Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Critical Reviews™ in Eukaryotic Gene Expression
Impact-faktor: 1.841 5-jähriger Impact-Faktor: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN Druckformat: 1045-4403
ISSN Online: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukaryotGeneExpr.v14.i12.60
48 pages

Progress Toward Skeletal Gene Therapy

Henry J. Klamut
Departments of Medicine and Biochemistry, Loma Linda University and the Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial Veterans Administration Medical Center, 11201 Benton Street, Loma Linda, CA 92357
Shin-Tai Chen
Departments of Medicine and Biochemistry, Loma Linda University and the Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial Veterans Administration Medical Center, 11201 Benton Street, Loma Linda, CA 92357
K.-H. William Lau
Departments of Medicine and Biochemistry, Loma Linda University and the Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial Veterans Administration Medical Center, 11201 Benton Street, Loma Linda, CA 92357
David J. Baylink
Departments of Medicine and Biochemistry, Loma Linda University and the Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial Veterans Administration Medical Center, 11201 Benton Street, Loma Linda, CA 92357

ABSTRAKT

Skeletal gene therapy is an attractive new approach to the treatment of bone disorders. Impressive advances in our knowledge of the molecular genetic basis of skeletal disorders and fracture healing have led to the development of novel therapeutics based on ectopic expression of one or more genes in patient cells that can influence repair or regenerative processes in bone. Although still a relatively immature field, proof-of-principle for enhanced bone formation through skeletal gene therapy has already been established. The challenge now is to more precisely define optimal cellular targets and therapeutic genes, and to develop safe and efficient ways to deliver therapeutic genes to target cells. In this review, we will highlight some of the exciting advances that have been made in skeletal gene therapy in recent years, with a focus on treatment of localized skeletal lesions. Strengths and weaknesses of current approaches will be discussed, as will strategies for improved safety and therapeutic outcome in the future. Skeletal gene therapy can have an enormous impact on patient care. The next 5 years will present us with unparalleled opportunities to develop more effective therapeutic strategies and overcome obstacles presented by current gene transfer technologies.


Articles with similar content:

Regenerative Dental Medicine: Stem Cells and Tissue Engineering in Dentistry
Journal of Environmental Pathology, Toxicology and Oncology, Vol.25, 2006, issue 3
Jill A. Reed, Roberto Patarca
An Overview of Culinary and Medicinal Mushrooms in Neurodegeneration and Neurotrauma Research
International Journal of Medicinal Mushrooms, Vol.19, 2017, issue 3
Chai-Chee Ng, Kah-Hui Wong, Gowri Kanagasabapathy, Yoon-Yen Yow, Vikineswary Sabaratnam
Journey from Jumping Genes to Gene Therapy
Critical Reviews™ in Oncogenesis, Vol.20, 2015, issue 5-6
Katharine A. Whartenby
Nanotechnology-Based Photodynamic Therapy: Concepts, Advances, and Perspectives
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.32, 2015, issue 5
Nitin K. Jain, Goutam Rath, Tarun Garg, Amit Kumar Goyal
Gene Expression in Stem Cells
Critical Reviews™ in Eukaryotic Gene Expression, Vol.19, 2009, issue 4
Yu Liang, Criss Walworth, Iain Russell, Caifu Chen