Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
TsAGI Science Journal

ISSN Druckformat: 1948-2590
ISSN Online: 1948-2604

TsAGI Science Journal

DOI: 10.1615/TsAGISciJ.2019033119
pages 613-620

SELF-SIMILAR TURBULENT FLOWS OF A VISCOUS GAS IN A CONE

Umar Garunovich Ibragimov
Moscow Institute of Physics and Technology, 9, Institutskiy Per., Dolgoprudny, Moscow Region, 141701, Russian Federation

ABSTRAKT

A turbulent axisymmetric viscous gas flow from a source located on a cone apex is considered. The possibility of constructing a self-similar solution is found within the classical Prandtl model for the turbulent fluid and the Boussinesq hypothesis for the turbulence stress tensor. The determining equations are reduced to a system of ordinary differential equations depending on a single variable. A numerical investigation is performed and the critical values of the key parameters of the problem are found.

REFERENZEN

  1. Williams, J.C., Conical Nozzle Flow with Velocity Slip and Temperature Jump, AIAAJ., vol. 5, no. 12, pp. 2128-2134, 1967?.

  2. Byrkin, A.P., Exact Solutions of the Navier-Stokes Equations for a Compressible Gas Flow in Channels, Uch. Zap. TsAGI, vol. 1, no. 6, pp. 15-21, 1970.

  3. Byrkin, A.P., Exact Solution of the Navier-Stokes Equations for a Compressible Gas: PMM, J. Appl. Math. Mech., vol. 33, no. 1, pp. 152-157, 1969.

  4. Byrkin, A.P. and Mezhirov, I.I., Some Self-Similar Viscous Gas Flows in a Channel, Fluid Dyn., vol. 4, no. 1, pp. 70-72, 1969.

  5. Brutyan, M.A., Self-Similar Solutions of the Jeffery-Hamel Type for Compressible Viscous Gas Flow, TsAGISci. J, vol. 48, no. 6, pp. 505-514, 2017.

  6. Brutyan, M.A. and Ibragimov, U.G., Self-Similar Solutions for Viscous Compressible Gas Flow inside a Cone, TsAGI Sci. J, vol. 49, no. 3, pp. 225-237, 2018.

  7. Brutyan, M.A. and Ibragimov, U.G., Influence of the Self-Similarity Parameter on Critical Characteristics of the Compressible Hamel Type Flow, Trudy MAI, vol. 100, pp. 1-12, 2018 (http://trudymai.ru/published.php?ID=93319).

  8. Brutyan, M.A. and Ibragimov, U.G., Self-Similar and Non-Self-Similar Viscous Gas Flows Out of the Cone Vertex, Trudy MFTI, vol. 10, no. 4, pp. 113-121, 2018.

  9. Brutyan, M.A. and Krapivskii, P.L., Exact Solutions of Steady-State Navier-Stokes Equations for a Viscous Heat-Conductive Gas for a Plane Jet from a Linear Source, J. Appl. Math. Mech., vol. 82, no. 5, pp. 644-656, 2018.

  10. Landau, L.D., A New Exact Solution of the Navier-Stokes Equations, Dokl. Akad. Nauk SSSR, vol. 43, no. 1,pp. 299-301, 1944.

  11. Golubkin, V.N. and Sizykh, G.B., On the Compressible Couette Flow, TsAGI Sci. J., vol. 49, no. 1, pp. 29-41,2018.

  12. Wilcox, D C., Turbulence Modeling for CFD, 3rd ed., La Canada, CA: DCW Industries, Inc., 2006.

  13. Schlichting, H., Boundary Layer Theory, Vol. 960, New York: McGraw-Hill, 1960.

  14. Chapman, S. and Cowling, T.G., The Mathematical Theory of Non-Uniform Gases, 3rd ed., Cambridge, U.K.: Cambridge University Press, 1970.

  15. Meier, H.U. and Rotta, J.C., Experimental and Theoretical Investigation of Temperature Distributions in Supersonic Layers, AIAA Paper 744, 1970.

  16. Hasen, G.A., Navier-Stokes Solutions for an Axisymmetric Nozzle, in Proc. of 17th Joint Propulsion Conference, AIAA Paper 81-1474, Colorado Springs, CO, July 27-29, 1981.

  17. Cebeci, T. and Bradshaw, P., Physical and Computational Aspects ofConvective Heat Transfer, Berlin, Germany: Springer-Verlag, 1984.


Articles with similar content:

MIXED CONVECTION MHD HEAT AND MASS TRANSFER OVER A NONLINEAR STRETCHING VERTICAL SURFACE IN A NON-DARCIAN POROUS MEDIUM
Journal of Porous Media, Vol.17, 2014, issue 6
Rama Subba Reddy Gorla, Masoud Molaei Najafabadi
Some Exact Solutions of 2D Steady Flow of an Incompressible Viscous Fluid through a Porous Medium
Journal of Porous Media, Vol.9, 2006, issue 6
Abdul Majeed Siddiqui, Q. K. Ghori, A. Zeb
THE FALKNER–SKAN FLOW WITH VARIABLE VISCOSITY AND NONLINEAR ROSSELAND THERMAL RADIATION
Heat Transfer Research, Vol.49, 2018, issue 6
Asterios Pantokratoras, Tiegang Fang
ANISOTROPIC MHD TURBULENCE AT LOW MAGNETIC REYNOLDS NUMBER
TSFP DIGITAL LIBRARY ONLINE, Vol.4, 2005, issue
Oleg Zikanov, Anatoliy Vorobev
ON THE EXISTENCE OF THE FIRST INTEGRAL IN THE PROBLEM OF TURBULENT BOUNDARY LAYER OPTIMAL CONTROL IN SUPERSONIC FLOW
TsAGI Science Journal, Vol.43, 2012, issue 1
Kavas Garayevich Garayev