Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Multiscale Computational Engineering
Impact-faktor: 1.016 5-jähriger Impact-Faktor: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Druckformat: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2014006142
pages 1-21

INVESTIGATION OF MICRO-MACROSCALE INTERACTION OF HETEROGENEOUS MATERIALS BY A PARALLEL-BONDED PARTICLE MODEL AND INTRODUCTION OF NEW MICROPARAMETER DETERMINATION FORMULATIONS

Serkan Nohut
Zirve University, Faculty of Engineering, Kizilhisar Kampusu, 27260, Gaziantep, Turkey
Abdulkadir Cevik
University of Gaziantep, Department of Civil Engineering, 27310, Gaziantep, Turkey

ABSTRAKT

The distinct element method (DEM) is becoming an effective method of investigating engineering problems in granular and heterogeneous materials, especially in granular flows, powder mechanics, advanced ceramics, and rock mechanics. Creation of a DEM model requires some microscale material parameters, unable to be physically measured in laboratories; a calibration process is typically used in order to select the proper microparameters using DEM simulations. The calibration process is basically trial and error, which depends on the experience of the modeler. Therefore such a process may be complicated and time consuming for the user. In this study, a parametric study is performed in order to determine the relations of microparameters used in three dimensional DEM model and the macroscale material parameters (i.e., Young's modulus, Poisson's ratio, compressive strength). According to dependencies and independencies between microparameters and macroparameters, empirical fitting functions are obtained by using a stepwise regression method. The macroparameters calculated by empirical fitting functions reveal a good agreement with DEM results. The predictive ability of fitting functions is confirmed with the creation of further data sets in DEM simulations. Comparison of the fitting values with the literature shows that the fitting functions may also be used two dimensional DEM simulations. The micro-macro scale interactions and empirical fitting functions provided in this study would be very helpful for the user in order to observe the relationship between micro- and macroparameters and determine the approximate proper microparameters.

REFERENZEN

  1. Abo-Elnor, M., Hamilton, R., and Boyle, J. T., Simulation of soil–blade interaction for sandy soil using advanced 3D finite element analysis. DOI: 10.1016/S0167-1987(03)00156-9

  2. Avci, B. and Wriggers, P., A DEM-FEM coupling approach for the direct numerical simulation of 3D particulate flows. DOI: 10.1115/1.4005093

  3. Azevedo, N. M. and Lemos, J. V., Hybrid discrete element/finite element method for fracture analysis. DOI: 10.1016/j.cma.2005.10.005

  4. Campbell, M. J., Statistics at Square Two: Understanding Modern Statistical Applications in Medicine. DOI: 10.1093/ije/31.4.881

  5. Cevik, A., Modeling strength enhancement of FRP confined concrete cylinders using soft computing. DOI: 10.1016/j.eswa.2010.10.069

  6. Cevik, A., Unified formulation for web crippling strength of fold-formed steel sheeting using stepwise regression. DOI: 10.1016/j.jcsr.2007.01.001

  7. Cevik, A., Gogus, M. T., Guzelbey, I. H., and Filiz, H., A new formulation for longitudinally stiffened webs subjected to patch loading using stepwise regression method. DOI: 10.1016/j.advengsoft.2009.12.001

  8. Chang, C. and Misra, A., Packing structure and mechanical properties of granulates. DOI: 10.1061/(ASCE)0733-9399(1990)116:5(1077)

  9. Clearly, P. W., Recent advances in DEM modeling of tumbling mills. DOI: 10.1016/S0892-6875(01)00145-5

  10. Clearly, P. W. and Hoyer, D., Centrifugal mill charge motion and power draw: Comparison of DEM predictions with experiment. DOI: 10.1016/S0301-7516(99)00063-0

  11. Coetzee, C. J., Els, D. N. J., and Dymond, G. F., Discrete element parameter calibration and the modelling of dragline bucket filling. DOI: 10.1016/j.jterra.2009.03.003

  12. Cundall, P. A. and Strack, O. D. L., A discrete model for granular materials.

  13. Djordjevic, N., Discrete element modeling of the influence of lifters on power draw of tumbling mills. DOI: 10.1016/S0892-6875(03)00019-0

  14. Dobry, R. and Ng, T. T., Discrete modeling of stress-strain behaviour of granular media at small and large strains. DOI: 10.1108/eb023853

  15. Fakhimi, A. and Gharahbagh, E. A., Discrete element analysis of the effect of pore size and pore distribution on the mechanical behavior of rock. DOI: 10.1016/j.ijrmms.2010.08.007

  16. Hanley, K. J., Sullivan, C. O., Oliveira, J. C., Cronin, K., and Byrne, E. P., Application of Taguchi methods to DEM calibration of bonded agglomerates. DOI: 10.1016/j.powtec.2011.03.023

  17. Huang, H. Y., Discrete Element Modeling of Tool-Rock Interaction. DOI: 10.1002/nag.2114

  18. Jerier, J. F., Hathong, B., Imbault, D., Donze, F. V., and Doremus, P., Numerical simulations of isostatic and die compaction of powder by the discrete element method, powders and grains 2009. DOI: 10.1063/1.3179961

  19. Landry, H., Lague, C., and Roberge, M., Discrete element modeling of machine–manure interactions. DOI: 10.1016/j.compag.2006.02.002

  20. Lei, S., Distinct element modeling of laser assisted machining of silicon nitride ceramics.

  21. Martin, C. L. and Bouvard, D., Study of the cold compaction of composite powders by the discrete element method. DOI: 10.1016/S1359-6454(02)00402-0

  22. Mishra, B. K. and Murty, C. V. R., On the determination of contact parameters for realistic DEM simulations of ball mills. DOI: 10.1016/S0032-5910(00)00347-8

  23. Munjiza, A., Bangash, T., and John, N. W. M., The combined finite-discrete element method for structural failure and collapse. DOI: 10.1016/S0013-7944(03)00044-4

  24. Munjiza, A., Owen, D. R. J., and Bicanic, N., A combined finite-discrete element method in transient dynamics of fracturing solids. DOI: 10.1108/02644409510799532

  25. Nohut, S., Prediction of crack-tip toughness of alumina for given residual stresses with parallel-bonded-particle model. DOI: 10.1016/j.commatsci.2010.12.008

  26. Nohut, S., A general formulation for strength prediction of advanced ceramics by ball-on-three-balls (B3B)-test with different multiaxial failure criteria. DOI: 10.1016/j.ceramint.2011.11.007

  27. Oda, M., Nemat-Nasser, S., and Meharabadi, M. M., A statistical study of fabric in a random assembly of spherical granules. DOI: 10.1002/nag.1610060106

  28. Owen, D. R. J. and Feng, Y. T., Parallelized finite/discrete element simulation of multi-fracturing solids and discrete systems. DOI: 10.1108/02644400110387154

  29. Owen, D. R. J. and Vaz, M., Computational techniques applied to high-speed machining under adiabatic strain localization conditions. DOI: 10.1016/S0045-7825(98)00220-5

  30. PFC3D, Particle Flow Code in 3 Dimensions User‘s Guide.

  31. Potyondy, D. O. and Cundall, P. A., A bonded-particle model for rock. DOI: 10.1016/j.ijrmms.2004.09.011

  32. Rawlings, J. O., Applied Regression Analysis: A Research Tool.

  33. Refahi, A., Aghazadeh Mohandesi, J., and Rezai, B., Discrete element modeling for predicting breakage behavior and fracture energy of a single particle in a jaw crusher. DOI: 10.1016/j.minpro.2009.12.002

  34. Sheng, Y., Lawrence, C. J., Briscoe, B. J., and Thornton, C., 3D DEM simulations of powder compaction. DOI: 10.1061/40647(259)54

  35. Su, O., Three-Dimensional Numerical Modeling of Rock Cutting Mechanism with Conical Bits.

  36. Su, O. and Akcin, N. A., Numerical simulation of rock cutting using the discrete element method. DOI: 10.1016/j.ijrmms.2010.08.012

  37. Tan, Y., Yang, D., and Sheng, Y., Study of polycrystalline Al<sub>2</sub>O<sub>3</sub> machining cracks using discrete element method. DOI: 10.1016/j.ijmachtools.2008.01.010

  38. Tawadrous, A. S., De Gagne, D., Pierce, M., and Mas Ivars, D., Prediction of uniaxial compression PFC3D model micro-properties using artificial neural networks. DOI: 10.1002/nag.809

  39. Van Nierop, M. A., Glover, G., Hinde, A. L., and Moys, M. H., A discrete element method investigation of the charge motion and power draw of an experimental two dimensional mill. DOI: 10.1016/S0301-7516(00)00028-4

  40. Villard, P., Chevalier, B., Le Hello, B., and Combe, G., Coupling between finite and discrete element methods for the modelling of earth structures reinforced by geosynthetic. DOI: 10.1016/j.compgeo.2008.11.005

  41. Yang, B., Jiao, Y., and Lei, S., A study on the effects of microparameters on macroparameters for specimens created by bonded particles.

  42. Walton, K., The effective elastic moduli of a random packing of spheres. DOI: 10.1016/0022-5096(87)90036-6

  43. Zingg, D. W., Nemec, M., and Pulliam, T. H., A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization. DOI: 10.3166/remn.17.103-126


Articles with similar content:

THE EFFECT OF POROSITY ON REPRESENTATIVE VOLUME ELEMENT FOR PRESSURE DROP IN OPEN-CELL FOAMS
4th Thermal and Fluids Engineering Conference, Vol.19, 2019, issue
Marcello Iasiello, Assunta Andreozzi, Wilson K. S. Chiu, Vincenzo Naso, Nicola Bianco
HEURISTIC METHODS OF GRADIENT SEARCH FOR THE CRYPTOGRAPHIC BOOLEAN FUNCTIONS
Telecommunications and Radio Engineering, Vol.78, 2019, issue 10
A. A. Kuznetsov, T. Y. Kuznetsova, I. V. Moskovchenko, D. I. Prokopovych-Tkachenko
Light scattering simulation by concave, peanut-shaped silver nanoparticles modeled on Cassini-ovals
ICHMT DIGITAL LIBRARY ONLINE, Vol.14, 2007, issue
Jens Hellmers, Yuri Eremin, Norbert Riefler, Thomas Wriedt
ASSUMPTIONS, CAUTIONS, AND SOLUTIONS IN THE USE OF OMITTED TEST DATA TO EVALUATE THE ACHIEVEMENT OF UNDERREPRESENTED GROUPS IN SCIENCE−IMPLICATIONS FOR LONG-TERM EVALUATION
Journal of Women and Minorities in Science and Engineering, Vol.4, 1998, issue 2&3
William J. Boone
A Multilingual Programming Model for Coupled Systems
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 1
J. Walter Larson, B. Norris, E. T. Ong, R. L. Jacob, M. Steder, M. Tobis