Abo Bibliothek: Guest
International Journal for Multiscale Computational Engineering

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 1543-1649

ISSN Online: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Some Issues Related to the Use of Immersed Boundary Methods to Represent Square Obstacles

Volumen 7, Ausgabe 6, 2009, pp. 509-522
DOI: 10.1615/IntJMultCompEng.v7.i6.30
Get accessGet access

ABSTRAKT

Three aspects of immersed boundary methods are studied, namely, the influence of the region inside an obstacle on the flow outside the obstacle, the possibility to calculate local surface fluxes, and the numerical stability when compared to standard body-fitted methods.

REFERENZEN
  1. Mittal, R., and Iaccarino, G., Immersed Boundary Methods. DOI: 10.1146/annurev.fluid.37.061903.175743

  2. Pourquie, M., and Nieuwstadt, F., The Use of Virtual Boundary Conditions for Fast DNS/LES of Flow around Objects.

  3. Breugem, W. P., and Boersma, B. J., Direct Numerical Simulations of Turbulent Flow over a Permeable Wall Using a Direct and a Continuum Approach. DOI: 10.1063/1.1835771

  4. Verstappen, R. W. C. P., and Veldman, A. E. P, Spectro-Consistent Discretization of Navier Stokes: A Challenge to RANS and LES.

  5. van Kan, J., A Second-Order Accurate Pressure Correction Scheme for Viscous Incompressible Flow. DOI: 10.1137/0907059

  6. Schumann, U., and Sweet, R. E., A Direct Method for the Solution of Poisson’s Equation with Neumann Boundary Conditions on a Staggered Grid with Arbitrary Size. DOI: 10.1016/0021-9991(76)90062-0

  7. Buzbee, B. L., Dorr, F. W., George, J. A., and Golub, G. H., The Direct Solution of Discrete Poisson Equation on Irregular Regions. DOI: 10.1137/0708066

  8. Peskin, C. S., Flow Patterns around Heart Valves: A Numerical Method. DOI: 10.1016/0021-9991(72)90065-4

  9. McQueeen, D. M., and Peskin, C. S., A Three- Dimensional Computer Model of the Human Heart for Studying Cardiac Fluid Dynamics. DOI: 10.1145/563788.604453

  10. Griffith, B. E., and Peskin, C. S., On the Order of Accuracy of the Immersed Boundary Method: Higher Order Convergence Rate for Sufficiently Smooth Problems. DOI: 10.1016/j.jcp.2005.02.011

  11. Goldstein, D., Handler, R., and Sirovich, L., Modeling a No-Slip Surface with an External Force Field. DOI: 10.1006/jcph.1993.1081

  12. Goldstein, D., Handler, R., and Sirovich, L., Direct Numerical Simulation of Turbulent Flow over a Modeled Riblet-Covered Surface. DOI: 10.1017/S0022112095004125

  13. Fadlun, E. A., Verzicco, R., Orlandi, P., and Mohd-Yusof, J., Combined Immmersed- Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations. DOI: 10.1006/jcph.2000.6484

  14. Verzicco, R., Mohd-Yusof, J., Orlandi, P., and Haworth, D., LES in Complex Geometries Using Boundary Body Forces.

  15. Kim, J., Kim, D., and Choi, H., An Immersed- Boundary Finite-Volume Method for Simulations of Flow in Complex Geometries. DOI: 10.1006/jcph.2001.6778

  16. Paravento, F., Pourquie, M. J., and Boersma, B. J., An Immersed Boundary Method for Complex Flow and Heat Transfer. DOI: 10.1007/s10494-007-9108-0

  17. Franke, R., Rodi,W., and Sch¨onung, B., Numerical Calculation of Laminar Vortex-Shedding Flow Past Cylinders. DOI: 10.1016/0167-6105(90)90219-3

  18. Kornhaas, M., Dö rte, S., Sternel, C., and Schä fer, M., Influence of Time Step Size and Convergence Criteria on Large-Eddy Simulations with Implicit Time Discretization. DOI: 10.1007/978-1-4020-8578-9_10

  19. Horn, R. A., and Johnson, C. R., Matrix Analysis.

  20. Breugem, W. P., Boersma, B. J., and Uittenbogaard, R. E., Direct Numerical Simulations of Plane Channel Flow over a 3D Cartesian Grid of Cubes.

  21. Wesseling, P., Principles of Computational Fluid Dynamics.

REFERENZIERT VON
  1. Breugem Wim-Paul, A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows, Journal of Computational Physics, 231, 13, 2012. Crossref

  2. Tomas J.M., Pourquie M.J.B.M., Jonker H.J.J., The influence of an obstacle on flow and pollutant dispersion in neutral and stable boundary layers, Atmospheric Environment, 113, 2015. Crossref

  3. Tomas J. M., Pourquie M. J. B. M., Jonker H. J. J., Stable Stratification Effects on Flow and Pollutant Dispersion in Boundary Layers Entering a Generic Urban Environment, Boundary-Layer Meteorology, 159, 2, 2016. Crossref

  4. Benschop H.O.G., Breugem W.-P., Drag reduction by herringbone riblet texture in direct numerical simulations of turbulent channel flow, Journal of Turbulence, 18, 8, 2017. Crossref

  5. Leguy Carole A.D., Delfos René, Pourquie Mathieu J.B.M., Poelma Christian, Westerweel Jerry, van Loon Jack J.W.A., Fluid dynamics during Random Positioning Machine micro-gravity experiments, Advances in Space Research, 59, 12, 2017. Crossref

  6. Kazerooni H. Tabaei, Fornari W., Hussong J., Brandt L., Inertial migration in dilute and semidilute suspensions of rigid particles in laminar square duct flow, Physical Review Fluids, 2, 8, 2017. Crossref

  7. Tomas J. M., Eisma H. E., Pourquie M. J. B. M., Elsinga G. E., Jonker H. J. J., Westerweel J., Pollutant Dispersion in Boundary Layers Exposed to Rural-to-Urban Transitions: Varying the Spanwise Length Scale of the Roughness, Boundary-Layer Meteorology, 163, 2, 2017. Crossref

  8. Fornari Walter, Kazerooni Hamid Tabaei, Hussong Jeanette, Brandt Luca, Suspensions of finite-size neutrally buoyant spheres in turbulent duct flow, Journal of Fluid Mechanics, 851, 2018. Crossref

  9. Breugem Wim-Paul, van Dijk Vincent, Delfos René, Flows Through Real Porous Media: X-Ray Computed Tomography, Experiments, and Numerical Simulations, Journal of Fluids Engineering, 136, 4, 2014. Crossref

  10. Tomas J. M., Pourquie M. J. B. M., Eisma H. E., Elsinga G. E., Jonker H. J. J., Westerweel J., Pollutant Dispersion in the Urban Boundary Layer, in Direct and Large-Eddy Simulation IX, 20, 2015. Crossref

  11. Grylls Tom, Suter Ivo, Sützl Birgit, Owens Sam, Meyer David, van Reeuwijk Maarten, uDALES: large-eddy-simulation software for urban flow, dispersion, and microclimate modelling, Journal of Open Source Software, 6, 63, 2021. Crossref

  12. Suter Ivo, Grylls Tom, Sützl Birgit S., Owens Sam O., Wilson Chris E., van Reeuwijk Maarten, uDALES 1.0: a large-eddy simulation model for urban environments, Geoscientific Model Development, 15, 13, 2022. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain