Abo Bibliothek: Guest
International Journal for Multiscale Computational Engineering

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 1543-1649

ISSN Online: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Analysis of Multi-Transmitting Formula for Absorbing Boundary Conditions

Volumen 8, Ausgabe 2, 2010, pp. 207-219
DOI: 10.1615/IntJMultCompEng.v8.i2.60
Get accessGet access

ABSTRAKT

In this paper, we analyze the multi-transmitting formula (MTF) proposed by Liao andWong (1984). From the computed reflection coefficients for the fully discrete MTF boundary conditions, we suggest choices for the artificial wave propagation speed which are different from Liao’s original choice. Theoretical and numerical studies for various incidence angles demonstrate that the suggested choices effectively reduce spurious reflections.

REFERENZEN
  1. Berenger, J. P., A perfectly matched layer for the absorption of electromagnetic waves. DOI: 10.1006/jcph.1994.1159

  2. Cai, W., de Koning, M., Bulatov, V. V., and Yip, S., Minimizing boundary reflections in coupled-domain simulations. DOI: 10.1103/PhysRevLett.85.3213

  3. Clayton, R. and Engquist, B., Absorbing boundary conditions for acoustic and elastic wave equations.

  4. Dreher, M. and Tang, S., Time history interfacial conditions in multiscale computations of Lattice oscillations. DOI: 10.1007/s00466-007-0224-4

  5. Engquist, B. and Majda, A., Absorbing boundary conditions for the numerical simulation of waves. DOI: 10.1090/S0025-5718-1977-0436612-4

  6. Engquist, B. and Majda, A., Radiation boundary conditions for acoustic and elastic calculations. DOI: 10.1002/cpa.3160320303

  7. Givoli, D., Non-reflecting boundary conditions: A review. DOI: 10.1016/j.wavemoti.2003.12.004

  8. Givoli, D., Numerical Methods for Problems in Infinite Domains.

  9. Givoli, D. and Keller, J. B., Non-reflecting boundary conditions for elastic waves. DOI: 10.1016/0165-2125(90)90043-4

  10. Hagstrom, T., Radiation boundary conditions for the numerical simulation of waves. DOI: 10.1017/S0962492900002890

  11. Hagstrom, T., Mar-Or, A., and Givoli, D., High-order local non-reflecting boundary conditions for the wave equation: Extensions and improvements. DOI: 10.1016/j.jcp.2007.11.040

  12. Higdon, R. L., Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation. DOI: 10.2307/2008166

  13. Higdon, R. L., Absorbing boundary conditions for the wave equation.

  14. Higdon, R. L., Boundary conditions for elastic wave propagation. DOI: 10.1137/0727049

  15. Keys, R. G., Absorbing boundary conditions for acoustic media. DOI: 10.1190/1.1441969

  16. Keller, J. B. and Givoli, D., Exact non-reflecting boundary conditions. DOI: 10.1016/0021-9991(89)90041-7

  17. Komornik, V., Rapid boundary stabilization of the wave equation. DOI: 10.1137/0329011

  18. Liao, Z. P., Extrapolation non-reflecting boundary conditions. DOI: 10.1016/0165-2125(96)00010-8

  19. Liao, Z. P., Introduction to Wave Motion Theories in Engineering (2nd ed).

  20. Liao, Z. P. and Wong, H. L., A transmitting boundary for the numerical simulation of elastic wave propagation. DOI: 10.1016/0261-7277(84)90033-0

  21. Liao, Z. P., Wong, H. L., Yang, B. P., and Yuan, Y. F., A transmitting boundary for transient wave analysis.

  22. Liu, W. K., Karpov, E. G., and Park, H. S., Nano-Mechanics and Materials: Theory.

  23. Moore, T. G., Blaschak, J. G., Taflove, A., and Kreigsmann, G. A., Theory and application of radiation boundary operators. DOI: 10.1109/8.14402

  24. Qian, D., Wagner, G. J., and Liu, W. K., A multiscale projection method for the analysis of carbon nanotubes. DOI: 10.1016/j.cma.2003.12.016

  25. Reynolds, A. C., Boundary conditions for the numerical solution of wave propagation problems. DOI: 10.1190/1.1440881

  26. Taflove, A. and Hagness, S. C., Computational Electrodynamics: The Finite-Difference Time-Domain Method (2nd ed).

  27. Tang, S., A Finite difference approach with velocity interfacial conditions for multiscale computations of crystalline solids. DOI: 10.1016/j.jcp.2007.12.012

  28. Trefethen, L. N., Group velocity in finite difference schemes. DOI: 10.1137/1024038

  29. Trefethen, L. N. and Halpern, L., Well-posedness of one-way wave equations and absorbing boundary conditions. DOI: 10.2307/2008165

  30. Tsynkov, S. V., Numerical solution of problems on unbounded domains:A review. DOI: 10.1016/S0168-9274(98)00025-7

  31. Tsynkov, S. V., Turkel, E., and Abarbanel, S., External flow computations using global boundary conditions. DOI: 10.2514/3.13130

  32. Yang, D., Wang, S., Zhang, Z., and Teng, J., n-Times absorbing boundary conditions for compact finite-difference modeling of acoustic and elastic wave propagation in the 2D TI medium. DOI: 10.1785/0120020224

REFERENZIERT VON
  1. Ren Zhiming, Liu Yang, A hybrid absorbing boundary condition for frequency-domain finite-difference modelling, Journal of Geophysics and Engineering, 10, 5, 2013. Crossref

  2. TANG Jie, Study on SEM Numerical Simulation of Airgun Signal Propagation, Chinese Journal of Geophysics, 55, 1, 2012. Crossref

  3. Gao Yingjie, Song Hanjie, Zhang Jinhai, Yao Zhenxing, Comparison of artificial absorbing boundaries for acoustic wave equation modelling, Exploration Geophysics, 48, 1, 2017. Crossref

  4. Su Jie, Zhou Zhenghua, Li Yuandong, Hao Bing, Dong Qing, Li Xiaojun, Khitab Anwar, A stable implementation measure of multi-transmitting formula in the numerical simulation of wave motion, PLOS ONE, 15, 12, 2020. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain