Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Uncertainty Quantification
Impact-faktor: 4.911 5-jähriger Impact-Faktor: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN Druckformat: 2152-5080
ISSN Online: 2152-5099

Offener Zugang

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2015011166
pages 99-121

A NONSTATIONARY COVARIANCE FUNCTION MODEL FOR SPATIAL UNCERTAINTIES IN ELECTROSTATICALLY ACTUATED MICROSYSTEMS

Aravind Alwan
Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, IL 61801, USA
Narayana R. Aluru
Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, IL 61801, USA

ABSTRAKT

This paper presents a data-driven method of estimating stochastic models that describe spatial uncertainties. Relating these uncertainties to the spatial statistics literature, we describe a general framework that can handle heterogeneous random processes by providing a parameterization for the nonstationary covariance function in terms of a transformation function and then estimating the unknown hyperparameters from data using Bayesian inference. The transformation function is specified as a displacement that transforms the coordinate space to a deformed configuration in which the covariance between points can be represented by a stationary model. This approach is then used to model spatial uncertainties in microelectromechanical actuators, where the ground plate is assumed to have a spatially varying profile. We estimate the stochastic model corresponding to the random surface using synthetic profilometric data that simulate multiple experimental measurements of ground plate surface roughness. We then demonstrate the effect of the uncertainty on the displacement of the actuator as well as on other parameters, such as the pull-in voltage. We show that the nonstationarity is essential when performing uncertainty quantification in electrostatic microactuators.


Articles with similar content:

REPLICATION-BASED EMULATION OF THE RESPONSE DISTRIBUTION OF STOCHASTIC SIMULATORS USING GENERALIZED LAMBDA DISTRIBUTIONS
International Journal for Uncertainty Quantification, Vol.10, 2020, issue 3
Xujia Zhu, Bruno Sudret
RECONSTRUCTION OF DOMAIN BOUNDARY AND CONDUCTIVITY IN ELECTRICAL IMPEDANCE TOMOGRAPHY USING THE APPROXIMATION ERROR APPROACH
International Journal for Uncertainty Quantification, Vol.1, 2011, issue 3
Ville Kolehmainen, Jari P. Kaipio, Antti Nissinen
A STOCHASTIC LOW-ORDER MODELLING APPROACH FOR TURBULENT SHEAR FLOWS
TSFP DIGITAL LIBRARY ONLINE, Vol.7, 2011, issue
Guillaume Lehnasch, Joel Delville
REDUCING FRACTURE PREDICTION UNCERTAINTY BASED ON TIME-LAPSE SEISMIC (4D) AND DETERMINISTIC INVERSION ALGORITHM
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 2
Liming Zhang, Yi Wang, Qin Luo, Chenyu Cui, Kai Zhang, Jun Yao, Zhixue Sun
EXPERIMENTAL ESTIMATION OF A HEAT FLUX IMPOSED BY A LASER DIODE WITH THE STEADY STATE KALMAN FILTER
3rd Thermal and Fluids Engineering Conference (TFEC), Vol.5, 2018, issue
Olivier Fudym, George S. Dulikravich, HELCIO ORLANDE, Henrique da Fonseca, César C. Pacheco