Abo Bibliothek: Guest
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

Erscheint 4 Ausgaben pro Jahr

ISSN Druckformat: 1093-3611

ISSN Online: 1940-4360

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00005 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.07 SJR: 0.198 SNIP: 0.48 CiteScore™:: 1.1 H-Index: 20

Indexed in

NUMERICAL SIMULATION OF BENZENE HIGH-TEMPERATURE PYROLYSIS

Volumen 23, Ausgabe 4, 2019, pp. 291-302
DOI: 10.1615/HighTempMatProc.2019033024
Get accessGet access

ABSTRAKT

The paper examines experimental data presented in the literature on benzene pyrolysis obtained by various registration methods for the consumption of benzene itself and the yield of its products. The temperature ranged from 900 to 2200 K and the pressure ranged from 0.04 to 5 MPa. Numerical modeling was carried out using a number of different detailed kinetic mechanisms (DKM), as presented in the literature. In different temperature ranges, it was demonstrated that numerical simulations using different DKMs present different results. The temperature range and the corresponding DKMs are determined by the results of numerical modeling when their usage coincides most closely with the experimental data. It is determined that the DKMs presented in the literature are only able to qualitatively describe the experimental data at 5 MPa.

REFERENZEN
  1. Agafonov, G.L., Bilera, I.V., Vlasov, P.A., Zhil'tsova, I.V., Kolbanovskii, Yu.A., Smirnov, V.N., and Tereza, A.M., Unified Kinetic Model of Soot Formation in the Pyrolysis and Oxidation of Aliphatic and Aromatic Hydrocarbons in Shock Waves, Kinetics and Catalysis, vol. 57, no. 5, pp. 557-572, 2016.

  2. Agafonov, G.L., Vlasov, P.A., and Smirnov, V.N., Soot Formation in the Pyrolysis of Benzene, Methylbenzene and Ethylbenzene in Shockwaves, Kinetics Catalysis, vol. 52, no. 3, pp. 358-370, 2011.

  3. Asaba, T. and Fujii, N., Shock-Tube Study of the High-Temperature Pyrolysis of Benzene, Proc. Combust. Inst., vol. 13, pp. 155-164, 1971.

  4. Battin-Leclerc, F., Detailed Chemical Kinetic Models for the Low Temperature Combustion of Hydrocarbons with Application to Gasoline and Diesel Fuel, Progr. Energy Comb. Sci., vol. 34, no. 4, pp. 440-498, 2008.

  5. Bauer, S.H. and Aten, C.F., Absorption Spectra of Polyatomic Molecules at High Temperatures. II. Benzene and Perfluorobenzene. Kinetics of the Pyrolysis of Benzene, J. Chem. Phys., vol. 39, pp. 1253-1260, 1963.

  6. Bohm, H., Jander, H., and Tanke, D., PAH Growth and Soot Formation in the Pyrolysis of Acetylene and Benzene at High Temperatures and Pressures: Modeling and Experiment, Proc. Combust. Inst., vol. 27, pp. 1605-1612, 1998.

  7. Brooks, C.T., Peacock, S.J., and Reuben B.G., Pyrolysis of Benzene, J. Chem. Soc., Faraday Trans. 1, vol. 75, pp. 652-662, 1979.

  8. Burcat, A. and Ruscic, B., Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with updates from Active Thermochemical Tables, Aerospace Engineering, and Argonne National Laboratory, Chemistry Division, Tech. Rep. TAE-960; ANL-50/20 Technion-IIT, 2005.

  9. Cho, M.-H., Jung, S.-H., and Kim, J.-S., Pyrolysis of Mixed Plastic Wastes for the Recovery of Benzene, Toluene, and Xylene (BTX) Aromatics in a Fluidized Bed and Chlorine Removal by Applying Various Additives, Energy Fuels, vol. 24, pp. 1389-1395, 2010.

  10. Colket, M.B. and Seery, D.J., Reaction Mechanisms for Toluene Pyrolysis, Proc. Combust. Inst., vol. 25, pp. 883-891, 1995.

  11. Czajczynska, D., Anguilano, L., Ghazal, H., Krzyzynska, R., Reynolds, A.J., Spencer, N., and Jouhara H., Potential of Pyrolysis Processes in the Waste Management Sector, Therm. Sci. Eng. Progress, vol. 3, pp. 171-197, 2017.

  12. Doroshko, M.V., High-Temperature Pyrolysis of Propane and Methane-Shock Tube Investigation, High Temp. Mater. Proc, vol. 23, no. 2, pp. 165-179, 2019.

  13. Frenklach, M., Clary, D.W., Gardiner, W.C., and Stein, S.E., Effect of Fuel Structure on Pathways to Soot, Proc. Combust. Inst., vol. 21, pp. 1067-1076, 1988.

  14. Frolov, S., Zvegintsev, V., Aksenov, V., Bilera, I., Kazachenko, M., Shamshin, I., Gusev, P., and Belotserkovskaya, M., Deflagration-to-Detonation Transition in Mixtures of the Pyrolysis Products of Polypropylene with Air, Doklady Phys. Chem., vol. 488, no. 1, pp. 129-133, 2019.

  15. Frusteri, L., Cannilla, C., Barbera, K., Perathoner, S., Centi, G., and Frusteri, F., Carbon Growth Evidences as a Result of Benzene Pyrolysis, Carbon, vol. 59, pp. 296-307, 2013.

  16. Gardiner, W.C. and Troe, J., Rate Coefficients of Thermal Dissociation, Isomerization, and Recombination Reactions, in Combustion Chemistry, W.C. Gardiner, Ed., New York: Springer, pp. 173-196, 1984.

  17. Graham, S.C., Homer, J.B., and Rosenfeld, J.L.J., The Formation and Coagulation of Soot Aerosols Generated by the Pyrolysis of Aromatic Hydrocarbons, Proc. R. Soc. London, Ser. A: Math. Phys. Sci., vol. 344, pp. 259-285, 1975.

  18. Hou, K.C. and Palmer, H.B., The Kinetics of Thermal Decomposition of Benzene in a Flow System, J. Phys. Chem, vol. 69, pp. 863-868, 1965.

  19. Kaminsky, W., Recycling of Polymers by Pyrolysis, J. Physique IV, vol. 3, pp. 1543-1552, 1993.

  20. Kashiwa, K., Kitahara, T., Arai, M., and Kobayashi, Y., Benzene Pyrolysis and PM Formation Study using a Flow Reactor, Fuel, vol. 230, pp. 185-193, 2018.

  21. Kee, R.J., Rupley, F.M., Meeks, E., and Miller, J.A., CHEMKIN III, Sandia National Laboratories, Livermore, CA, Tech. Rep. SAND96-8216, 1996.

  22. Kern, R.D., Singh, H.J., Esslinger, M.A., and Winkeler, P.W., Product Profiles Observed during the Pyrolysis of Toluene, Benzene, Butadiene and Acetylene, Proc. Combust. Inst., vol. 19, pp. 1351-1358, 1982.

  23. Kiefer, J.H., Mizerka, L.J., Patel, M.R., and Wei, H.-C., A Shock Tube Investigation of Major Pathways in the High-Temperature Pyrolysis of Benzene, J. Phys. Chem., vol. 89, pp. 2013-2019, 1985.

  24. Krestinin, A.V., Detailed Modeling of Soot Formation in Hydrocarbon Pyrolysis, Combust. Flame, vol. 121, pp. 513-524, 2000.

  25. Kuznetsov, N.M., Kinetics of Monomolecular Reactions, Moscow: Nauka Press, pp. 105-142, 1982.

  26. Laskin, A. and Lifshitz, A., Thermal Decomposition of Benzene: Single Pulse Shock-Tube Investigation, Proc. Combust. Inst., vol. 26, pp. 669-675, 1997.

  27. Ramirez-Canon, A., Munoz-Camelo, Y.F., and Singh, P., Decomposition of Used Tyre Rubber by Pyrolysis: Enhancement of the Physical Properties of the Liquid Fraction Using a Hydrogen Stream, Environments, vol. 5, no. 6, pp. 72-83, 2018.

  28. Ranzi, E., Frassoldati, A., Grana, R., Cuoci, A., Faravelli, T., Kelley, A.P., and Law, C.K., Hierarchical and Comparative Kinetic Modeling of Laminar Flame Speeds of Hydrocarbon and Oxygenated Fuels, Progress Energy Combust. Sci., vol. 38, no. 4, pp. 468-501, 2012.

  29. Richter, H., Benish, T.G., Mazyar, O.A., Green, W.H., and Howard, J.B., Formation of Polycyclic Aromatic Hydrocarbons and Their Radicals in a Nearly Sooting Premixed Benzene Flame, Proc. Combust. Inst., vol. 28, pp. 2609-2618, 2001.

  30. Rostami, R., Moussavi, G., Jafari, A.J., and Darbari, S., Decomposition of Benzene using Wire-Tube AC/DC Discharge Reactors, J. Electrostatics, vol. 87, pp. 158-166, 2017.

  31. Shih, S.I., Lin, T.C., and Shih, M., Decomposition of Benzene in the RF Plasma Environment. Part I. Formation of Gaseous Products and Carbon Depositions, J. Hazard. Mater., vol. 116, no. 3, pp. 239-248, 2004.

  32. Singh, H.J. and Kern, R.D., Pyrolysis of Benzene behind Reflected Shock Waves, Combust. Flame, vol. 54, pp. 49-59, 1983.

  33. Sivaramakrishnan, R., Brezinsky, K., Vasudevan, H., and Tranter, R.S., A Shock-Tube Study of the High-Pressure Thermal Decomposition of Benzene, Combust. Sci. Technol., vol. 178, pp. 285-305, 2006.

  34. Tesner, P.A. and Shurupov, S.V., Some Physicochemical Parameters of Soot Formation during Pyrolysis of Hydrocarbons, Combust. Sci. Technol., vol. 105, pp. 147-161, 1995.

  35. Trubetskaya, A., Jensen, P.A., Jensen, A.D., Garcia Llamas, A.D., Umeki, K., and Glarborg, P., Effect of Fast Pyrolysis Conditions on Biomass Solid Residues at High Temperatures, Fuel Process. Technol., vol. 143, pp. 118-129, 2016.

  36. Wang, H., Warner, S.J., Oehlschlaeger, M.A., Bounaceur, R., Biet, J., and Glaude, P.A., An Experimental and Kinetic Modeling Study of the Autoignition of a-Methylnaphthalene/Air and a-Methylnaphthalene/n-Decane/Air Mixtures at Elevated Pressures, Combust. Flame, vol. 157, no. 10, pp. 1976-1978, 2010.

  37. Zhang, K., Banyon, C., Togbe, C., Dagaut, P., Bugler, J., and Curran, H.J., An Experimental and Kinetic Modeling Study of n-Hexane Oxidation, Combust. Flame, vol. 162, no. 11, pp. 4194-4207, 2015.

REFERENZIERT VON
  1. Tereza A. M., Agafonov G. L., Anderzhanov E. K., Medvedev S. P., Khomik S. V., Petrov S. K., Chernyshov M. V., Conversion Kinetics of the Gaseous Products of Pyrolysis of Polypropylene and Waste Tires, Russian Journal of Physical Chemistry B, 14, 4, 2020. Crossref

  2. Tereza A M, Agafonov G L, Anderzhanov E K, Betev A S, Medvedev S P, Khomik S V, Mokhin G N, Mikhalkin V N, Kinetics of thermal conversion of gaseous products of polypropylene pyrolysis using several detailed kinetic mechanisms, Journal of Physics: Conference Series, 2036, 1, 2021. Crossref

  3. Tereza A. M., Agafonov G. L., Anderzhanov E. K., Medvedev S. P., Numerical Simulation of the Thermal Conversion of Gaseous Products of Polyethylene Pyrolysis, Russian Journal of Physical Chemistry B, 15, 4, 2021. Crossref

  4. Tereza A. M., Agafonov G. L., Anderzhanov E. K., Betev A. S., Medvedev S. P., Khomik S. V., Mokhin G. N., Numerical Simulation of the Thermal Conversion of Gaseous Products of Polypropylene Pyrolysis, Russian Journal of Physical Chemistry B, 15, 6, 2021. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain