Abo Bibliothek: Guest
Computational Thermal Sciences: An International Journal

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 1940-2503

ISSN Online: 1940-2554

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.5 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00017 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.279 SNIP: 0.544 CiteScore™:: 2.5 H-Index: 22

Indexed in

THE MATHEMATICAL MODELING OF THERMOCHEMICAL PROCESS OF A TWO-STAGE DOWNDRAFT GASIFICATION

Volumen 6, Ausgabe 1, 2014, pp. 59-68
DOI: 10.1615/ComputThermalScien.2014005664
Get accessGet access

ABSTRAKT

This work developed a mathematical model to predict the temperature profile in the pyrolysis zone, and the feedstock feed rate of the KU-KPS two-stage downdraft gasification process using wood chips as feedstock. The obtained temperature profile is an important input parameter to calculate the gas composition of volatile gas in the pyrolysis zone of the gasification process. The feedstock feed rate is also useful to evaluate the gas generation rate, thermal efficiency, and gas composition in producer gas of gasification. Thermochemical concepts were applied to derive the energy and mass balance equations composed of chemical, kinetic, and three modes of heat transfer; conduction, convection, and radiation. The feedstock was treated as a porous medium. The equations were solved by the implicit finite difference method on the node of 200 and conversion criteria of 10−6. Experiments were also conducted to validate the model results. The validation results showed that the maximum temperature deviation between model and experiment was 62° C at the combustion temperature of 790° C while for the feedstock feed rate it had a deviation of 0.94 kg/h at the rate of 14.7 kg/h. The experimental uncertainty was also analyzed based on a 95% level of confidence. The total experimental uncertainties of temperature and feedstock feed rate were 72° C and 0.95 kg/h, respectively.

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain