Abo Bibliothek: Guest
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

Erscheint 4 Ausgaben pro Jahr

ISSN Druckformat: 1093-3611

ISSN Online: 1940-4360

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00005 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.07 SJR: 0.198 SNIP: 0.48 CiteScore™:: 1.1 H-Index: 20

Indexed in

PLASMOCHEMICAL TECHNOLOGIES FOR PROCESSING OF HYDROCARBONIC RAW MATERIAL WITH SYNGAS PRODUCTION

Volumen 8, Ausgabe 3, 2004, pp. 433-445
DOI: 10.1615/HighTempMatProc.v8.i3.90
Get accessGet access

ABSTRAKT

The present work is devoted to conceptual and applied problems of high-temperature plasma pyrolysis of solid waste of anthropogenous origin with rather high content of hydrocarbons and air-steam conversion of natural gas with the purpose to produce a synthetic gas of specified composition. Calculation results of power and consumption characteristics are represented. They show that process and hardware optimization of plasmochemical processing technologies of comparatively cheap raw material allows decreasing of specific energy consumption to 1-1.2 kW·h/kg at allowable specific plasma enthalpy of 3-8 MJ/kg. It makes them promising for application to production cycles, and plasma steam-air conversion of natural gas can form a basis for creation of large-tonnage manufactures of pure hydrogen production. Offered technologies favorably differ from traditional ones by increased efficiency and they are pollution-free.

REFERENZIERT VON
  1. Hrabovsky M., Konrad M., Kopecky V., Hlina M., Kavka T., van Oost G., Beeckman E., Defoort B., Gasification of biomass in water/gas-stabilized plasma for syngas production, Czechoslovak Journal of Physics, 56, S2, 2006. Crossref

  2. Tendler Michael, Rutberg Philip, Oost Guido van, Plasma based waste treatment and energy production, Plasma Physics and Controlled Fusion, 47, 5A, 2005. Crossref

  3. Rutberg Ph. G., Safronov A. A., Popov S. D., Surov A. V., Nakonechnyi G. V., Multiphase electric-arc ac plasma generators for plasma technologies, High Temperature, 44, 2, 2006. Crossref

  4. Rutberg F. G., Pavlov A. V., Popov S. D., Sakov A. I., Serba E. O., Spodobin V. A., Surov A. V., Spectral measurements of the gas and electron temperatures in the flame of a single-phase ac plasma generator, High Temperature, 47, 2, 2009. Crossref

  5. Heberlein Joachim, Murphy Anthony B, Thermal plasma waste treatment, Journal of Physics D: Applied Physics, 41, 5, 2008. Crossref

  6. Popov S. D., Rutberg A. F., Safronov A. A., The use of AC plasma generators for operation as a part of plasma reactor: Special features, High Temperature, 45, 1, 2007. Crossref

  7. Bratsev A. N., Popov V. E., Rutberg A. F., Shtengel’ S. V., A facility for plasma gasification of waste of various types, High Temperature, 44, 6, 2006. Crossref

  8. Rutberg Ph G, Safronov A A, Popov S D, Surov A V, Nakonechny Gh V, Multiphase stationary plasma generators working on oxidizing media, Plasma Physics and Controlled Fusion, 47, 10, 2005. Crossref

  9. Antonov G. G., Kovshechnikov V. B., Gnedovskiy A. V., Comparison between the parameters of a one-phase arc with copper and steel electrodes ignited in nitrogen and in air, Technical Physics, 56, 1, 2011. Crossref

  10. Grigaitienė V., Snapkauskienė V., Valatkevičius P., Tamošiūnas A., Valinčius V., Water vapor plasma technology for biomass conversion to synthetic gas, Catalysis Today, 167, 1, 2011. Crossref

  11. Tatarova E., Henriques J. P., Felizardo E., Lino da Silva M., Ferreira C. M., Gordiets B., Microwave plasma source operating with atmospheric pressure air-water mixtures, Journal of Applied Physics, 112, 9, 2012. Crossref

  12. Van Oost G., Hrabovsky M., Kopecky V., Konrad M., Hlina M., Kavka T., Chumak A., Beeckman E., Verstraeten J., Pyrolysis of waste using a hybrid argon–water stabilized torch, Vacuum, 80, 11-12, 2006. Crossref

  13. Van Oost G., Hrabovsky M., Kopecky V., Konrad M., Hlina M., Kavka T., Pyrolysis/gasification of biomass for synthetic fuel production using a hybrid gas–water stabilized plasma torch, Vacuum, 83, 1, 2008. Crossref

  14. Hlina M., Hrabovsky M., Kavka T., Konrad M., Production of high quality syngas from argon/water plasma gasification of biomass and waste, Waste Management, 34, 1, 2014. Crossref

  15. Cremonez Paulo André, Feroldi Michael, de Araújo Amanda Viana, Negreiros Borges Maykon, Weiser Meier Thompson, Feiden Armin, Gustavo Teleken Joel, Biofuels in Brazilian aviation: Current scenario and prospects, Renewable and Sustainable Energy Reviews, 43, 2015. Crossref

  16. Rutberg Ph.G., Kumkova I.I., Kuznetsov V.E., Popov S.D., Rutberg A.Ph., Safronov A.A., Shiryaev V.N., Surov A.V., High-voltage plasma generators of alternating current with rod electrodes stationary operating on oxidizing media, 2007 16th IEEE International Pulsed Power Conference, 2007. Crossref

  17. Kuznetsov V. A., Bratsev A. N., Kovshechnikov V. B., Kumkova I. I., Popov V. E., Shtengel S. V., Ufimtsev A. A., Distinctive features of biomass gasification using AC plasma generators working on air, 2007 16th IEEE International Pulsed Power Conference, 2007. Crossref

  18. Ghosh Sadhan Kumar, Sustainable SWM in Developing Countries Focusing on Faster Growing Economies, India and China, Procedia Environmental Sciences, 35, 2016. Crossref

  19. RIDA GALALY Ahmed, VAN OOST Guido, Environmental and economic vision of plasma treatment of waste in Makkah, Plasma Science and Technology, 19, 10, 2017. Crossref

  20. Gomez E., Rani D. Amutha, Cheeseman C.R., Deegan D., Wise M., Boccaccini A.R., Thermal plasma technology for the treatment of wastes: A critical review, Journal of Hazardous Materials, 161, 2-3, 2009. Crossref

  21. Rutberg Ph.G., Bratsev A.N., Kuznetsov V.A., Popov V.E., Ufimtsev A.A., Shtengel’ S.V., On efficiency of plasma gasification of wood residues, Biomass and Bioenergy, 35, 1, 2011. Crossref

  22. Shie Je-Lueng, Chang Ching-Yuan, Tu Wen-Kai, Yang Yu-Chieh, Liao Jui-Ke, Tzeng Chin-Ching, Li Heng-Yi, Yu Yuh-Jenq, Kuo Ching-Hui, Chang Lieh-Chih, Major Products Obtained from Plasma Torch Pyrolysis of Sunflower-Oil Cake, Energy & Fuels, 22, 1, 2008. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain