Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Uncertainty Quantification
Impact-faktor: 3.259 5-jähriger Impact-Faktor: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Druckformat: 2152-5080
ISSN Online: 2152-5099

Offener Zugang

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2019029282
pages 295-310

USING PARALLEL MARKOV CHAIN MONTE CARLO TO QUANTIFY UNCERTAINTIES IN GEOTHERMAL RESERVOIR CALIBRATION

Tiangang Cui
School of Mathematical Sciences, Monash University, VIC 3800, Australia
C. Fox
Department of Physics, University of Otago, Dunedin 9016, New Zealand
G. K. Nicholls
Department of Statistics, University of Oxford, Oxford, OX1 3LG, United Kingdom
M. J. O'Sullivan
Department of Engineering Sciences, The University of Auckland, Auckland 1010, New Zealand

ABSTRAKT

We introduce a parallel rejection scheme to give a simple but reliable way to parallelize the Metropolis-Hastings algorithm. This method can be particularly useful when the target density is computationally expensive to evaluate and the acceptance rate of the Metropolis-Hastings is low. We apply the resulting method to quantify uncertainties of inverse problems, in which we aim to calibrate a challenging nonlinear geothermal reservoir model using real measurements from well tests. We demonstrate the parallelized method on various well-test scenarios. In some scenarios, the sample-based statistics obtained by our scheme shows clear advantages in providing robust model calibration and prediction compared with those obtained by nonlinear optimization methods.

REFERENZEN

  1. Higdon, D., Lee, H., and Zhuoxin, B., A Bayesian Approach to Characterizing Uncertainty in Inverse Problems Using Coarse and Fine-Scale Information, IEEE Trans. Signal Proc, 50(2):389-399, 2002.

  2. Andersen, K.E., Brooks, S.P., and Hansen, M.B., Bayesian Inversion of Geoelectrical Resistivity Data, J. R. Stat. Soc., Ser. B, 65:619-644,2004.

  3. Cui, T., Fox, C., and O'Sullivan, M.J., Bayesian Calibration of a Large-Scale Geothermal Reservoir Model by a New Adaptive Delayed Acceptance Metropolis Hastings Algorithm, Water Res. Res., 47:W10521, 2011.

  4. Nicholls, G.K. and Fox, C., Prior Modelling and Posterior Sampling in Impedance Imaging, Proc. SPIE, 3459:116-127,1998.

  5. Vauhkonen, P., Vauhkonen, M., Savolainen, T., and Kaipio, J., Three-Dimensional Electrical Impedance Tomography based on the Complete Electrode Model, IEEE Trans. Biomed. Eng., 46:1150-1160, 1999.

  6. Watzenig, D. and Fox, C., A Review of Statistical Modelling and Inference for Electrical Capacitance Tomography, Meas. Sci. Technol., 20(5):052002, 2009.

  7. McKeague, I.W., Nicholls, K., G., Speer, K., and Herbei, R., Statistical Inversion of South Atlantic Circulation in an Abyssal Neutral Density Layer, J. Marine Res, 63(4):683-704, 2005.

  8. Haario, H., Laine, M., Lehtinen, M., Saksman, E., and Tamminen, J., Markov Chain Monte Carlo Methods for High Dimensional Inversion in Remote Sensing, J. R. Stat. Soc., Ser. B, 66:591-608, 2004.

  9. Martin, J., Wilcox, L.C., Burstedde, C., and Ghattas, O., A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion, SIAMJ. Sci. Comput., 34(3):A1460-A1487, 2012.

  10. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E., Equation of State Calculations by Fast Computing Machines, J. Chem. Phys, 21:1087-1092, 1953.

  11. Hastings, W., Monte Carlo Sampling Using Markov Chains and Their Applications, Biometrika, 57:97-109, 1970.

  12. Geyer, C.J., Markov Chain Monte Carlo Maximum Likelihood, in Computing Science And Statistics: Proc. of 23rd Symposium on the Interface, E. Keramigas, Ed., 5:156-163, Fairfax Station, VA: Interface Foundation of North America, 1991.

  13. Chen, Y., Keyes, D., Law, K.J.H., and Ltaief, H., Accelerated Dimension-Independent Adaptive Metropolis, SIAM J. Sci. Comput, 38(5):S539-S565, 2016.

  14. Craiu, R.V., Rosenthal, J., and Yang, C., Learn from Thy Neighbor: Parallel-Chain and Regional Adaptive MCMC, J. Am. Stat. Assoc, 104(488):1454-1466, 2009.

  15. Solonen, A., Ollinaho, P., Laine, M., Haario, H., Tamminen, J., and Jarvinen, H., Efficient MCMC for Climate Model Parameter Estimation: Parallel Adaptive Chains and Early Rejection, Bayesian Anal., 7(3):715-736,2012.

  16. Calderhead, B., A General Construction for Parallelizing Metropolis-Hastings Algorithms, Proc. Natl. Acad. Sci, 111(49):17408-17413, 2014.

  17. Finsterle, S., ITOUGH2 User's Guide, Berkeley, CA: Lawrence Berkeley National Laboratory, 1993.

  18. Doherty, J., Groundwater Model Calibration Using Pilot Points and Regularization, Ground Water, 41:170-177,2003.

  19. Marquardt, D.W., An Algorithm for Least Square Estimation of Nonlinear Parameters, J. Soc. Ind. Appl. Math., 11(2):431- 441, 1963.

  20. Roberts, G.O. and Stramer, S., Langevin Diffusions and Metropolis-Hastings Algorithms, Methodol. Comput. Appl. Probl., 4(4):337-357, 2002.

  21. Braak, C.J.F.T., A Markov Chain Monte Carlo Version of the Genetic Algorithm Differential Evolution: Easy Bayesian Computing for Real Parameter Spaces, Stat. Comput, 16:239-249, 2006.

  22. Finsterle, S., Pruess, K., Bullivant, D., and O'Sullivan, M.J., Application of Inverse Modeling to Geothermal Reservoir Simulation, in Proc. of Twenty-Second Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, pp. 309-316, 1997.

  23. Liu, J.S., Monte Carlo Strategies in Scientific Computing, Berlin: Springer-Verlag, 2001.

  24. Roberts, G.O. and Rosenthal, J.S., Optimal Scaling for Various Metropolis-Hastings Algorithms, Stat. Sci., 16:351-367,2001.

  25. Roberts, G.O., Gelman, A., and Gilks, W.R., Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms, Ann. Appl. Probab, 7:110-120, 1997.

  26. Sohn, A., Parallel Speculative Computation of Simulated Annealing, IEEE Trans. Parallel Distributed Syst., 6(10):997-1005, 1995.

  27. Mascagni, M. and Srinivasan, A., Algorithm 806: SPRNG: A Scalable Library for Pseudorandom Number Generation, ACM Trans. Math. Software, 26:436-461, 2000.

  28. Efendiev, Y., Thomas, H., and Luo, W., Preconditioning Markov Chain Monte Carlo Simulations Using Coarse-Scale Models, SIAMJ Sci. Comput., 28:776-803,2006.

  29. van Genuchten, M.T., A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44:892-898,1980.

  30. International Formulation Committee, A Formulation of the Thermodynamic Properties of Ordinary Water Substance, Dusseldorf, Germany: IFC Secretariat, 1967.

  31. Pruess, K., TOUGH2-A General-Purpose Numerical Simulator for Multiphase Fluid and Heat Flow, Berkeley, CA: Lawrence Berkeley National Laboratory, 1991.

  32. Jaynes, E.T., Prior Probability, IEEE Trans. Syst. Sci. Cybern., 4(3):227-241, 1968.

  33. Haario, H., Saksman, E., and Tamminen, J., An Adaptive Metropolis Algorithm, Bernoulli, 7:223-242, 2001.

  34. Narayan, A., Jakeman, J., and Zhou, T., A Christoffel Function Weighted Least Squares Algorithm for Collocation Approximations, Math. Comput., 86:1913-1947, 2017.

  35. Yan, L. and Zhou, T., An Adaptive Multi-Fidelity PC-Based Ensemble Kalman Inversion for Inverse Problems, Int. J. Uncertainty Quantif, 9:205-220, 2019.

  36. Yan, L. and Zhou, T., Adaptive Multi-Fidelity Polynomial Chaos Approach to Bayesian Inference in Inverse Problems, J. Comput. Phys., 381:110-128,2019.

  37. Cui, T., Marzouk, Y.M., and Willcox, K.E., Data-Driven Model Reduction for the Bayesian Solution of Inverse Problems, Int. J. Numer. Methods Eng., 102:966-990, 2015.

  38. Cui, T., Marzouk, Y.M., and Willcox, K.E., Scalable Posterior Approximations for Large-Scale Bayesian Inverse Problems via Likelihood-Informed Parameter and State Reduction, J. Comput. Phys., 315:363-387, 2016.


Articles with similar content:

OPTIMIZATION-BASED SAMPLING IN ENSEMBLE KALMAN FILTERING
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 4
Alexander Bibov, Heikki Haario, Antti Solonen, Johnathan M. Bardsley
Energy-Based Fusion Scheme for Surveillance and Navigation
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 6
S. Muttan, K. Mahesh Bharath, S. Senthil Kumar
HIGH DIMENSIONAL SENSITIVITY ANALYSIS USING SURROGATE MODELING AND HIGH DIMENSIONAL MODEL REPRESENTATION
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 5
Edmondo Minisci, Marco Cisternino, Martin Kubicek
A WEIGHT-BOUNDED IMPORTANCE SAMPLING METHOD FOR VARIANCE REDUCTION
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 3
Linjun Lu, Tenchao Yu, Jinglai Li
ADAPTIVE SAMPLING WITH TOPOLOGICAL SCORES
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 2
Dan Maljovec, Valerio Pascucci, Bei Wang, Ana Kupresanin, Gardar Johannesson, Peer-Timo Bremer