Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Multiscale Computational Engineering
Impact-faktor: 1.016 5-jähriger Impact-Faktor: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Druckformat: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v9.i1.70
pages 89-96

IMPROVING THE ACCURACY OF LATTICE BOLTZMANN SIMULATIONS OF LIQUID MICROFLOWS

Salvador Izquierdo
Fluid Mechanics Group, University of Zaragoza and LITEC (CSIC), Mari­a de Luna 3, 50018, Zaragoza, Spain
Norberto Fueyo
Fluid Mechanics Group, University of Zaragoza, and LITEC (CSIC), Spain

ABSTRAKT

The simulation of incompressible flows at very low Reynolds numbers (Stokes regime) with the standard lattice Boltzmann method (collision-propagation algorithm) is hindered by a limitation of accuracy due to the relationship between viscosity and the Mach and Reynolds numbers. We present a multirelaxation-time lattice-Boltzmann method with modified equilibrium moments that allows improvement of accuracy for a given resolution at very low-Reynolds-number flows. This is paramount for liquid microflow simulations and for multiscale coupling in many practical instances, such as when the fluid motion is highly influenced by bounding or particulate immersed solids. The method as presented is restricted to steady-state flows, which include many fluid-flow applications at the microscale. The viscous flow with slip of a liquid in a long microchannel, for which an analytical solution exists, has been used as the test case.

REFERENZEN

  1. Bouzidi, M., Firdaouss, M., and Lallemand, P., Momentum transfer of a Boltzmann-lattice fluid with boundaries. DOI: 10.1063/1.1399290

  2. Chapman, S. and Cowling, T., The Mathematical Theory of Non-Uniform Gases.

  3. Chen, S. and Doolen, G., Lattice Boltzmann method for fluid flows. DOI: 10.1146/annurev.fluid.30.1.329

  4. Dellar, P. J., Incompressible limits of lattice Boltzmann equations using multiple relaxation times. DOI: 10.1016/S0021-9991(03)00279-1

  5. d’Humières, D., Generalized lattice-boltzmann equations, AIAA rarefied gas dynamics: Theory and Simulations.

  6. Ginzburg, I. and d’Humières, D., Multireflection boundary conditions for lattice Boltzmann models. DOI: 10.1103/PhysRevE.68.066614

  7. Ginzburg, I., Verhaeghe, F., and d’Humières, D., Two-relaxation-time lattice Boltzmann scheme: About parametrization, velocity, pressure and mixed boundary conditions.

  8. Guo, Z., Zhao, T., and Shi, Y., Preconditioned lattice-Boltzmann method for steady flows.

  9. Harting, J., Kunert, C., and Herrmann, H. J., Lattice Boltzmann simulations of apparent slip in hydrophobic microchannels. DOI: 10.1209/epl/i2006-10107-8

  10. Ho, C. M. and Tai, Y. C., Micro-electro-mechanical-systems (MEMS) and fluid flows. DOI: 10.1146/annurev.fluid.30.1.579

  11. Holdych, D. J., Noble, D. R., Georgiadis, J. G., and Buckius, R. O., Truncation error analysis of lattice Boltzmann methods. DOI: 10.1016/j.jcp.2003.08.012

  12. Izquierdo, S. and Fueyo, N., Preconditioned Navier-Stokes schemes from the generalized lattice Boltzmann equation. DOI: 10.1504/PCFD.2008.018089

  13. Izquierdo, S. and Fueyo, N., Optimal preconditioning of lattice Boltzmann methods. DOI: 10.1016/j.jcp.2009.05.040

  14. Karniadakis, G., Beskok, A., and Aluru, N. R., Microflows and Nanoflows: Fundamentals and Simulation.

  15. Lallemand, P. and Luo, L.-S., Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. DOI: 10.1103/PhysRevE.61.6546

  16. Mei, R., Yu, D., Shyy,W., and Luo, L.-S., Force evaluation in the lattice Boltzmann method involving curved geometry. DOI: 10.1103/PhysRevE.65.041203

  17. Noble, D. R., Chen, S. Y., Georgiadis, J. G., and Buckius, R. O., A consistent hydrodynamic boundary-condition for the lattice Boltzmann method. DOI: 10.1063/1.868767

  18. Premnath, K. N., Pattison, M. J., and Banerjee, S., Steady state convergence acceleration of the generalized lattice Boltzmann equation with forcing term through preconditioning. DOI: 10.1016/j.jcp.2008.09.028

  19. Shan, X. W., Yuan, X. F., and Chen, H. D., Kinetic theory representation of hydrodynamics: A way beyond the Navier-Stokes equation. DOI: 10.1017/S0022112005008153

  20. Siebert, D. N., Hegele Jr., L. A., and Philippi, P. C., Lattice Boltzmann equation linear stability analysis: Thermal and athermal models. DOI: 10.1103/PhysRevE.77.026707

  21. Sterling, J. and Chen, S., Stability analysis of lattice Boltzmann methods. DOI: 10.1006/jcph.1996.0016

  22. Succi, S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond.

  23. Turkel, E. and Vatsa, V. N., Local preconditioners for steady and unsteady flow applications. DOI: 10.1051/m2an:2005021

  24. Usta, O. B., Ladd, A. J. C., and Butler, J. E., Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries. DOI: 10.1063/1.1854151

  25. Yu, D., Mei, R., Luo, L.-S., and Shyy, W., Viscous flow computations with the method of lattice Boltzmann equation. DOI: 10.1016/S0376-0421(03)00003-4

  26. Zhang, Y., Qin, R., and Emerson, D., Lattice Boltzmann simulation of rarefied gas flows in microchannels. DOI: 10.1103/PhysRevE.71.047702


Articles with similar content:

BUBBLE RISE AND DEFORMATION IN A NON-NEWTONIAN FLUID IN A SQUARE DUCT
First Thermal and Fluids Engineering Summer Conference, Vol.4, 2015, issue
Kai Jin, Purushotam Kumar, Surya P. Vanka
Hybrid MD-LBM method for fluid flow based on the continuous and discrete velocity distribution functions
Second Thermal and Fluids Engineering Conference, Vol.24, 2017, issue
Zi-Xiang Tong, Ya-Ling He, Ming-Jia Li
MODELING AND HYBRID SIMULATION OF BUBBLY FLOW
Multiphase Science and Technology, Vol.18, 2006, issue 1
K. Sakoda, N. Shimada, Kosuke Hayashi
FLOW VISUALIZATION AROUND MESOSCALE SOLID PARTICLE WITHIN A MOVING DROPLET USING MULTI-BODY DISSIPATIVE PARTICLE DYNAMICS
4th Thermal and Fluids Engineering Conference, Vol.17, 2019, issue
Ahmed A. Hemeda, Ting Liu, James Palko, Sachin Goyal, Yanbao Ma, Anupam Mishra, Mohsen Torabi
MODELING AERODYNAMIC BREAKUP OF LIQUID DROPS IN A GAS FLOW WITH MOLECULAR DYNAMICS ANALOGY METHODS
Second Thermal and Fluids Engineering Conference, Vol.46, 2017, issue
Flint Pierce, Alexander L. Brown