Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Multiscale Computational Engineering
Impact-faktor: 1.016 5-jähriger Impact-Faktor: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Druckformat: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2014007815
pages 65-77

SENSITIVITY ANALYSIS OF TRANSIENT TEMPERATURE FIELD IN MICRODOMAINS WITH RESPECT TO THE DUAL-PHASE-LAG MODEL PARAMETERS

Ewa Majchrzak
Institute of Computational Mechanics and Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bohdan Mochnacki
Czestochowa University of Technology, Dabrowskiego 69, 42-201 Czestochowa, Higher School of Labour Safety Management, Bankowa 8, 40-007 Katowice, Poland

ABSTRAKT

In the paper selected problems concerning microscale heat-transfer modeling are presented. In particular, the dual-phase-lag model (DPLM) containing two time lags, the relaxation and thermalization times, is considered. The aim of this research is to estimate the changes in the transient temperature field due to the perturbations of the DPLM thermophysical parameters (volumetric specific heat, thermal conductivity, and relaxation and thermalization times). To solve the problem methods of sensitivity analysis (direct approach) are applied. At the stage of numerical modeling, the axially symmetrical object subjected to an external heat flux is considered. Numerical computations are realized using the explicit scheme of finite difference method. In the final part of the paper the examples of computations are shown and the conclusions are formulated.

REFERENZEN

  1. Al-Nimr, M. A., Heat transfer mechanisms during short duration laser heating of thin metal films. DOI: 10.1007/BF02575260

  2. Anisimov, S. I., Kapeliovich, T. L., and Perelman, T. L., Zh. Eksp. Teor. Fiz.

  3. Chen, J. K. and Beraun, J. E., Numerical study of ultrashort laser pulse interactions with metal films. DOI: 10.1080/104077801300348842

  4. Chen, G., Borca-Tasciuc, D., and Yang, R. G., Nanoscale Heat Transfer, Encyclopedia of NanoScience and Nanotechnology.

  5. Grigoropoulos, C. P., Chimmalgi, A., and Hwang, D. J., Nano-structuring using pulsed laser radiation. DOI: 10.1007/978-0-387-30453-3_19

  6. Jasiński, M., Sensitivity analysis of transient bioheat transfer with perfusion rate dependent on tissue injury.

  7. Kannattey-Asibu, Jr., E., Principles of Laser Materials Processing.

  8. Kleiber, M., Parameter Sensitivity.

  9. Lin, Z., Zhigilei, L. V., and Celli, V., Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. DOI: 10.1103/PhysRevB.77.075133

  10. Majchrzak, E. and Kałuża, G., Explicit and implicit approach of sensitivity analysis in numerical modelling of solidification.

  11. Majchrzak, E. and Poteralska, J., Two-temperature model of microscopic heat transfer.

  12. Majchrzak, E., Mochnacki, B., Greer, A. L., and Suchy, J. S., Numerical modeling of short pulse laser interactions with multilayered thin metal films.

  13. Majchrzak, E., Mochnacki, B., and Suchy, J. S., Numerical simulation of thermal processes proceeding in the multi-layered film subjected to ultrafast laser heating.

  14. Mendakiewicz, J., Identification of solidification process parameters.

  15. Mochnacki, B. and Ciesielski, M., Numerical modeling of thermal processes in domain of thin metal film subjected to a cyclic external heat flux. DOI: 10.4028/www.scientific.net/MSF.706-709.1460

  16. Mochnacki, B. and Majchrzak, E., Modelling of microscale heat transfer in cylindrical domains.

  17. Mochnacki, B. and Paruch, M., Application of evolutionary algorithms for identification of dual phase lag model parameters.

  18. Smith, A. N. and Norris, P. M., Microscale heat transfer.

  19. Tamma, K. K. and Zhou, X., Macroscale and microscale thermal transport and thermo-mechanical interactions: Some noteworthy perspectives. DOI: 10.1080/01495739808956154

  20. Tang, D. W. and Araki, N., Wavy, wavelike, diffusive thermal responses of finite rigid slabs to high-speed heating of laser-pulses. DOI: 10.1016/S0017-9310(98)00244-0

  21. Tzou, D. Y. and Chiu, K. S., Temperature-dependent thermal lagging in ultrafast laser heating. DOI: 10.1016/S0017-9310(00)00215-5

  22. Zhang, Z. M., Nano/Microscale Heat Transfer.


Articles with similar content:

Averaging of Equations of Optimal Motion in Strong Central Gravitational Field with Constant and Controllable Thrust
Journal of Automation and Information Sciences, Vol.37, 2005, issue 10
Zoya V. Pasechnik, Boris N. Kiforenko, Igor Yu. Vasil'ev
AN ENTROPY PRODUCTION METHOD TO INVESTIGATE THE ACCURACY AND STABILITY OF NUMERICAL SIMULATION OF ONE-DIMENSIONAL HEAT TRANSFER
Heat Transfer Research, Vol.43, 2012, issue 7
Y. Li, Y. Jin, Y.-Y. Guo, Haochun Zhang
RADIATION INTERACTION WITH CONDUCTION AND CONVECTION
International Heat Transfer Conference 6, Vol.6, 1978, issue
Oleg G. Martynenko
MODELING OF PLANE ELECTROMAGNETIC WAVE SCATTERING BY A METALLIC CYLINDER
Telecommunications and Radio Engineering, Vol.69, 2010, issue 15
A. P. Nickolaenko, E. A. Velichko
Numerical-Analytical Approach to the Solution of the Terminal Problem of Optimization
Journal of Automation and Information Sciences, Vol.32, 2000, issue 4
Oleg G. Kovrizhkin, Alexander A. Litvin