Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes
SJR: 0.137 SNIP: 0.341 CiteScore™: 0.43

ISSN Druckformat: 1093-3611
ISSN Online: 1940-4360

High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

DOI: 10.1615/HighTempMatProc.v15.i2.40
pages 115-122


Bernard Pateyron
Laboratoire SPCTS UMR CNRS 7315, ENSCI, Centre Europeen de la Ceramique, Limoges, France
Guy Delluc
Laboratoire Sciences des Precedes Ceramiques et Traitements de Surfaces UMR CNRS 6638, 123 avenue Albert Thomas 87060 Limoges Cedex
Pierre Fauchais
Laboratoire Sciences des Procedes Ceramiques et de Traitements de Surface UMR CNRS 6638 University of Limoges 123 avenue Albert Thomas, 87060 LIMOGES - France


The composition and transport properties of CO2, CO, CH4, CO + Ar, CO + Fe have been calculated at constant volume. Except at low temperature (T < 3,000 K) with the formation of condensed species or more complex molecules, pressure increases with temperature at constant volume. For example, 1 mole of CH4 starting at 0.1 MPa and 298 K can reach 35 MPa at 20,000 K. The net result is a shift to a higher temperature of dissociation and ionization. The electrical conductivity ae at constant volume increases drastically relatively to that obtained at 0.1 MPa over 15,000 K, in spite of the decrease of the electron density ne. The decrease is due to the increase of neutral species ni with a much lower electron-neutral species collision cross section σeie is increased proportionally to the inverse of niei). The viscosity always exhibits a maximum when the ionization degree reaches 3% but this maximum is shifted to a higher temperature and its peak value is higher. The thermal conductivity peak due to dissociation is shifted to higher temperature and its value is reduced while the conductivity peak due to ionization, again being shifted to higher temperature, is increased in its value.


  1. Neuschutz, D., J. High Temp. Mater. Proc.

  2. Neuschutz, D., State and trends of the electric arc furnace technology.

  3. Fauchais, P., Elchinger, M. F., and Aubreton, J., Thermodynamic and transport properties of thermal plasmas.

  4. Storey, S. H. and van Zeggeren, F., The Computation of Chemical Equilibria.

  5. Pateyron, B., Elchinger, M. F., Delluc, G., and Fauchais, P., Thermodynamic and transport properties of Ar-H<sub>2</sub> and Ar-He plasma gases used for spraying at atmospheric pressure. I: Properties of the mixtures.

  6. Elchinger, M. F., Pateyron, B., Delluc, G., and Fauchais, P., Calculs des propretes thermo-dynamiques et de transport des plasmas Ar-N<sub>2</sub> et Ar-NH<sub>3</sub> a la pression atmospherique.

  7. Boulos, M. I., Fauchais, P., and Pfender, E., Thermal Plasmas Fundamentals and Applications.