Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Multiscale Computational Engineering
Impact-faktor: 1.016 5-jähriger Impact-Faktor: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Druckformat: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v8.i2.50
pages 195-205

Hybrid Model for Simulation of Magneto-Optical Response of Layers of Semiconductor Nano-Objects

Oleksandr Voskoboynikov
National Chiao Tung University, Ta Hsueh Road, Hsinchu 30010, Taiwan


In this paper a multiscale hybrid model for evaluation of the collective magnetooptical response of semiconductor nano-object systems is presented. The model is based on a modification of the discrete dipole approximation and can efficiently describe the response from systems of arbitrary-shaped nano-objects embedded into a host semiconductor. The approach requires a simultaneous multiscale electrodynamic and quantum mechanical description. As an example of the model implementation, simulation of the magneto-ellipsometry of a layer of embedded semiconductor triple quantum dot molecules was performed. It was demonstrated that the model can be used to reproduce from conventional ellipsometric data important information on the quantum mechanics of the semiconductor nano-objects.


  1. Avelin, J., Polarizability Analysis of Canonical Dielectric and Bi-Anisotropic Scatterers.

  2. Bastard, G., Wave Mechanics Applied to Semiconductor Heterostructures.

  3. Boxberg, F. and Tulkki, J., Theory of the electronic structure and carrier dynamics of strain-induced (Ga,In) As quantum dots. DOI: 10.1088/0034-4885/70/8/R04

  4. Chuang, S. L., Physics of Optoelectronic Devices.

  5. Draine, B. T. and Flatau, P. J., Discrete-dipole approximation for periodic targets: Theory and tests. DOI: 10.1364/JOSAA.25.002693

  6. Eliseev, P. G., Li, H., Stintz, A., Liu, G. T., Newell, T. C., Malloy, K. J., and Lester, L. F., Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes. DOI: 10.1063/1.126944

  7. Kammerer, C., Sauvage, S., Fishman, G., Boucaud, P., Patriarche, G., and Lemaitre, A., Mid-infrared Intersublevel Absorption of Vertically Electronically Coupled InAs Quantum Dots. DOI: 10.1063/1.2117621

  8. Li, Y., Voskoboynikov, O., Lee, C. P., Sze, S. M., and Tretyak, O., Electron energy state dependence on the shape and size of semiconductor quantum dots. DOI: 10.1063/1.1412578

  9. Press, W. H., Teukolsky, B. P., Vetterling, W. T., and Flannery, S. A., Numerical Recipes 3rd Edition: The Art of Scientific Computing.

  10. Pryor, C. E. and Pistol, M. E., Band-edge diagrams for strained III-V semiconductor quantum wells wires, and dots. DOI: 10.1103/PhysRevB.72.205311

  11. Reimann, S. M. and Maninen, M., Electronic structure of quantum dots.

  12. Sihvola, A., Yla-Oijala, P., Jarvenpaa, S., and Avelin, J., Polarizabilities of platonic solids. DOI: 10.1109/TAP.2004.834081

  13. Smith, D. R., Pendry, J. B., and Wiltshire, M. C. K., Metamaterials and negative refractive index. DOI: 10.1126/science.1096796

  14. Tompkins, H. and Irene, E. A., Eds. Handbook of Ellipsometry.

  15. Velesago, V. G., The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ. DOI: 10.1070/PU1968v010n04ABEH003699

  16. Vlieger, J., Reflection and transmission of light by a square monpolar lattice.

  17. Voskoboynikov, O., Li, Y. M., Lu, H. M., Shih, C.-F., and Lee, C. P., Energy states and magnetization in nanoscale quantum rings. DOI: 10.1103/PhysRevB.66.155306

  18. Voskoboynikov, O., Wijers, C. M. J., Liu, J. L., and Lee, C. P., Magneto-optical response of layers of semiconductor quantum dots and nanorings. DOI: 10.1103/PhysRevB.71.245332

  19. Voskoboynikov, O., Theory of diamagnetism in an asymmetrical vertical quantum dot molecule. DOI: 10.1103/PhysRevB.78.113310

  20. Vurgaftman, I., Meyer, J. R., and Ram-Mohan, L. R., Band parameters for III-V compound semiconductor and their alloys. DOI: 10.1063/1.1368156

  21. Wijers, C. M. J., and Emmett, K. M. E., Structural contribution to the anisotropic reflection from the Si (110) surface. DOI: 10.1088/0031-8949/38/3/017

  22. Wijers, C. M. J., Polarizability tensor and Kramers-Heisenberg induction. DOI: 10.1103/PhysRevA.70.063807

  23. Wijers, C. M. J., Chu, J. H., Liu, J. L., and Voskoboynikov, O., Optical Response of Layers of Embedded Semiconductor Quantum Dots. DOI: 10.1103/PhysRevB.74.035323

  24. Yurkin, M. A. and Hoekstra, A. G., The discrete dipole approximation: An overview and recent developments. DOI: 10.1016/j.jqsrt.2007.01.034

Articles with similar content:

Second Thermal and Fluids Engineering Conference, Vol.5, 2017, issue
Flint Pierce, David L.Y. Louie, Ethan T. Zepper, Alexander L. Brown, Tyler Voskuilen
Effects of Externally Applied Stress on the Properties of Quantum Dot Nanostructures
International Journal for Multiscale Computational Engineering, Vol.1, 2003, issue 1
H. D. Robinson, R. Bose, H. T. Johnson, B. B. Goldberg
Theory of Semi-Conducting Structure Microwave Field Interaction in a Resonant Cavity
Telecommunications and Radio Engineering, Vol.58, 2002, issue 3&4
L. I. Sviderskaya
Antenna Designs for Microwave Tissue Ablation
Critical Reviews™ in Biomedical Engineering, Vol.46, 2018, issue 6
Hojjatollah Fallahi, Punit Prakash
Progress in Plasma Processing of Materials, 1999, Vol.1, 1999, issue
Yu. O. Barmenkov, N. M. Kozhevnikov, A. N. Starodumov