Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Multiscale Computational Engineering
Impact-faktor: 1.016 5-jähriger Impact-Faktor: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Druckformat: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2014007470
pages 127-154

A MULTISCALE COMPUTATIONAL METHOD FOR 2D ELASTOPLASTIC DYNAMIC ANALYSIS OF HETEROGENEOUS MATERIALS

Hongwu Zhang
Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, P. R. China
Hui Liu
Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, 430072, People's Republic of China

ABSTRAKT

The elastoplastic dynamic analysis of heterogeneous materials is studied based on the multiscale computational method developed in our previous work (Zhang et al., 2013). The basic principles of this method are introduced briefly. To describe the complex deformation, a 2D multinode coarse element is proposed. In addition, to improve the computational accuracy for the dynamic problems, mode base functions are introduced into the multiscale numerical base functions to consider the dynamic effect of the structure. For nonlinear elastic or elastoplastic dynamic problems, the microscopic unbalanced nodal force cannot be projected to the macroscopic level effectively only by the displacement and mode base functions when the nonlinear material deformation occurs during the computation. So a correction technique of the local displacement is applied to deal with the unprojected microscopic unbalance forces within the coarse element. Furthermore, the computational procedures of a two-scale modeling are proposed within the framework of nonlinear dynamic analysis. Extensive numerical experiments are carried out and the results are compared with the traditional finite element method (FEM) which is applied directly on the fine-scale mesh. It is shown that the proposed multiscale method can obtain excellent precision of the nonlinear dynamic response of the elastoplastic heterogeneous materials. Moreover, the computation comparisons indicate that the proposed method spends less computer memory and CPU time than the traditional FEM.

REFERENZEN

  1. Abdulle, A., On <i>a priori</i> error analysis of fully discrete heterogeneous multiscale FEM. DOI: 10.1137/040607137

  2. Abdulle, A. and E, W., Finite difference heterogeneous multi-scale method for homogenization problems. DOI: 10.1016/S0021-9991(03)00303-6

  3. Babu&#353;ka, I., Caloz, G., and Osborn, E., Special finite element methods for a class of second order elliptic problems with rough coefficients. DOI: 10.1137/0731051

  4. Babu&#353;ka, I. and Osborn, E., Generalized finite element methods: Their performance and their relation to mixed methods. DOI: 10.1137/0720034

  5. Belytschko, T., Liu, W. K., and Moran, B., Nonlinear Finite Elements for Continua and Structures.

  6. Cao, L. Q., Cui, J. Z., and Zhu, D. C., Multiscale asymptotic analysis and numerical simulation for the second order Helmholtz with rapidly oscillating coefficients over general convex domains. DOI: 10.1137/S0036142900376110

  7. Chen, C. M., Kikuchi, N., and Rostam-Abadi, F., An enhanced asymptotic homogenization method of the static and dynamics of elastic composite laminates. DOI: 10.1016/j.compstruc.2003.10.021

  8. Chung, P., Tamma, K., and Namburu, R., A computational approach for multi-scale analysis of heterogeneous elasto-plastic media subjected to short duration loads. DOI: 10.1002/nme.880

  9. Dong, Q. L. and Cao, L. Q., Multiscale asymptotic expansions and numerical algorithms for the wave equations of second order with rapidly oscillating coefficients. DOI: 10.1016/j.apnum.2009.07.008

  10. Dvorak, G., Bahei-El-Din, Y., and Wafa, A., Implementation of the transformation field analysis for inelastic composite materials. DOI: 10.1007/BF00370073

  11. Dvorak, G. and Zhang, J., Transformation field analysis of damage evolution in composite materials. DOI: 10.1016/S0022-5096(01)00066-7

  12. E, W. and Engquist, B., The heterogeneous multiscale methods.

  13. E, W., Ming, P. B., and Zhang, P. W., Analysis of the heterogeneous multiscale method for elliptic homogenization problems. DOI: 10.1090/S0894-0347-04-00469-2

  14. E, W., Engquist, B., Li, X. T., Ren, W. Q., and Vanden-Eijnden, E., Heterogeneous multiscale methods: A review.

  15. Efendiev, Y., Ginting, V., Hou, T., and Ewing, R., Accurate multiscale finite element methods for two-phase flow simulations. DOI: 10.1016/j.jcp.2006.05.015

  16. Fish, J. and Chen, W., Space-time multiscale model for wave propagation in heterogeneous media. DOI: 10.1016/j.cma.2004.05.006

  17. Fish, J., Shek, K., Pandheeradi, M., and Shephard, M., Computational plasticity for composite structures based on mathematical homogenization: Theory and practice. DOI: 10.1016/S0045-7825(97)00030-3

  18. Fish, J. and Yuan, Z., Multiscale enrichment based on partition of unity. DOI: 10.1002/nme.1230

  19. Guedes, J. M. and Kikuchi, N., Preprocessing and post processing for materials based on the homogenization method with adaptive finite element methods. DOI: 10.1016/0045-7825(90)90148-F

  20. He, X. and Ren, L., Finite volume multiscale finite element method for solving the groundwater flow problems in heterogeneous porous media. DOI: 10.1029/2004WR003934

  21. Hill, R., The Mathematical Theory of Plasticity.

  22. Hou, T. Y., Multiscale modelling and computation of fluid flow. DOI: 10.1002/fld.866

  23. Hou, T. Y. and Wu, X. H., A multiscale finite element method for elliptic problems in composite materials and porous media. DOI: 10.1006/jcph.1997.5682

  24. Hou, T. Y., Wu, X. H., and Cai, Z. Q., Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. DOI: 10.1090/S0025-5718-99-01077-7

  25. Jenny, P., Lee, S. H., and Tchelepi, H. A., Multi-scale finite volume method for elliptic problems in subsurface flow simulation. DOI: 10.1016/S0021-9991(03)00075-5

  26. Kanoute, P., Boso, D. P., Chaboche, J. L., and Schrefler, B. A., Multiscale methods for composites: A review. DOI: 10.1007/s11831-008-9028-8

  27. McDowell, D. L., A perspective on trends in multiscale plasticity. DOI: 10.1016/j.ijplas.2010.02.008

  28. Mehraeen, S., Chen, J. S., and Hu, W., An iterative asymptotic expansion method for elliptic eigenvalue problems with oscillating coefficients. DOI: 10.1007/s00466-009-0435-y

  29. Ming, P. B. and Yue, X. Y., Numerical methods for multiscale elliptic problems. DOI: 10.1016/j.jcp.2005.09.024

  30. Ming, P. B. and Zhang, P. W., Analysis of the heterogeneous multiscale method for parabolic homogenization problems. DOI: 10.1090/S0025-5718-06-01909-0

  31. Mote, C. D., Global-local finite element method.

  32. Newmark, N. M., A method of computation for structural dynamics.

  33. Oliveira, J. A., Pinho-da-Cruz, J., and Teixeira-Dias, F., Asymptotic homogenization in linear elasticity, Part II. Finite element procedures and multiscale applications.

  34. Otero, J. A., Rodriguez-Ramos, R., Monsivais, G., and Perez-Alvarez, R., Dynamic behavior of a layered piezocomposite using the asymptotic homogenization method. DOI: 10.1016/j.mechmat.2003.12.004

  35. Pecullan, S., Gibiansky, L. V., and Torquato, S., Scale effects on the elastic behavior of periodic andhierarchical two-dimensional composites. DOI: 10.1016/S0022-5096(98)00111-2

  36. Pinho-da-Cruz, J., Oliveira, J. A., and Teixeira-Dias, F., Asymptotic homogenisation in linear elasticity, Part I. Mathematical formulation and finite element modelling. DOI: 10.1016/j.commatsci.2009.02.025

  37. Reina-Romo, E. and Sanz-Herrera, J. A., Multiscale simulation of particle-reinforced elastic-plastic adhesives at small strains. DOI: 10.1016/j.cma.2011.03.009

  38. Stroeven, M., Askes, H., and Sluys, L. J., Numerical determination of representative volumes for granular materials. DOI: 10.1016/j.cma.2003.09.023

  39. Sun, C. T. and Vaidya, R. S., Prediction of composite properties from a representative volume element. DOI: 10.1016/0266-3538(95)00141-7

  40. Terada, K., Hori, M., Kyoya, T., and Kikuchi, N., Simulation of the multi-scale convergence in computational homogenization approaches. DOI: 10.1016/S0020-7683(98)00341-2

  41. Xing, Y. F. and Yang, Y., An eigenelement method of periodical composite structures. DOI: 10.1016/j.compstruct.2010.08.029

  42. Xing, Y. F., Yang, Y., and Wang, X. M., A multiscale eigenelement method and its application to periodical composite structures. DOI: 10.1016/j.compstruct.2009.08.006

  43. Zhang, Z. Y. and Paulino, G. H., Wave propagation and dynamic analysis of smoothly graded heterogeneous continua using graded finite elements. DOI: 10.1016/j.ijsolstr.2005.05.061

  44. Zhang, H. W., Zhang, S., Bi, J. Y., and Schrefler, B. A., Thermo-mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach. DOI: 10.1002/nme.1757

  45. Zhang, L., Cao, L. Q., and Wang, X., Multiscale finite element algorithm of the eigenvalue problems for the elastic equations in composite materials. DOI: 10.1016/j.cma.2009.03.015

  46. Zhang, H. W., Fu, Z. D., and Wu, J. K., Coupling multiscale finite element method for consolidation analysis of heterogeneous saturated porous media. DOI: 10.1016/j.advwatres.2008.11.002

  47. Zhang, H. W., Wu, J. K., and Fu, Z. D., Extended multiscale finite element method for elasto-plastic analysis of 2D periodic lattice truss materials. DOI: 10.1007/s00466-010-0475-3

  48. Zhang, H. W., Wu, J. K., and Lv, J., A new multiscale computational method for elasto-plastic analysis of heterogeneous materials. DOI: 10.1007/s00466-011-0634-1

  49. Zhang, H. W., Liu, H., and Wu, J. K., A uniform multiscale method for 2D static and dynamic analyses of heterogeneous materials. DOI: 10.1002/nme.4404