Abo Bibliothek: Guest
Multiphase Science and Technology

Erscheint 4 Ausgaben pro Jahr

ISSN Druckformat: 0276-1459

ISSN Online: 1943-6181

SJR: 0.144 SNIP: 0.256 CiteScore™:: 1.1 H-Index: 24

Indexed in

EFFECT OF BOILING AND MOMENTUM CLOSURES ON THE PREDICTION OF SUBCOOLED FLOW BOILING

Volumen 31, Ausgabe 4, 2019, pp. 319-344
DOI: 10.1615/MultScienTechn.2020031457
Get accessGet access

ABSTRAKT

Flow boiling is widely used as a mode of heat transfer in many industries, especially in nuclear reactors. Despite its advantages, heat transfer is hampered beyond certain flux under subcooled boiling conditions due to a phenomenon known as departure from nucleate boiling. It is important to determine the void fraction profiles, especially the near-wall void fractions, in order to evaluate the limiting heat flux conditions. Many researchers used the two-fluid Eulerian model coupled with the wall boiling model to predict the subcooled flow boiling in vertical tubes. However, there is no common consensus regarding the boiling and momentum closures. In this paper, a comprehensive analysis is performed to analyze the impact of boiling and momentum closures. Simulation results are validated with experimental data of DEBORA tests.

REFERENZEN
  1. Antal, S.P., Lahey, R.T., and Flaherty, J.E., Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow, Int. J. Multiph. Flow, vol. 17, no. 5, pp. 635-652, 1991.

  2. Bartolomei, G.G. and Chanturiya, V.M., Experimental Study of True Void Fraction when Boiling Subcooled Water in Vertical Tubes, Therm. Eng., vol. 14, no. 2, pp. 123-128, 1967.

  3. Burns, A.D., Frank, T., Hamill, I., and Shi, J.-M.M., The Favre Averaged Drag Model for Turbulent Dispersion in Eulerian Multi-Phase Flows, in Fifth Int. Conf. Multiph. Flow, pp. 1-17,2004.

  4. Chen, E., Li, Y., and Cheng, X., CFD Simulation of Upward Subcooled Boiling Flow of Refrigerant-113 Using the Two-Fluid Model, Appl. Therm. Eng., vol. 29, nos. 11-12, pp. 2508-2517, 2009.

  5. Cole, R., A Photographic Study of Pool Boiling in the Region of the Critical Heat Flux, AIChE J, vol. 6, no. 4, pp. 533-538, 1960.

  6. Colombo, M. and Fairweather, M., Accuracy of Eulerian-Eulerian, Two-Fluid CFD Boiling Models of Subcooled Boiling Flows, Int. J. Heat Mass Transf., vol. 103, pp. 28-44, 2016.

  7. Drew, D.A. and Lahey, R.T., The Virtual Mass and Lift Force on a Sphere in Rotating and Straining Inviscid Flow, Int. J. Multiph. Flow, 1987.

  8. Drew, D.A., Analytical Modeling of Multiphase Flows, in Boiling Heat Transfer, Elsevier, pp. 31-84,1992.

  9. Frank, T., Shi, J.M., and Burns, A.D., Validation of Eulerian Multiphase Flow Models for Nuclear Safety Application, in 3rd Int. Symp. Two-Phase Flow Model. Exp., Pisa, Italy, Sept. 22-24, 2004.

  10. Fritz, W., Maximum Volume of Vapour Bubbles, Phys. Zeitschrift, vol. 36, pp. 379-384, 1935.

  11. Garnier, J., Manon, E., and Cubizolles, G., Local Measurements on Flow Boiling of Refrigerant 12 in a Vertical Tube, Multiph. Sci. Technol., vol. 13, nos. 1-2, 2001.

  12. Gilman, L. and Baglietto, E., A Self-Consistent, Physics-Based Boiling Heat Transfer Modeling Framework for Use in Computational Fluid Dynamics, Int. J. Multiph. Flow, vol. 95, pp. 35-53, 2017.

  13. Hassan, Y.A., Estrada-Perez, C.E., and Yoo, J.S., Measurement of Subcooled Flow Boiling Using Particle Tracking Velocimetry and Infrared Thermographic Technique, Nucl. Eng. Des., vol. 268, pp. 185-190, 2014.

  14. Hassan, Y.A., Multi-Scale Full-Field Measurements and Near-Wall, Modeling of Turbulent Subcooled Boiling Flow Using Innovative Experimental Techniques, Nucl. Eng. Des., vol. 299, pp. 46-58, 2016.

  15. Hibiki, T. and Ishii, M., Active Nucleation Site Density in Boiling Systems, Int. J. Heat Mass Transf, vol. 46, no. 14, pp. 2587-2601, 2003.

  16. Hosokawa, S., Tomiyama, A., Misaki, S., and Hamada, T., Lateral Migration of Single Bubbles due to the Presence of Wall, in ASME2002Jt. US-European Fluids Eng. Div. Conf., paper no. FEDSM2002-31148, pp. 855-860, 2002.

  17. Ishii, M. and Zuber, N., Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulate Flows, AIChE J, vol. 25, no. 5, pp. 843-855, 1979.

  18. Klausner, J.F., Mei, R., Bernhard, D.M., and Zeng, L.Z., Vapor Bubble Departure in Forced Convection Boiling, Int. J. Heat Mass Transf., vol. 36, no. 3, pp. 651-662,1993.

  19. Kocamustafaogullari, G. and Ishii, M., Interfacial Area and Nucleation Site Density in Boiling Systems, Int. J. Heat Mass Transf, vol. 26, no. 9, pp. 1377-1387, 1983.

  20. Koncar, B., Kljenak, I., and Mavko, B., Modelling of Local Two-Phase Flow Parameters in Upward Subcooled Flow Boiling at Low Pressure, Int. J. Heat Mass Transf, vol. 47, nos. 6-7, pp. 1499-1513,2004.

  21. Krepper, E., Koncar, B., and Egorov, Y., CFD Modelling of Subcooled Boiling-Concept, Validation and Application to Fuel Assembly Design, Nucl. Eng. Des., vol. 237, no. 7, pp. 716-731,2007.

  22. Krepper, E. and Rzehak, R., CFD for Subcooled Flow Boiling: Simulation of DEBORA Experiments, Nucl. Eng. Des, vol. 241, no. 9, pp. 3851-3866, 2011.

  23. Kurul, N. and Podowski, M.Z., On the Modeling of Multidimensional Effects in Boiling Channels, in 27th Natl. Heat Transf. Conf., Minneapolis, MN, 1991.

  24. Lavieville, J., Quemerais, E., Mimouni, S., Boucker, M., and Mechitoua, N., NEPTUNE CFD V1. 0 Theory Manual, Rapp. Interne EDF H-I81-2006-04377-EN. Rapp. NEPTUNE Nep0004_L, vol. 1, no. 3,2006.

  25. Legendre, D. and Magnaudet, J., The Lift Force on a Spherical Bubble in a Viscous Linear Shear Flow, J. FluidMech, vol. 368, pp. 81-126, 1998.

  26. Lemmert, M. and Chawla, L.M., Influence of Flow Velocity on Surface Boiling Heat Transfer Coefficient in Heat Transfer in Boiling, New York: Academic Press Hemisphere, 1977.

  27. Li, H., Vasquez, S.A., Punekar, H., and Muralikrishnan, R., Prediction of Boiling and Critical Heat Flux Using an Eulerian Multiphase Boiling Model, in ASME Int. Mech. Eng. Congr. Expo., pp. 463-476, 2011.

  28. Lopez de Bertodano, M., Lahey, R.T., and Jones, O.C., Turbulent Bubbly Two-Phase Flow Data in a Triangular Duct, Nucl. Eng. Des, vol. 146, nos. 1-3, pp. 43-52, 1994.

  29. Lubchenko, N., Magolan, B., Sugrue, R., and Baglietto, E., A More Fundamental Wall Lubrication Force from Turbulent Dispersion Regularization for Multiphase CFD Applications, Int. J. Multiph. Flow, vol. 98, pp. 36-44, 2018.

  30. Moraga, F.J., Bonetto, F.J., and Lahey, R.T., Lateral Forces on Spheres in Turbulent Uniform Shear Flow, Int. J. Multiph. Flow, vol. 25, nos. 6-7, pp. 1321-1372, 1999.

  31. Prabhudharwadkar, D., Lopez de Bertodano, M.A., Hibiki, T., and Buchanan, J.R., Assessment of Subcooled Boiling Wall Boundary Correlations for Two-Fluid Model CFD, Int. J. Heat Mass Transf., vol. 79, pp. 602-617, 2014.

  32. Ranz, W.E. and Marshall, W.R., Evaporation from Drops, Chem. Eng. Prog., vol. 48, no. 3, pp. 141-146, 1952.

  33. Rzehak, R. and Krepper, E., CFD Modeling of Bubble-Induced Turbulence, Int. J. Multiph. Flow, vol. 55, pp. 138-155,2013a.

  34. Rzehak, R. and Krepper, E., Bubble-Induced Turbulence: Comparison of CFD Models, Nucl. Eng. Des., vol. 258, pp. 57-65, 2013b.

  35. Saffman, P.G., The Lift on a Small Sphere in a Slow Shear Flow, J. Fluid Mech, vol. 22, no. 2, pp. 385-400, 1965.

  36. Sato, Y., Sadatomi, M., and Sekoguchi, K., Momentum and Heat Transfer in Two-Phase Bubble Flow-I. Theory, Int. J. Multiph. Flow, vol. 7, no. 2, pp. 167-177, 1981.

  37. Takemura, F., Takagi, S., Magnaudet, J., and Matsumoto, Y., Drag and Lift Forces on a Bubble Rising near a Vertical Wall in a Viscous Liquid, J. Fluid Mech, vol. 461, pp. 277-300, 2002.

  38. Tolubinsky, V.I. and Kostanchuk, D.M., Vapour Bubbles Growth Rate and Heat Transfer Intensity at Sub-cooled Water Boiling, in Int. Heat Transf. Conf. 4, vol. 23, 1970.

  39. Tomiyama, A., Struggle with Computational Bubble Dynamics, Multiph. Sci. Technol., vol. 10, no. 4, pp. 369-405, 1998.

  40. Tomiyama, A., Kataoka, I., Zun, I., and Sakaguchi, T., Drag Coefficients of Single Bubbles under Normal and Micro Gravity Conditions, JSMEInt. J. Ser. B, vol. 41, no. 2, pp. 472-479, 1998.

  41. Tomiyama, A., Tamai, H., Zun, I., and Hosokawa, S., Transverse Migration of Single Bubbles in Simple Shear Flows, Chem. Eng. Sci., vol. 57, no. 11, pp. 1849-1858, 2002.

  42. Troshko, A.A. and Hassan, Y.A., A Two-Equation Turbulence Model of Turbulent Bubbly Flows, Int. J. Multiph. Flow, vol. 27, no. 11, pp. 1965-2000, 2001.

  43. Vaidheeswaran, A., Prabhudharwadkar, D., Guilbert, P., Buchanan, J.R., and Bertodano, M.L., New Two-Fluid Model Near-Wall Averaging and Consistent Matching for Turbulent Bubbly Flows, J. Fluids Eng., vol. 139, no. 1, p. 011302,2016.

  44. Yun, B.J., Splawski, A., Lo, S., and Song, C.H., Prediction of a Subcooled Boiling Flow with Advanced Two-Phase Flow Models, Nucl. Eng. Des., vol. 253, pp. 351-359, 2012.

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain