Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Multiscale Computational Engineering
Impact-faktor: 1.016 5-jähriger Impact-Faktor: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Druckformat: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2013004866
pages 443-462

HOMOGENIZATION OF PLAIN WEAVE COMPOSITES WITH IMPERFECT MICROSTRUCTURE. PART II. ANALYSIS OF REAL-WORLD MATERIALS

Jan Vorel
Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Thakurova 7,166 29 Prague 6, Czech Republic
Jan Zeman
Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Thakurova 7,166 29 Prague 6, Czech Republic; Centre of Excellence IT4Innovations, VSB-TU Ostrava, 17 listopadu 15/2172 708 33 Ostrava-Poruba, Czech Republic
Michal Sejnoha
Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Thakurova 7,166 29 Prague 6, Czech Republic

ABSTRAKT

A two-layer, statistically equivalent periodic unit cell is offered to predict a macroscopic response of plain weave, multilayer carbon-carbon textile composites. Falling short in describing the most severe geometrical imperfections of these material systems, the original formulation presented in Zeman and Sejnoha (2004) is substantially modified, now allowing for nesting and mutual shifting of individual layers of textile fabric in all three directions. Yet the most valuable asset of the present formulation is seen in the possibility of reflecting the influence of mesoscale porosity through a system of distorted voids. Numerical predictions of both the effective thermal conductivities and elastic stiffnesses provided through the application of the extended finite element method are compared with available laboratory data and the results derived using the Mori-Tanaka averaging scheme to support credibility of the present approach, about as much as the reliability of local mechanical properties found from nanoindentation tests performed directly on the analyzed composite samples.

REFERENZEN

  1. Barbero, E. J., Trovillion, J., Mayugo, J. A., and Sikkil, K. K., Finite element modeling of plain weave fabrics from photomicrograph measurements. DOI: 10.1016/j.compstruct.2005.01.030

  2. Benveniste, Y., A new approach to the application of Mori-Tanaka theory in composite materials. DOI: 10.1016/0167-6636(87)90005-6

  3. Bittnar, Z. and Šejnoha, J., Numerical Methods in Structural Engineering.

  4. Bochenek, B. and Pyrz, R., Reconstruction of random microstructures–a stochastic optimization problem. DOI: 10.1016/j.commatsci.2004.01.038

  5. Boháč, V., Methodology of the testing of model for contact pulse transient method and influence of the disturbance effects on evaluating themophysical parameters of the PMMA.

  6. Černý, M., Glogar, P., and Machota, L. M., Resonant frequency study of tensile and shear elasticity moduli of carbon fibre reinforced composites (CFRC). DOI: 10.1016/S0008-6223(00)00071-3

  7. Chung, P. W. and Tamma, K. K., Woven fabric composites - developments in engineering bounds, homogenization and applications. DOI: 10.1002/(SICI)1097-0207(19990830)45:12<1757::AID-NME653>3.0.CO;2-O

  8. Collins, B. C., Matou&#353;, K., and Rypl, D., Three-dimensional reconstruction of statistically optimal unit cells of multimodal particulate composites. DOI: 10.1615/IntJMultCompEng.v8.i5.50

  9. Cox, B. N. and Flanagan, G., Handbook of analytical methods for textile composites.

  10. Cox, B. and Yang, Q., In quest of virtual tests for structural composites.

  11. Diss, P., Lamon, J., Carpentier, L., Loubet, J. L., and Kapsa, Ph., Sharp indentation behavior of Carbon/Carbon composites and varieties of carbon. DOI: 10.1016/S0008-6223(02)00169-0

  12. Djukic, L. P., Herszberg, I., Walsh, W. R., Schoeppner, G. A., and Gangadhara Prusty, B., Contrast enhancement in visualisation of woven composite architecture using a MicroCT scanner, Part 2: Tow and preform coatings. DOI: 10.1016/j.compositesa.2009.04.002

  13. Djukic, L. P., Herszberg, I., Walsh, W. R., Schoeppner, G. A., Prusty, B. G., and Kelly, D. W., Contrast enhancement in visualisation of woven composite tow architecture using a MicroCT scanner. Part 1: Fabric coating and resin additives. DOI: 10.1016/j.compositesa.2008.12.016

  14. Dobi&#225;&#353;ov&#225;, L., Star&#253;, V., Glogar, P., and Valvoda, V., X-ray structure analysis and elastic properties of a fabric reinforced Carbon/Carbon composite. DOI: 10.1016/S0008-6223(01)00309-8

  15. Dvorak, G. J., Composite materials: Inelastic behavior, damage, fatigue and fracture. DOI: 10.1016/S0020-7683(99)00085-2

  16. Fish, J. and Shek, K., Multiscale analysis of large-scale nonlinear structures and materials.

  17. Fish, J., Yu, Q., and Shek, K., Computational damage mechanics for composite materials based on mathematical homogenization. DOI: 10.1002/(SICI)1097-0207(19990820)45:113.0.CO;2-H

  18. Frigo, M. and Johnson, S. G., The design and implementation of FFTW3.

  19. Gajdo&#353;&#205;k, J., Zeman, J., and &#352;ejnoha, M., Qualitative analysis of fiber composite microstructure: Influence of boundary conditions. DOI: 10.1016/j.probengmech.2005.11.006

  20. Herb, V., Cou&#233;gnat, G., and Martin, E., Damage assessment of thin SiC/SiC composite plates subjected to quasi-static indentation loading. DOI: 10.1016/j.compositesa.2010.08.004

  21. Hivet, G. and Boisse, Ph., Consistent 3D geometrical model of fabric elementary cell, Application to a meshing preprocessor for 3D finite element analysis. DOI: 10.1016/j.finel.2005.05.001

  22. Hrstka, O., Ku&#269;erov&#225;, A., Lep&#353;, M., and Zeman, J., A competitive comparison of different types of evolutionary algorithms. DOI: 10.1016/S0045-7949(03)00217-7

  23. J&#275;kabsons, N. and Bystr&#246;m, J., On the effect of stacked fabric layers on the stiffness of a woven composite. DOI: 10.1016/S1359-8368(02)00038-0

  24. Je&#345;&#225;bek, J., Numerical Framework for Modeling of Cementitious Composites at the Meso-Scale.

  25. Kanari, M., Tanaka, K., Baba, S., and Eto, M., Nanoindentation behavior of a two-dimensional carbon-carbon composite for nuclear applications. DOI: 10.1016/S0008-6223(97)00042-0

  26. Knauss, W. G., Perspectives in experimental solid mechanics. DOI: 10.1016/S0020-7683(99)00092-X

  27. Kouznetsova, V., Brekelmans, W. A. M., and Baaijens, P. T., An approach to micro-macro modeling of heterogeneous materials. DOI: 10.1007/s004660000212

  28. Kuhn, J. L. and Charalambides, P. G., Modeling of plain weave fabric composite geometry. DOI: 10.1177/002199839903300301

  29. Kumar, H., Briant, C. L., and Curtin, W. A., Using microstructure reconstruction to model mechanical behavior in complex microstructures. DOI: 10.1016/j.mechmat.2005.06.030

  30. Kyt&#253;&#345;, D., Jirou&#353;ek, O., and Dammer, J., High resolution X-ray imaging of bone-implant interface by large area flat-panel detector. DOI: 10.1088/1748-0221/6/01/C01038

  31. Lomov, S. V., Verpoest, I., Peeters, T., Roose, D., and Zako, M., Nesting in textile laminates: Geometrical modelling of the laminate. DOI: 10.1016/S0266-3538(02)00318-4

  32. Lomov, S. V., Ivanov, D. S., Verpoest, I., Zako, M., Kurashiki, T., Nakai, H., and Hirosawa, S., Meso-FE modelling of textile composites: Road map, data flow and algorithms. DOI: 10.1016/j.compscitech.2006.10.017

  33. Lu, B. and Torquato, S., Lineal-path function for random heterogeneous materials. DOI: 10.1103/PhysRevA.45.922

  34. Malvern, L. E., Introduction to the Mechanics of a Continuous Medium.

  35. Marx, D. T. and Riester, L., Mechanical properties of Carbon-Carbon composite components determined using nanoindentation. DOI: 10.1016/S0008-6223(98)00239-5

  36. Matou&#353;, K., Lep&#353;, M., Zeman, J., and &#352;ejnoha, M., Applying genetic algorithms to selected topics commonly encountered in engineering practice. DOI: 10.1016/S0045-7825(00)00192-4

  37. Michel, J. C., Moulinec, H., and Suquet, P., Effective properties of composite materials with periodic microstructure: A computational approach. DOI: 10.1016/S0045-7825(98)00227-8

  38. Mo&#235;s, N., Cloirec, M., Cartraud, P., and Remacle, J.-F., A computational approach to handle complex microstructure geometries. DOI: 10.1016/S0045-7825(03)00346-3

  39. N&#283;me&#269;ek, J., Creep effects in nanoindentation of hydrated phases of cement pastes. DOI: 10.1016/j.matchar.2009.04.008

  40. Oliver, W. C. and Pharr, G. M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. DOI: 10.1557/JMR.1992.1564

  41. Pastore, C. M., Quantification of processing artifacts in textile composites. DOI: 10.1016/0956-7143(93)90007-U

  42. Povirk, G. L., Incorporation of microstructural information into models of two-phase materials. DOI: 10.1016/0956-7151(94)00487-3

  43. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannergy, B. P., Numerical Recipes in C++.

  44. &#352;ejnoha, M. and Zeman, J., Micromechanical modeling of imperfect textile composites. DOI: 10.1016/j.ijengsci.2008.01.006

  45. Sko&#269;ek, J., Zeman, J., and &#352;ejnoha, M., Effective properties of Carbon-Carbon textile composites: Application of the Mori-Tanaka method. DOI: 10.1088/0965-0393/16/8/085002

  46. Sukumar, N., Chopp, D. L., Mo&#235;s, N., and Belytschko, T., Modeling holes and inclusions by level sets in the extened finite element method. DOI: 10.1016/S0045-7825(01)00215-8

  47. Tomkov&#225;, B., Modelling of Thermophysical Properties of Woven Composites.

  48. Tomkov&#225;, B. and Ko&#353;kov&#225;, B., The porosity of plain weave C/C composite as an input parameter for evaluation of material properties.

  49. Tomkov&#225;, B., &#352;ejnoha, M., Nov&#225;k, J., and Zeman, J., Evaluation of effective thermal conductivities of porous textile composites. DOI: 10.1615/IntJMultCompEng.v6.i2.40

  50. Torquato, S. and Stell, G., Microstructure of two-phase random media, I. The n-point probability functions. DOI: 10.1063/1.444011

  51. Tsukrov, I., Piat, R., Novak, J., and Schnack, E., Micromechanical modeling of porous carbon/carbon composites. DOI: 10.1080/15376490490492034

  52. Vav&#345;&#237;k, D., Dammer, J., Jakubek, J., Jeon, I., Jirou&#353;ek, O., Kroupa, M., and Zl&#225;mal, P., Advanced X-ray radiography and tomography in several engineering applications. DOI: 10.1016/j.nima.2010.06.152

  53. Vorel, J. and &#352;ejnoha, M., Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites using the Mori-Tanaka method. DOI: 10.12989/sem.2009.33.4.429

  54. Wentorf, R., Collar, R., Shephard, M. S., and Fish, J., Automated modeling for complex woven mesostructures. DOI: 10.1016/S0045-7825(98)00232-1

  55. Woo, K. and Whitcomb, J. D., Effects of fiber tow misalignment on the engineering properties of plain weave textile composites. DOI: 10.1016/S0263-8223(97)00025-1

  56. Yeong, C. L. Y. and Torquato, S., Reconstructing random media. DOI: 10.1103/PhysRevE.57.495

  57. Yeong, C. L. Y. and Torquato, S., Reconstructing random media, II. Three-dimensional media from two-dimensional cuts. DOI: 10.1103/PhysRevE.58.224

  58. Yurgartis, S., Morey, K., and Jortner, J., Measurement of yarn shape and nesting in plain-weave composites. DOI: 10.1016/0266-3538(93)90079-V

  59. Yushanov, S. P. and Bogdanovich, A. E., Stochastic theory of composite materials with random waviness of the reinforcements. DOI: 10.1016/S0020-7683(97)00351-X

  60. Zeman, J., Analysis of Composite Materials with Random Microstructure.

  61. Zeman, J. and &#352;ejnoha, M., Numerical evaluation of effective properties of graphite fiber tow impregnated by polymer matrix. DOI: 10.1016/S0022-5096(00)00027-2

  62. Zeman, J. and &#352;ejnoha, M., From random microstructures to representative volume elements. DOI: 10.1088/0965-0393/15/4/S01

  63. Zeman, J. and &#352;ejnoha, M., Homogenization of balanced plain weave composites with imperfect microstructure: Part I &mdash; Theoretical formulation. DOI: 10.1016/j.ijsolstr.2004.05.011


Articles with similar content:

ELASTIC AND ELECTRICAL BEHAVIOR OF SOME RANDOMMULTISCALE HIGHLY-CONTRASTED COMPOSITES
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 3
Francois Willot, Dominique Jeulin
A Force-Based Blending Model forAtomistic-to-Continuum Coupling
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 5
Pavel Bochev, Mohan A. Nuggehally, Michael Parks, Max Gunzburger, Santiago Badia, Richard Lehoucq, Jacob Fish
EFFECTIVE THERMOELASTIC PROPERTIES OF POLYSILOXANE MATRIX-BASED PLAIN WEAVE TEXTILE COMPOSITES
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 3
Michal Sejnoha, Jan Vorel, Edith Grippon
Optimal Syndrome Decoding of Convolutional Codes
Telecommunications and Radio Engineering, Vol.69, 2010, issue 3
A. N. Khmelkov
EFFECT OF GEOMETRY AND WALL THICKNESS ON HEAT TRANSFER FROM LONGITUDINAL FINS TO BOILING LIQUIDS
International Heat Transfer Conference 5, Vol.6, 1974, issue
Chien-Cheng Shih, J. W. Westwater