Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes
SJR: 0.137 SNIP: 0.341 CiteScore™: 0.43

ISSN Druckformat: 1093-3611
ISSN Online: 1940-4360

High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

DOI: 10.1615/HighTempMatProc.v14.i1-2.110
pages 129-139

TWO DIMENSIONAL HYDRODYNAMIC AND KINETIC DESCRIPTION OF A DIELECTRIC BARRIER DISCHARGE (DBD) IN NITROGEN AT ATMOSPHERIC PRESSURE

L. Papageorghiou
Laboratoire d'Electronique des Gaz et des Plasmas, Université de Pau et des Pays de l'Adour, 64000 Pau
E. Panousis
Université de Pau et des Pays de l'Adour, Laboratoire d'Electronique des Gaz et des Plasmas LEGP, IPREM Technopole Hélioparc, 2 Av. Pdt Angot, 64013 Pau
J.-F. Loiseau
Université de Pau et des Pays de l'Adour, Laboratoire d'Electronique des Gaz et des Plasmas LEGP, IPREM Technopole Hélioparc, 2 Av. Pdt Angot, 64013 Pau
N. Spyrou
Electrotechnic Material Laboratory, University of Patras, 26500 Rion
B. Held
Université de Pau et des Pays de l'Adour, Laboratoire d'Electronique des Gaz et des Plasmas LEGP, IPREM Technopole Hélioparc, 2 Av. Pdt Angot, 64013 Pau
F. Clement
Université de Pau et des Pays de l'Adour, Laboratoire d'Electronique des Gaz et des Plasmas LEGP, IPREM Technopole Hélioparc, 2 Av. Pdt Angot, 64013 Pau

ABSTRAKT

A two dimensional, axial symmetric, computational model [1] of a filament formation in a Dielectric Barrier Discharge (DBD) for short gaps (1mm-2mm) in Nitrogen at atmospheric pressure is proposed. Special attention is drawn on the interaction of the filament with the dielectric material. It is shown that with the appropriate selection of boundary conditions and the inclusion of a suitable secondary electron emission mechanism from the dielectric it is possible to model the behavior of the discharge near the cathode. The model reproduces the radial expansion of the channel on the dielectric's surface and reveals a non uniform charging of the dielectric. Furthermore, the hydrodynamic description is coupled with a kinetic one, in order to calculate the spatiotemporal evolution of excited species produced during the micro-discharge development phase and which can intervene to surface treatment applications. Special attention is drawn on the N2(C3Πu ) and N2+(B2Πu) excited states which are responsible for the emission of the second positive and the first negative system of Nitrogen. Thus the luminous activity during the discharge phase can be modeled and compared with experimental results.