Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Uncertainty Quantification
Impact-faktor: 3.259 5-jähriger Impact-Faktor: 2.547 SJR: 0.531 SNIP: 0.8 CiteScore™: 1.52

ISSN Druckformat: 2152-5080
ISSN Online: 2152-5099

Offener Zugang

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2015012623
pages 569-583

ROBUSTNESS OF WILKS' CONSERVATIVE ESTIMATE OF CONFIDENCE INTERVALS

Jan Peter Hessling
SP Technical Research Institute of Sweden, Measurement Technology, Box 857, SE-50115 Boras, Sweden
Jeffrey Uhlmann
University of Missouri−Columbia, Department of Computer Science, 201 EBW, Columbia, Missouri 65211, USA

ABSTRAKT

The striking generality and simplicity of Wilks' method has made it popular for quantifying modeling uncertainty. A conservative estimate of the confidence interval is obtained from a very limited set of randomly drawn model sample values, with probability set by the assigned so-called stability. In contrast, the reproducibility of the estimated limits, or robustness, is beyond our control as it is strongly dependent on the probability distribution of model results. The inherent combination of random sampling and faithful estimation in Wilks' approach is here shown to often result in poor robustness. The estimated confidence interval is consequently not a well-defined measure of modeling uncertainty. To remedy this deficiency, adjustments of Wilks' approach as well as alternative novel, effective but less known approaches based on deterministic sampling are suggested. For illustration, the robustness of Wilks' estimate for uniform and normal model distributions are compared.


Articles with similar content:

FAST AND FLEXIBLE UNCERTAINTY QUANTIFICATION THROUGH A DATA-DRIVEN SURROGATE MODEL
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 2
Gerta Köster, Hans-Joachim Bungartz, Felix Dietrich, Tobias Neckel, Florian Künzner
Adaptive Filtration with Constraints on Estimated Parameters
Journal of Automation and Information Sciences, Vol.38, 2006, issue 5
Elena V. Podladchikova, Nina A. Naroditskaya, Vladimir N. Podladchikov
DIMENSIONALITY REDUCTION FOR COMPLEX MODELS VIA BAYESIAN COMPRESSIVE SENSING
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 1
Bert J. Debusschere, Habib N. Najm, Peter Thornton, Cosmin Safta, Khachik Sargsyan, Daniel Ricciuto
IMPROVEMENTS TO GRADIENT-ENHANCED KRIGING USING A BAYESIAN INTERPRETATION
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 3
Hester Bijl, Richard P. Dwight, Jouke H.S. de Baar
AN ERROR SUBSPACE PERSPECTIVE ON DATA ASSIMILATION
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 6
Haiyan Cheng, Adrian Sandu