Abo Bibliothek: Guest
International Journal for Multiscale Computational Engineering

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 1543-1649

ISSN Online: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

INVERSE ANALYSIS FOR MULTIPHASE NONLINEAR COMPOSITES WITH RANDOM MICROSTRUCTURE

Volumen 10, Ausgabe 4, 2012, pp. 361-373
DOI: 10.1615/IntJMultCompEng.2012002946
Get accessGet access

ABSTRAKT

The contribution considers the application of inverse analysis to the identification of the material parameters of nonlinear composites. For this purpose a combination of the Levenberg-Marquardt method with the multiscale finite element method is used. The first one belongs to the group of gradient-based optimization methods, and the latter is a numerical procedure for modeling heterogeneous materials which is applicable in the case when the ratio of characteristic sizes of the scales tends to zero. Emphasis is placed on the investigation of problems with an increasing number of unknown materials parameters, as well as on the manifestation of the ill-posedness of inverse problems. These effects first occurred in the case of three-phase materials. The illustrative examples are concerned with cases where such a combination of experimental data is used that effects of ill-posedness are alleviated and a unique solution is achieved.

REFERENZEN
  1. Bazaraa, M. S., Sherali, H., and Shetty, C. M., Nonlinear Programming: Theory and Algorithms.

  2. Bertsekas, D., Nonlinear Programming.

  3. Chaterjee, A., An introduction to the proper orthogonal decomposition.

  4. Feyel, F., A multilevel finite element method FE2 to describe the response of highly nonlinear structures using generalized continua. DOI: 10.1016/S0045-7825(03)00348-7

  5. Fish, J. and Fan, R., Mathematical homogenization of nonperiodic heterogeneous media subjected to large deformation transient loading. DOI: 10.1002/nme.2355

  6. Fish, J. and Kuznetsov, S., Computational continua. DOI: 10.1002/nme.2918

  7. Hadamard, J., Lectures on Cauchy's Problem in linear partial differential equations. DOI: 10.1063/1.3061337

  8. Haupt, R. and Haupt, S. E., Practical Genetic Algorithms. DOI: 10.1002/0471671746

  9. Hill, R., Elastic properties of reinforced solids: Some theoretical principles. DOI: 10.1016/0022-5096(63)90036-X

  10. Hill, R., On constitutive macro-variables for heterogeneous solids at finite strain. DOI: 10.1098/rspa.1972.0001

  11. Huet, C., Application of variational concepts to size effects in elastic heterogeneous bodies. DOI: 10.1016/0022-5096(90)90041-2

  12. Ilic, S., Application of the Multiscale FEM to the Modeling of Composite Materials.

  13. Ilic, S., Parameter identification for two-phase nonlinear composites.

  14. Ilic, S., User Manual for the Multiscale FE Program MSFEAP.

  15. Ilic, S. and Hackl, K., Application of the multiscale FEM to the modeling of nonlinear multiphase materials.

  16. Ilic, S. and Hackl, K., Solution-precipitation creep - extended FE implementation. DOI: 10.1007/978-90-481-9195-6_8

  17. Ilic, S., Hackl, K., and Gilbert, R. P, Application of the multiscale FEM to the modeling of cancellous bone. DOI: 10.1007/s10237-009-0161-6

  18. Kabanikhin, S., Definitions and examples of inverse and ill-posed problems. DOI: 10.1515/JIIP.2008.019

  19. Klinge, S. and Hackl, K., Application of the multiscale FEM to the modeling of nonlinear composites with a random microstructure. DOI: 10.1615/IntJMultCompEng.v10.i3

  20. Kost, B., Optimierung mit Evoultionsstrategien.

  21. Luenberger, D. and Ye, Y., Linear and Nonlinear Pogramming.

  22. Michel, J. and Suquet, P., Computational analysis of nonlinear composites structures using the nonuniform transformation fields analysis. DOI: 10.1016/j.cma.2003.12.071

  23. Miehe, C., Schotte, J., and Lambrecht, M., Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. DOI: 10.1016/S0022-5096(02)00016-9

  24. Miehe, C., Schröder, J., and Schotte, J., Computational homogenization analysis in finite plasticity, simulation of texture development in polycrystalline materials. DOI: 10.1016/S0045-7825(98)00218-7

  25. Nocedal, J. and Wright, S. J., Numerical Optimization. DOI: 10.1007/b98874

  26. Oden, J. and Zohdi, T., Analysis and adaptive modeling of highly heterogeneous elastic structures. DOI: 10.1016/S0045-7825(97)00032-7

  27. Oskay, C. and Fish, J., Eigendeformation-based reduced order homogenization. DOI: 10.1016/j.cma.2006.08.015

  28. Oskay, C. and Fish, J., On calibration and validation of eigendeformation-based multiscale models for failure analysis of heterogeneous systems. DOI: 10.1007/s00466-007-0197-3

  29. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes in Fortran.

  30. Rojas, R., Neural Networks.

  31. Scherer, A., Neurale Netze.

  32. Schröder, J., Homogenisierungsmethoden der nichtlinearen Kontinuumsmechanik unter Beachtung von Stabilit ätsproblemen.

  33. Schwefel, H. P., Evolution and Optimum Seeking.

  34. Simo, J. C. and Hughes, T. J. R., Computational Inelasticity.

  35. Talbi, E. G., A taxonomy of hybrid metaheuristics. DOI: 10.1007/978-3-642-30671-6_1

  36. Terada, K. and Kikuchi, N., A class of general algorithms for multi-scale analysis of heterogeneous media. DOI: 10.1016/S0045-7825(01)00179-7

  37. Topping, B. H. V. and Bahreininejad, A., Neural Computing for Structure Mechanics.

  38. Yu, X. and Gen, M., Introduction to the Evolution Algorithms.

  39. Yuan, Z. and Fish, J., Towards realization of computational homogenization in practice. DOI: 10.1002/nme.2074

  40. Yuan, Z. and Fish, J., Hierarchical model reduction at multiple scales. DOI: 10.1002/nme.2554

  41. Yuan, Z. and Fish, J., Multiple scale eigendeformation-based reduced order homogenization. DOI: 10.1016/j.cma.2008.12.038

  42. Yvonet, J. and He, Q.-C., The reduced model multiscale method (R3M) for the nonlinear homogenization of hyperelastic media at finite strains. DOI: 10.1016/j.jcp.2006.09.019

  43. Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method.

  44. Zohdi, T., Wriggers, P., and Huet, C., A method of substructuring large-scale computational micromechanical problems. DOI: 10.1016/S0045-7825(01)00189-X

REFERENZIERT VON
  1. Klinge Sandra, Determination of the geometry of the RVE for cancellous bone by using the effective complex shear modulus, Biomechanics and Modeling in Mechanobiology, 12, 2, 2013. Crossref

  2. Klinge S., Bartels A., Steinmann P., Modeling of curing processes based on a multi-field potential. Single- and multiscale aspects, International Journal of Solids and Structures, 49, 17, 2012. Crossref

  3. Schmidt U., Mergheim J., Steinmann P., Identification of elastoplastic microscopic material parameters within a homogenization scheme, International Journal for Numerical Methods in Engineering, 104, 6, 2015. Crossref

  4. Klinge Sandra, Steinmann Paul, Inverse analysis for heterogeneous materials and its application to viscoelastic curing polymers, Computational Mechanics, 55, 3, 2015. Crossref

  5. Klinge Sandra, Steinmann Paul, Determination of material parameters of heterogeneous viscoelastic curing polymers, PAMM, 15, 1, 2015. Crossref

  6. Schmidt U., Steinmann P., Mergheim J., Two-scale elastic parameter identification from noisy macroscopic data, Archive of Applied Mechanics, 86, 1-2, 2016. Crossref

  7. Diebels Stefan, Scheffer Tobias, Schuster Thomas, Wewior Aaron, Identifying Elastic and Viscoelastic Material Parameters by Means of a Tikhonov Regularization, Mathematical Problems in Engineering, 2018, 2018. Crossref

  8. Sewerin Fabian, On the local identifiability of constituent stress–strain laws for hyperelastic composite materials, Computational Mechanics, 65, 3, 2020. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain