Abo Bibliothek: Guest
Atomization and Sprays

Erscheint 12 Ausgaben pro Jahr

ISSN Druckformat: 1044-5110

ISSN Online: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

CONTROL OF SPRAY FORMATION BY VIBRATIONAL EXCITATION OF FLAT-FAN AND CONICAL LIQUID SHEETS

Volumen 15, Ausgabe 6, 2005, pp. 661-686
DOI: 10.1615/AtomizSpr.v15.i6.30
Get accessGet access

ABSTRAKT

In the present work, we develop a technique for controlling spray formation by vibrational excitation of liquid sheets. The sheets are formed by commercial prefilming pressure atomizers or by a specially designed liquid sheet generator. The excitation controls the drop formation such that narrow drop size spectra are produced. For realizing the technique, a vibrator for moving the atomizers was developed. Investigations with flat-fan atomizers show that, for sufficiently small sheet Weber number, regular-shaped waves on the sheets are formed by the excitation, which results in the formation of regular-shaped ligaments. The latter disintegrate into droplets by the Rayleigh mechanism. The small Weber number keeps the influence of the Kelvin-Helmholtz instability of the sheet (which would disturb the regularity of the drop formation) small. For investigating the controlled breakup of conical sheets, a conical sheet generator was developed, which allows the sheet thickness at the orifice to be varied. Investigations of open water bells show that the excitation may force the formation of regular sprays for this sheet geometry, also. The breakup of the conical sheets is also controlled by preshaping of the sheets due to the nozzle vibrations. For both sheet geometries, our work quantifies the achievable drop sizes and operation windows of the influencing parameters in nondimensional form, inside which the technique can be applied.

REFERENZIERT VON
  1. BAILLOT F., BLAISOT J.-B., BOISDRON G., DUMOUCHEL C., Behaviour of an air-assisted jet submitted to a transverse high-frequency acoustic field, Journal of Fluid Mechanics, 640, 2009. Crossref

  2. Vegad Chetankumar S., Kumar Amit, Chakravarthy Satyanarayanan R., Experimental study of a free-surface circular liquid sheet using planar laser-induced fluorescence, Experiments in Fluids, 61, 2, 2020. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain