Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Atomization and Sprays
Impact-faktor: 1.737 5-jähriger Impact-Faktor: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Druckformat: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volumen 30, 2020 Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2020033923
pages 31-53

CURVATURE-BASED INTERFACE RESOLUTION QUALITY (IRQ) INDICATOR TO ASSESS SIMULATION ACCURACY

R. Canu
CORIA-UMR 6614 – Normandie Université, CNRS-Université et INSA de Rouen, Campus Universitaire du Madrillet, 76800 Saint Etienne du Rouvray, France
Benjamin Duret
CORIA-UMR 6614 – Normandie Université, CNRS-Université et INSA de Rouen, Campus Universitaire du Madrillet, 76800 Saint Etienne du Rouvray, France
Julien Reveillon
CORIA-UMR 6614 – Normandie Université, CNRS-Université et INSA de Rouen, Campus Universitaire du Madrillet, 76800 Saint Etienne du Rouvray, France
Francois-Xavier Demoulin
CORIA-UMR 6614 – Normandie Université, CNRS-Université et INSA de Rouen, Campus Universitaire du Madrillet, 76800 Saint Etienne du Rouvray, France

ABSTRAKT

In recent decades direct numerical simulations of liquid-gas flows with interface capturing/tracking method have made great progress. But to address new configurations that contain highly deformed interfaces, a question arises about the validity of the obtained results. Usually, the only solution is to perform a mesh convergence analysis on a well-defined criteria/quantity, which is really costly. For complex simulations such as liquid jet atomization, there is no evidence that a complete resolution of the interface deformation has been achieved, even if these simulations are still very helpful to understand atomization mechanisms. Thus it stresses the need to find an indicator dedicated to the evaluation of the interface resolution quality (IRQ). In this work, a definition for the IRQ indicator is discussed and computed in two configurations: a two-phase homogeneous isotropic turbulence (HIT) and the Spray A configuration (liquid jet injection) from the Engine Combustion Network. The first configuration is used as a reference to ensure the pertinence of the resolution indicator in an academic scenario, where the convergence of the main features of the flows is assured. Regarding the second configuration, the IRQ statistics such as probability density function (PDF) and average values of the IRQ are shown to assess its usefulness in a complex configuration for different Weber and Reynolds numbers.

SCHLÜSSELWÖRTER: DNS, interface, two-phase flow

REFERENZEN

  1. Anez, J., Ahmed, A., Hecht, N., Duret, B., Reveillon, J., and Demoulin, F., Eulerian-Lagrangian Spray Atomization Model Coupled with Interface Capturing Method for Diesel Injectors, Int. J. Multiphase Flow, vol. 113, pp. 325-342,2019.

  2. Bouali, Z., Duret, B., Demoulin, F.X., and Mura, A., DNS Analysis of Small-Scale Turbulence-Scalar Interactions in Evaporating Two-Phase Flows, Int. J. Multiphase Flow, vol. 85, pp. 326-335,2016.

  3. Canu, R., Puggelli, S., Essadki, M., Duret, B., Menard, T., Massot, M., Reveillon, J., and Demoulin, F.X., Where Does the Droplet Size Distribution Come From?, Int. J. Multiphase Flow, vol. 107, pp. 230-245, 2018.

  4. Deshpande, S.S., Anumolu, L., and Trujillo, M.F., Evaluating the Performance of the Two-Phase Flow Solver InterFoam, Comput. Sci. Discov., vol. 5, no. 1, p. 014016,2012.

  5. Desjardins, O., Moureau, V, and Pitsch, H., An Accurate Conservative Level Set/Ghost Fluid Method for Simulating Turbulent Atomization, J. Comput. Physics, vol. 227, no. 18, pp. 8395-8416,2008.

  6. Duret, B., Luret, G., Reveillon, J., Menard, T., Berlemont, A., and Demoulin, F.X., DNS Analysis of Turbulent Mixing in Two-Phase Flows, Int. J. Multiphase Flow, vol. 40, pp. 93-105,2012.

  7. Duret, B., Reveillon, J., Menard, T., and Demoulin, F.X., Improving Primary Atomization Modeling through DNS of Two-Phase Flows, Int. J. Multiphase Flow, vol. 55, pp. 130-137,2013.

  8. Duret, B., Canu, R., Reveillon, J., and Demoulin, F.X., A Pressure based Method for Vaporizing Compressible Two-Phase Flows with Interface Capturing Approach, Int. J. Multiphase Flow, vol. 108, pp. 42-50, 2018.

  9. Engine Combustion Network (ECN), accessed from https://ecn.sandia.gov/.

  10. Gorokhovski, M. and Herrmann, M., Modeling Primary Atomization, Ann. Rev. FluidMech., vol. 40, no. 1, pp. 343-366,2008.

  11. Gueyffier, D., Li, J., Nadim, A., Scardovelli, R., and Zaleski, S., Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows, J. Comput. Phys., vol. 152, no. 2, pp. 423-456,1999.

  12. Herrmann, M., A Balanced Force Refined Level Set Grid Method for Two-Phase Flows on Unstructured Flow Solver Grids, J. Comput. Phys, vol. 227, no. 4, pp. 2674-2706,2008.

  13. Hinze, J.O., Fundamentals of the Hydrodynamic Mechanism of Splitting in Dispersion Processes, AIChEJ, vol. 1, no. 3, pp. 289-295,1955.

  14. Kang, M., Fedkiw, R.P., and Liu, X., Boundary Conditions Capturing Method for Multiphase Incompressible Flow, J. Sci. Comput, vol. 3, pp. 323-360,2000.

  15. Kindlmann, G., Whitaker, R., Tasdizen, T., and Moller, T., Curvature-Based Transfer Functions for Direct Volume Rendering: Methods and Applications, 2003 IEEE Visualization Conference, Seattle, WA, pp. 513-520,2003.

  16. Lalanne, B., Villegas, L.R., Tanguy, S., and Risso, F., On the Computation of Viscous Terms for Incom-pressible Two-Phase Flows with Level Set/Ghost Fluid Method, J. Comput. Phys, vol. 301, pp. 289-307, 2015.

  17. Lebas, R., Menard, T., Beau, P.A., Berlemont, A., and Demoulin, F.X., Numerical Simulation of Primary Break-Up and Atomization: DNS and Modelling Study, Int. J. Multiphase Flow, vol. 35, no. 3, pp. 247-260, 2009.

  18. Liu, X.D., Fedkiw, R.P., and Kang, M., A Boundary Condition Capturing Method for Poisson's Equation on Irregular Domains, J. Comput. Phys., vol. 160, no. 1,pp. 151-178,2000.

  19. Luret, G., Menard, T., Berlemont, A., Reveillon, J., Demoulin, F.X., andBlokkeel, G., Modeling Collision Outcome in Moderately Dense Sprays, Atomization Sprays, vol. 20, no. 3, pp. 251-268,2010.

  20. Menard, T., Tanguy, S., and Berlemont, A., Coupling Level Set/VOF/Ghost Fluid Methods: Validation and Application to 3D Simulation of the Primary Break-Up of a Liquid Jet, Int. J. Multiphase Flow, vol. 33, no. 5, pp. 510-524,2007.

  21. Saurel, R. and Pantano, C., Diffuse-Interface Capturing Methods for Compressible Two-Phase Flows, An-nual Review of Fluid Mechanics, vol. 50, no. 1,pp. 105-130,2018.

  22. Shinjo, J. andUmemura, A., Simulation ofLiquid Jet Primary Breakup: Dynamics ofLigament and Droplet Formation, Int. J. Multiphase Flow, vol. 36, no. 7, pp. 513-532,2010.

  23. Sussman, M., Smereka, P., and Osher, S., A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow, J. Comput. Phys, vol. 114, no. 1, pp. 146-159,1994.

  24. Sussman, M., Smith, K.M., Hussaini, M.Y., Ohta, M., and Zhi-Wei, R., A Sharp Interface Method for Incompressible Two-Phase Flows, J. Comput. Phys., vol. 221, no. 2, pp. 469-505,2007.

  25. Thiesset, F., Duret, B., Menard, T., Dumouchel, C., Reveillon, J., and Demoulin, F.X., Liquid Transport in Scale Space, J. Fluid Mech, vol. 886, p. A4,2020.

  26. Vallet, A. and Borghi, R., Modelisation Eulerienne De L'atomisation D'un Jet Liquide, Compt. Rendus l'Academie Sci.-Ser. IIB-Mech.-Phys.-Astron, vol. 327, no. 10, pp. 1015-1020,1999.

  27. Vallet, A., Burluka, A.A., and Borghi, R., Development of a Eulerian Model for the "Atomization" of a Liquid Jet, Atomization Sprays, vol. 11, no. 6, pp. 619-642,2001.

  28. Vaudor, G., Menard, T., Aniszewski, W., Doring, M., and Berlemont, A., A Consistent Mass and Momentum Flux Computation Method for Two Phase Flows. Application to Atomization Process, Comput. Fluids, vol. 152, pp. 204-216,2017.

  29. Wardle, K.E. and Weller, H.G., Hybrid Multiphase CFD Solver for Coupled Dispersed/Segregated Flows in Liquid-Liquid Extraction, Int. J. Chem. Eng., vol. 2013, pp. 1-13,2013.

  30. Weller, H.G., Tabor, G., Jasak, H., and Fureby, C., A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques, Comput. Phys., vol. 12, no. 6, pp. 620-631,1998.


Articles with similar content:

DROPLET SIZE AND VELOCITY CORRELATIONS FOR A COAXIAL AIR BLAST ATOMIZED JET
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
Q.P. Zheng, Arvind Jasuja
ANALYSIS OF TWO-DIMENSIONAL LIQUID SPRAY IMAGES: THE SURFACE-BASED SCALE DISTRIBUTION
Journal of Flow Visualization and Image Processing, Vol.15, 2008, issue 1
Sebastien Grout, Jean Cousin, Christophe Dumouchel
Tree Networks for Flows in Composite Porous Media
Journal of Porous Media, Vol.2, 1999, issue 1
M. R. Errera, Adrian Bejan
A SIMPLIFIED MAXIMUM-ENTROPY-BASED DROP SIZE DISTRIBUTION
Atomization and Sprays, Vol.3, 1993, issue 3
Mehran Ahmadi, R. W. Sellens
LARGE EDDY SIMULATION OF LIQUID JET ATOMIZATION
Atomization and Sprays, Vol.21, 2011, issue 9
Francois-Xavier Demoulin, Thibaut Menard, J. Chesnel, Julien Reveillon