Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Critical Reviews™ in Eukaryotic Gene Expression
Impact-faktor: 1.841 5-jähriger Impact-Faktor: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN Druckformat: 1045-4403
ISSN Online: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukaryotGeneExpr.2014012215
pages 357-378

Current Major Advances in the Regulation of Milk Protein Gene Expression

Xi Qian
Laboratory of Lactation and Metabolic Physiology, Department of Animal Science, University of Vermont, Burlington, VT
Feng-Qi Zhao
Laboratory of Lactation and Metabolic Physiology, Department of Animal Science, University of Vermont, Burlington, VT

ABSTRAKT

During lactation, functionally differentiated mammary epithelial cells convert circulating nutrients into various milk components, providing all essential nutrients for the growth and development of mammal neonates. One of the major milk components is milk protein, which includes the casein and whey proteins. Regulation of milk protein gene expression is dependent on hormonal and developmental cues that modulate the activity of specific transcription factors and change the chromatin structure in mammary epithelial cells. Understanding the underlying mechanisms involved in mammary-specific milk protein gene regulation will help improve the yield, quality, and efficiency of milk production and identify important signaling factors and pathways involved in mammary development, differentiation, lactation, and disease. In this review we first review advances in the understanding of the regulatory mechanisms of milk protein genes by hormones, growth factors, and the extracellular matrix, with a focus on transcriptional regulation. We then discuss the relationship between chromatin structure and milk protein gene expression from an epigenetic perspective. Finally, we summarize recent achievements using the mammary gland as a bioreactor for producing pharmaceutical proteins for human use.


Articles with similar content:

Brucella Virulence Mechanisms and Implications in Novel Vaccines and Drugs
Critical Reviews™ in Eukaryotic Gene Expression, Vol.23, 2013, issue 1
Zeliang Chen, Guangjun Gao, Yufei Wang, Xingran Xu, Jie Xu
Tissue Cross-Talk and Exosomal-MicroRNAs
Forum on Immunopathological Diseases and Therapeutics, Vol.6, 2015, issue 3-4
Micol Marchetti
From Genes to Gene Medicines: Recent Advances in Nonviral Gene Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.15, 1998, issue 2
Alain P. Rolland
Structuring Polymers for Delivery of DNA-Based Therapeutics: Updated Insights
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.29, 2012, issue 6
Suresh P. Vyas, Shailja Tiwari, Madhu Gupta
Thymus-Derived Signals Regulate Early T-Cell Development
Critical Reviews™ in Immunology, Vol.25, 2005, issue 2
Thomas M. Schmitt, Juan Carlos Zuniga-Pflucker