Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Critical Reviews™ in Eukaryotic Gene Expression
Impact-faktor: 1.841 5-jähriger Impact-Faktor: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN Druckformat: 1045-4403
ISSN Online: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukarGeneExpr.v22.i1.20
pages 17-35

Carbon Source Metabolism and Its Regulation in Cancer Cells

Chengqian Yin
Department of Biology, College of Arts and Sciences, Drexel University, Philadelphia, Pennsylvania
Shuo Qie
Department of Biology, College of Arts and Sciences, Drexel University; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
Nianli Sang
Department of Biology, College of Arts and Sciences, Drexel University; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania

ABSTRAKT

Cancer cell proliferation and progression require sufficient supplies of nutrients including carbon sources, nitrogen sources, and molecular oxygen. Particularly, carbon sources and molecular oxygen are critical for the generation of ATP and building blocks, and for the maintenance of intracellular redox status. However, solid tumors frequently outgrow the blood supply, resulting in nutrient insufficiency. Accordingly, cancer cell metabolism shows aberrant biochemical features that are consequences of oncogenic signaling and adaptation. Those adaptive metabolism features, including the Warburg effect and addiction to glutamine, may form the biochemical basis for resistance to chemotherapy and radiation. A better understanding of the regulatory mechanisms that link the signaling pathways to adaptive metabolic reprogramming may identify novel biomarkers for drug development. In this review, we focus on the regulation of carbon source utilization at a cellular level, emphasizing its relevance to proliferative biosynthesis in cancer cells. We summarize the essential needs of proliferating cells and the metabolic features of glucose, lipids, and glutamine, and we review the roles of transcription regulators (i.e., HIF-1, c-Myc, and p53) and two major oncogenic signaling pathways (i.e., PI3K-Akt and MAPK) in regulating the utilization of carbon sources. Finally, the effects of glucose on cell proliferation and perspective from both biochemical and cellular angles are discussed.


Articles with similar content:

Nitrosothiol Signaling in Anoikis Resistance and Cancer Metastasis
Forum on Immunopathological Diseases and Therapeutics, Vol.3, 2012, issue 2
Neelam Azad, Anand Krishnan V. Iyer, Liying Wang, Sudjit Luanpitpong, Yon Rojanasakul
Tumor Protein D52 Overexpression and Gene Amplification in Cancers from a Mosaic of Microarrays
Critical Reviews™ in Oncogenesis, Vol.14, 2008, issue 1
Jayne R. Hardy, Jennifer A. Byrne, Judith Weidenhofer, Keerthi Thamotharampillai, Mona Shehata
Molecular Mechanisms of ERN1-Mediated Angiogenesis
International Journal of Physiology and Pathophysiology, Vol.5, 2014, issue 1
Nadia M. Lypova, Oleksandr H. Minchenko, Olena V. Kovalevska, Dmytro O. Minchenko, Anna O. Kulinich, Kateryna I. Kubaichuk
Histone Acetyltransferases in Cancer: Guardians or Hazards?
Critical Reviews™ in Oncogenesis, Vol.22, 2017, issue 3-4
Antonis Kirmizis, Christina Demetriadou
Expression and Activity of Aryl Hydrocarbon Receptors in Development and Cancer
Critical Reviews™ in Eukaryotic Gene Expression, Vol.18, 2008, issue 4
Loretta L. Collins, Ellen C. Henry, Thomas A. Gasiewicz