechanics, Nanosystems and Propulsion, Aeronautical and Mechanical Engineering, School of Computing, Science and Engineering, Newton Building, University of Salford, Manchester M54WT, United Kingdom

ABSTRAKT

A mathematical model is developed of the geophysical vortex flow using an order-of-magnitude analysis based on a laminar, steady axisymmetric vortex motion in a cylindrical frame of reference. A similarity method is adopted. The classical solution of Long (J. Fluid. Mech., 11, p. 611, 1961; Rossby number > 1) is reexamined. It is shown that true similarity solutions for the intermediate case of the Rossby number ∼ 1 do not exist, since this implies the physically impossible vortex flow wherein the fluxes of radial momentum and angular momentum are simultaneously zero. Numerical solutions are presented for our model using a shooting method with graphs depicting the variation of pressure and also axial, azimuthal, and radial velocities with non-dimensional radius parameter. The results are discussed with applications to tornado swirl and compared to the earlier studies by Long and Herbert.


Articles with similar content:

NUMERICAL SIMULATION OF STRONGLY SWIRLING TURBULENT FLOWS THROUGH AN ABRUPT EXPANSION
TSFP DIGITAL LIBRARY ONLINE, Vol.6, 2009, issue
Joongcheol Paik, Fotis Sotiropoulos
INERT AND REACTING FLOWS WITH A NEW CUBIC EDDY-VISCOSITY MODEL
TSFP DIGITAL LIBRARY ONLINE, Vol.2, 2001, issue
Bart Merci, Chris De Langhe, Erik Dick, Dirk J.E.M. Roekaerts, Jan Vierendeels
ABOUT SWIRL ATOMIZER MEAN DROPLET SIZE
Atomization and Sprays, Vol.11, 2001, issue 6
Yuriy Khavkin
FULLY DEVELOPED NON-NEWTONIAN FLUID FLOW AND HEAT TRANSFER IN A CONCENTRIC ANNULUS WITH AN AXIALLY MOVING CORE
International Heat Transfer Conference 11, Vol.5, 1998, issue
Tomohiko Yamaguchi, Toru Shigechi, Satoru Momoki, Y. P. Lee, Shinya Higashiiue
MODELLING PRESSURE-TRANSPORT FOR TURBULENT WAKE FLOWS
TSFP DIGITAL LIBRARY ONLINE, Vol.3, 2003, issue
Kazuhiko Suga