Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Multiscale Computational Engineering
Impact-faktor: 1.016 5-jähriger Impact-Faktor: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Druckformat: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v5.i3-4.120
pages 325-349

Adiabatic Shear Band Localizations in BCC Metals at High Strain Rates and Various Initial Temperatures

Farid H. Abed
Department of Civil Engineering and Construction, Bradley University, Peoria, IL 61625, USA
George Voyiadjis
Louisiana State University

ABSTRAKT

In general, metal structures display a strong rate and temperature dependence when deformed nonuniformly into the inelastic range. This effect has important implications for an increasing number of applications in structural and engineering mechanics. The mechanical behavior of these applications cannot be characterized by classical (rate-independent) continuum theories because they incorporate no material length scales. It is therefore necessary to develop a rate-dependent (viscoplasticity) continuum theory bridging the gap between the classical continuum theories and the microstructure simulations. A finite strain hypoelastoviscoplastic framework is developed for body-centered cubic metals using the corotational formulation approach. Material length scales are implicitly introduced into the governing equations through material rate dependency (viscosity). An implicit objective stress update, which is an efficient algorithm for the type of nonlinear problems considered here, is employed. The effectiveness of the present approach is tested by studying strain localizations in a simple tensile plane strain problem and in a cylindrical hat-shaped sample over a wide range of initial temperatures and strain rates. The finite element simulations of material instability problems converge to meaningful results on further refinement of the finite element mesh. Comparisons of the simulation results of adiabatic shear localizations are also made, with experimental results conducted by different authors. Results indicate an excellent performance of the present framework in describing the strain localization problem for niobium, vanadium, and tantalum.


Articles with similar content:

NONLINEAR BEHAVIOR OF MASONRY WALLS: FE, DE, AND FE/DE MODELS
Composites: Mechanics, Computations, Applications: An International Journal, Vol.10, 2019, issue 3
Daniele Baraldi, Emilio Meroi, Antonella Cecchi, Emanuele Reccia, Claudia Brito de Carvalho Bello
STORAGE AND DAMPING OPTIMIZATION IN HYSTERETIC MULTILAYER NANOCOMPOSITES
International Journal for Multiscale Computational Engineering, Vol.18, 2020, issue 2
Franco Milicchio, Walter Lacarbonara, Giovanni Formica
SIMPLIFIED BUCKLING ANALYSIS OF STIFFENED LAMINATED SANDWICH PLATES
Composites: Mechanics, Computations, Applications: An International Journal, Vol.10, 2019, issue 1
Husam Al Qablan, Hazim M. Dwairi, Samer Rabab'ah, Omar Al Hattamleh
COMPUTATIONAL MODELING OF DAMAGE BASED ON MICROCRACK KINKING
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 3
A. M. Dobrovat, Cristian Dascalu, S. Hall
Tensile Behavior of Cementitious Composite Reinforced with Epoxy Impregnated Multifilament Yarns
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 2
M. Konrad, Rostislav Chudoba