Abo Bibliothek: Guest
Atomization and Sprays

Erscheint 12 Ausgaben pro Jahr

ISSN Druckformat: 1044-5110

ISSN Online: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

DROP DEFORMATION AND ACCELERATION: THE EFFECTS OF INERTIA IN FRAGMENTATION

Volumen 24, Ausgabe 4, 2014, pp. 349-366
DOI: 10.1615/AtomizSpr.2013008442
Get accessGet access

ABSTRAKT

This paper theoretically investigates the dynamics of internal drop motion and presents significant conclusions with respect to the role of deformational flow in drop fragmentation at low Weber numbers. The influence of deformational flow results in a selection mechanism between "bag", "claviform", and "multimode" breakup modes. This paper and conclusions are based on both the formulated instability necessary conditions and an advanced mathematical model of an accelerating and deforming drop. The analysis takes into account the pressure and surface tension force distributions along an ellipsoidal drop surface as well as the increasing gas velocity at a drop equator, caused by the flattening. It is suggested that the gas velocity values along an ellipsoid surface are the same as for a sphere at points where the angles between the normal vector to drop surface and the stream direction are the same. The numerical solutions of derived equations are used in analyzing the mass force field formation inside an accelerating and deforming drop and two stages of this process are established. It is shown that the distortion of the inertial force field, caused by deformation, causes the selection between breakup modes This paper concludes that during the first stage the deformational flow prevails over the drop's aerodynamic entrainment. Thus, the transiency and nonuniformity of the inertial force field, which are caused by the deformation, prevent "bag" early formation and result in either a "claviform" or a "multimode" mode at the later stage.

REFERENZIERT VON
  1. Girin Oleksandr G., Instability of aerosol boundary accelerated in a direction perpendicular to its plane, Journal of Aerosol Science, 108, 2017. Crossref

  2. Girin Oleksandr G., A hydrodynamic mechanism of meteor ablation, Astronomy & Astrophysics, 606, 2017. Crossref

  3. Antonov D. V., Atroshenko Yu. K., Kopylov N. P., Khasanov I. R., Numerical simulation of entrainment of water fragments from the zone of localization of combustion and pyrolysis of forest fuel materials by air flow, INTERNATIONAL YOUTH SCIENTIFIC CONFERENCE “HEAT AND MASS TRANSFER IN THE THERMAL CONTROL SYSTEM OF TECHNICAL AND TECHNOLOGICAL ENERGY EQUIPMENT” (HMTTSC 2019), 2135, 2019. Crossref

  4. Kuznetsov Genii, Zhdanova Alena, Voitkov Ivan, Strizhak Pavel, Disintegration of Free-falling Liquid Droplets, Jets, and Arrays in Air, Microgravity Science and Technology, 34, 2, 2022. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain