Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Multiscale Computational Engineering
Impact-faktor: 1.016 5-jähriger Impact-Faktor: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Druckformat: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v7.i1.70
pages 55-63

On the Evolution of Entanglements in Initially Unentangled Polymer Melts

Gopinath Subramanian
Scientific Computation Research Center, Rensselaer Polytechnic Institute, USA
Sachin Shanbhag
Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, USA


The entanglement process in initially unentangled polymer chains with molecular weight greater than the entanglement molecular weight was examined using a modified bond fluctuation model. The relative roles of Rouse-like and reptation-like dynamics in the entanglement process were assessed. A scheme for fitting the time evolution of entanglement density was proposed and applied successfully to experimental data. The entanglement mechanism was elucidated by showing that at early times, the polymer chains preferentially develop entanglements away from their centers.


  1. Rouse, P. R., A Theory of the linear viscoelastic properties of dilute solutions of coiling polymers. DOI: 10.1063/1.1699180

  2. Doi, M. and Edwards, S. F., The Theory of Polymer Dynamics.

  3. Rastogi, S., Kurelec, L., Cuijpers, J., Lippits, D., Wimmer, M., and Lemstra, P. J., Disentangled state in polymer melts; a route to ultimate physical and mechanical properties. DOI: 10.1002/mame.200300113

  4. Lippits, D. R., Rastogi, S., Talebi, S., and Bailly, C., Formation of entanglements in initially disentangled polymer melts. DOI: 10.1021/ma062284z

  5. Rastogi, S., Lippits, D. R., Peters, G. W., Graf, R., Yao, Y., and Spiess, H. W., Heterogeneity in polymer melts from melting of polymer crystals. DOI: 10.1038/nmat1437

  6. Lippits, D. R., Rastogi, S., and Höhne, G.W. H., Melting kinetics in polymers. DOI: 10.1103/PhysRevLett.96.218303

  7. Rastogi, S., Kurelec, L., Lippits, D., Cuijpers, J., Wimmer, M., and Lemstra, P. J., Novel route to fatigue-resistant fully sintered ultrahigh molecular weight polyethylene for knee prosthesis. DOI: 10.1021/bm0493638

  8. Rastogi, S., Lippits, D. R., Höhne, G. W. H., Mezari, B., and Magusin, P. C. M. M., The role of the amorphous phase in melting of linear UHMW-PE; implications for chain dynamics. DOI: 10.1088/0953-8984/19/20/205122

  9. Mcleish, T. C. B., A theory for heterogeneous states of polymer melts produced by single chain crystal melting. DOI: 10.1039/B611620E

  10. Shaffer, J. S., Effects of chain topology on polymer dynamics — Bulk melts. DOI: 10.1063/1.467470

  11. Shaffer, J. S., Dynamics of confined polymer melts: Topology and entanglement. DOI: 10.1021/ma951154f

  12. Shanbhag, S. and Larson, R. G., Chain retraction potential in a fixed entanglement network. DOI: 10.1103/PhysRevLett.94.076001

  13. Iyer, B. V. S., Lele, A. K., and Shanbhag, S., What is the size of a ring polymer in a ring-linear blend?. DOI: 10.1021/ma0709295

  14. Subramanian, G. and Shanbhag, S., Conformational properties of blends of cyclic and linear polymer melts. DOI: 10.1103/PhysRevE.77.011801

  15. Subramanian, G. and Shanbhag, S., Selfdiffusion in binary blends of cyclic and linear polymers. DOI: 10.1021/ma801232j

  16. Shanbhag, S. and Larson, R. G., Identification of topological constraints in entangled polymer melts using the bond-fluctuation model. DOI: 10.1021/ma052317v

  17. Shaffer, J. S., Effects of chain Topology on polymer dynamics — Configurational relaxation in polymer melts. DOI: 10.1063/1.470108

  18. Shanbhag, S. and Kroger, M., Primitive path networks generated using annealing and geometrical methods: Insights into differences. DOI: 10.1021/ma062457k

  19. Larson, R. G., Sridhar, T., Leal, L. G., McKinley, G. H., Likhtman, A. E., and McLeish, T. C. B., Definitions of entanglement spacing and time constants in the tube model. DOI: 10.1122/1.1567750

  20. Vega, J. F., Rastogi, S., Peters, G. W. M., and Meijer, H. E. H., Rheology and reptation of linear polymers: Ultrahigh molecular weight chain dynamics in the melt. DOI: 10.1122/1.1718367

  21. Schieber, J. D., Neergaard, J., and Gupta, S., A full-chain, temporary network model with sliplinks, chain-length fluctuations, chain connectivity and chain stretching. DOI: 10.1122/1.1530155

  22. Tzoumanekas, C. and Theodorou, D. N., Topological analysis of linear polymer melts: A statistical approach. DOI: 10.1021/ma0607057

  23. Foteinopoulou, K., Karayiannis, N. C., Mavrantzas, V. G., and Kröger, M., Primitive path identification and entanglement statistics in polymer melts: Results from direct topological analysis on atomistic polyethylene models. DOI: 10.1021/ma060306b