Abo Bibliothek: Guest
Computational Thermal Sciences: An International Journal

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 1940-2503

ISSN Online: 1940-2554

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.5 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00017 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.279 SNIP: 0.544 CiteScore™:: 2.5 H-Index: 22

Indexed in

NATURAL CONVECTION OF NANOFLUIDS IN A CAVITY INCLUDING THE SORET EFFECT

Volumen 1, Ausgabe 4, 2009, pp. 425-440
DOI: 10.1615/ComputThermalScien.v1.i4.40
Get accessGet access

ABSTRAKT

Convection of a binary mixture in a cavity is studied numerically. The flow is driven by a buoyancy force due to an externally applied constant temperature difference on the vertical wall of the cavity, while the horizontal surfaces are impermeable and adiabatic. A nanofluid is used and the effects of the cross phenomenon "Soret effect" were considered in the analysis. The flows are found to be dependent on the particle concentration φ, the Rayleigh number RaT, the Lewis number Le, the solutal to thermal buoyancy ratio N, and the thermal boundary conditions. Numerical results for finite amplitude convection, obtained by solving numerically the full governing equations, are found to be in good agreement with the analytical solution based on the scale analysis approach. We have proposed a modified formulation of the conservation equations governing the flow and heat transfer of nanofluids, taking into account important changes of nanofluid thermal conductivity and viscosity as well as the spatial change of the particle concentration that is induced by the Soret effect. Results have shown that such an effect increases nanofluid heat transfer. The optimal particle volume concentration, which maximizes heat transfer, is estimated to be 2%. The increase of natural convection with nanoparticle concentration is weak in comparison to that found in forced convection.

REFERENZIERT VON
  1. Oueslati Fakhreddine Segni, Bennacer Rachid, Heterogeneous nanofluids: natural convection heat transfer enhancement, Nanoscale Research Letters, 6, 1, 2011. Crossref

  2. Alloui Z., Vasseur P., Reggio M., Analytical and numerical study of buoyancy-driven convection in a vertical enclosure filled with nanofluids, Heat and Mass Transfer, 48, 4, 2012. Crossref

  3. Elhajjar Bilal, Bachir Glades, Mojtabi Abdelkader, Fakih Chakib, Charrier-Mojtabi Marie Catherine, Modeling of Rayleigh–Bénard natural convection heat transfer in nanofluids, Comptes Rendus Mécanique, 338, 6, 2010. Crossref

  4. Warda Boudaoud, Amina Sabeur, Souad Morsli, Nunzi Jean-Michel, Bennacer Rachid, El Ganaoui Mohammed, Numerical analysis of Al2O3/water nano-fluids natural convection and entropy generation in enclosures, The European Physical Journal Applied Physics, 78, 3, 2017. Crossref

  5. Oueslati Fakhreddine S., Bennacer Rachid, El Ganaoui Mohammed, El Cafsi Afif, Competition between the lid driven and the natural convection of nanofluids taking into consideration the Soret effect, International Journal of Heat and Mass Transfer, 114, 2017. Crossref

  6. Ferialdi Hermes, Lappa Marcello, Haughey Christopher, On the role of thermal boundary conditions in typical problems of buoyancy convection: A combined experimental-numerical analysis, International Journal of Heat and Mass Transfer, 159, 2020. Crossref

Zukünftige Artikel

Positivity Preserving Analysis of Central Schemes for Compressible Euler Equations Souren Misra, Alok Patra, Santosh Kumar Panda A lattice Boltzmann study of nano-magneto-hydrodynamic flow with heat transfer and entropy generation over a porous backward facing-step channel Hassane NAJI, Hammouda Sihem, Hacen Dhahri A Commemorative Volume in Memory of Darrell Pepper David Carrington, Yogesh Jaluria, Akshai Runchal In Memoriam: Professor Darrell W. Pepper – A Tribute to an Exceptional Engineering Educator and Researcher Akshai K. Runchal, David Carrington, SA Sherif, Wilson K. S. Chiu, Jon P. Longtin, Francine Battaglia, Yongxin Tao, Yogesh Jaluria, Michael W. Plesniak, James F. Klausner, Vish Prasad, Alain J. Kassab, John R. Lloyd, Yelena Shafeyeva, Wayne Strasser, Lorenzo Cremaschi, Tom Shih, Tarek Abdel-Salam, Ryoichi S. Amano, Ashwani K. Gupta, Nesrin Ozalp, Ting Wang, Kevin R. Anderson, Suresh Aggarwal, Sumanta Acharya, Farzad Mashayek, Efstathios E. Michaelides, Bhupendra Khandelwal, Xiuling Wang, Shima Hajimirza, Kevin Dowding, Sandip Mazumder, Eduardo Divo, Rod Douglass, Roy E. Hogan, Glen Hansen, Steven Beale, Perumal Nithiarasu, Surya Pratap Vanka, Renato M. Cotta, John A. Reizes, Victoria Timchenko, Ashoke De, Keith A Woodbury, John Tencer, Aaron P. Wemhoff, G.F. ‘Jerry’ Jones, Leitao Chen, Timothy S. Fisher, Sandra K. S. Boetcher, Patrick H. Oosthuizen, Hamidreza Najafi, Brent W. Webb, Satwindar S. Sadhal, Amanie Abdelmessih Modeling of Two-Phase Gas-Liquid Slug Flows in Microchannels Ayyoub Mehdizadeh Momen, SA Sherif, William E. Lear Performance of two dimensional planar curved micronozzle used for gas separation Manu K Sukesan, Shine SR A Localized Meshless Method for Transient Heat Conduction with Applications Kyle Beggs, Eduardo Divo, Alain J. Kassab Non-nested Multilevel Acceleration of Meshless Solution of Heat Conduction in Complex Domains Anand Radhakrishnan, Michael Xu, Shantanu Shahane, Surya P Vanka Assessing the Viability of High-Capacity Photovoltaic Power Plants in Diverse Climatic Zones : A Technical, Economic, and Environmental Analysis Kadir Özbek, Kadir Gelis, Ömer Özyurt MACHINE LEARNING LOCAL WALL STEAM CONDENSATION MODEL IN PRESENCE OF NON-CONDENSABLE FROM TUBE DATA Pavan Sharma LES of Humid Air Natural Convection in Cavity with Conducting Walls Hadi Ahmadi moghaddam, Svetlana Tkachenko, John Reizes, Guan Heng Yeoh, Victoria Timchenko
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain