Abo Bibliothek: Guest
International Journal for Multiscale Computational Engineering

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 1543-1649

ISSN Online: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

INTERLAMINAR SCALE EFFECT OF MULTILAYER COMPOSITE MICROBEAMS BASED ON A NEW MODIFIED COUPLE-STRESS THEORY AND THE HU–WASHIZU VARIATIONAL THEOREM

Volumen 16, Ausgabe 3, 2018, pp. 209-229
DOI: 10.1615/IntJMultCompEng.2018026066
Get accessGet access

ABSTRAKT

Few studies on the interlaminar scale effect of multilayer composite beams are reported in the published literature. Thus, a refined higher-order zigzag model satisfying the transverse shear traction-free condition is proposed for analysis of the interlaminar scale effect of composite microbeams. The number of unknown parameters in the proposed model is independent of the number of layers. Moreover, there are only four displacement parameters in the displacement field. Differing from previous work, a three-dimensional equilibrium equation including the scale effect is proposed to accurately predict the interlaminar scale effect. It is significant that the higher-order derivatives of the displacement parameters are eliminated from the transverse shear stress components by using the three-field Hu–Washizu variational principle. By analyzing the bending behaviors of microscale composite beams, the effects of the microlength-scale parameter in each ply on the displacements and the stress of the multilayer composite beams have been investigated. The numerical results showed that with an increase in the material length constants, displacements, and in-plane stress gradually decrease, whereas the transverse shear stress at different layers does not completely decrease. Thus, the interlaminar scale effects of composite microbeams differ from those of displacements and in-plane stresses. With an increase in the number of layers, the effects of the microlength-scale length parameter on the displacements and interlaminar stresses gradually decrease.

REFERENZIERT VON
  1. Chen Dejin, Feng Kai, Zheng Shijie, Flapwise vibration analysis of rotating composite laminated Timoshenko microbeams with geometric imperfection based on a re-modified couple stress theory and isogeometric analysis, European Journal of Mechanics - A/Solids, 76, 2019. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain