Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Multiscale Computational Engineering
Impact-faktor: 1.016 5-jähriger Impact-Faktor: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Druckformat: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2019029391
pages 29-43

A FINITE-ELEMENT METHOD OF FLEXOELECTRIC EFFECTS ON NANOSCALE BEAM

Xu Yang
School of Civil Engineering, Shandong University, Jinan, 250061, China
Yarong Zhou
School of Civil Engineering, Shandong University, Jinan, 250061, China
Binglei Wang
School of Civil Engineering, Shandong University, Jinan, 250061, China; State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
Bo Zhang
School of Civil Engineering, Shandong University, Jinan, 250061, China

ABSTRAKT

Flexoelectricity is a linear coupling between the strain gradient and the electric polarization, which is present in all dielectric materials. Strain gradients cause flexoelectricity to be size-dependent, especially significant for nanoscale structures. However, strain gradients involve higher-order partial derivate of displacements which brings difficulties to the solution of flexoelectric problems. The effect of strain gradient elasticity was ignored in most previous works on flexoelectricity. Thus, it is necessary to develop an effective numerical method that accounts for both strain gradient elasticity and flexoelectricity.We have developed a size-dependent finite-element model of a nanoscale Euler beam based on a reformulated strain gradient elasticity theory. The new model contains three independent material length scale parameters which capture the size effect. The developed C2 weak continuous element with two nodes has three degrees of freedom at each node. Using the Finite Element Method (FEM), with the Euler cantilever beam as an example, the effects of flexoelectricity and strain gradient elasticity on the beam have been investigated. The results were compared with those available in literature and an excellent agreement was achieved.


Articles with similar content:

A SIZE-DEPENDENT FINITE-ELEMENT MODEL FOR A MICRO/NANOSCALE TIMOSHENKO BEAM
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 6
Long Zhang, Yiguo Xue, Binbin Liang, Binglei Wang, Shenjie Zhou
A MULTISCALE COMPUTATIONAL METHOD FOR 2D ELASTOPLASTIC DYNAMIC ANALYSIS OF HETEROGENEOUS MATERIALS
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 2
Hongwu Zhang, Hui Liu
PARTICLE SWARM OPTIMIZATION-BASED NEURAL NETWORK FOR PREDICTING FATIGUE STRENGTH IN COMPOSITE LAMINATES OF WIND TURBINE BLADES
Composites: Mechanics, Computations, Applications: An International Journal, Vol.6, 2015, issue 4
Soraya Zebirate, Khaled Ziane, Adel Zaitri
MICRO-MACRO RELATIONSHIPS FROM DISCRETE ELEMENT SIMULATIONS OF SINTERING
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 4
Marcin Chmielewski, Szymon Nosewicz, Jerzy Rojek
Thermoelectric Properties of ZnNiO/Polyparaphenylene Hybrids Prepared by Spark Plasma Sintering
International Heat Transfer Conference 15, Vol.39, 2014, issue
Huaqing Xie, Jun Liu, Wu Zihua, Lianghua Gan