Abo Bibliothek: Guest
International Journal for Multiscale Computational Engineering

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 1543-1649

ISSN Online: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

A Multiscale Computational Approach with Field Transfer Dedicated to Coupled Problems

Volumen 6, Ausgabe 3, 2008, pp. 233-250
DOI: 10.1615/IntJMultCompEng.v6.i3.40
Get accessGet access

ABSTRAKT

This article deals with a computational strategy suitable for the simulation of coupled problems, in the presence of heterogeneities and when different precision levels are required for the different physics. To deal with micro heterogeneities, an adaptation of the classical periodic homogenization procedure is used, with the asymptotic development approach, but only one direction of periodicity can be taken into account. The application concerns an axisymmetric reinforced filtration device, modeled as a steady state thermoporoelastic structure, for which thermal and fluid problems are described only at the (homogenized) macroscopic level, while the structure is described up to the microscale. The relocalization has to take edge effects into account since scales are not well separated. The influence of the discretization on the microscale is studied numerically.

REFERENZIERT VON
  1. Cremonesi M., Néron D., Guidault P.-A., Ladevèze P., A PGD-based homogenization technique for the resolution of nonlinear multiscale problems, Computer Methods in Applied Mechanics and Engineering, 267, 2013. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain