Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal for Uncertainty Quantification
Impact-faktor: 3.259 5-jähriger Impact-Faktor: 2.547 SJR: 0.531 SNIP: 0.8 CiteScore™: 1.52

ISSN Druckformat: 2152-5080
ISSN Online: 2152-5099

Offener Zugang

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2014008153
pages 151-170

INFERENCE AND UNCERTAINTY PROPAGATION OF ATOMISTICALLY-INFORMED CONTINUUM CONSTITUTIVE LAWS, PART 1: BAYESIAN INFERENCE OF FIXED MODEL FORMS

Maher Salloum
Sandia National Laboratories, 7011 East Avenue, MS 9158, Livermore, California 94550, USA
Jeremy A. Templeton
Sandia National Laboratories, 7011 East Avenue, MS 9409, Livermore, California 94550, USA

ABSTRAKT

Uncertainty quantification techniques have the potential to play an important role in constructing constitutive relationships applicable to nanoscale physics. At these small scales, deviations from laws appropriate at the macroscale arise due to insufficient scale separation between the atomic and continuum length scales, as well as fluctuations due to thermal processes. In this work, we consider the problem of inferring the coefficients of an assumed constitutive model form using atomistic information and propagation of the associated uncertainty. A nanoscale heat transfer problem is taken as the model, and we use a polynomial chaos expansion to represent the thermal conductivity with a linear temperature dependence. A Bayesian inference method is developed to extract the coefficients in this expansion from molecular dynamics (MD) samples at prescribed temperatures. Importantly, the atomistic data are incompatible with the continuum model because of the finite probability of heat flowing in the opposite direction of the temperature gradient; we present a method to account for this in the model. The fidelity and uncertainty in these techniques are then examined. Validation is provided by comparing a continuum Fourier model against a larger all MD simulation representing the true solution.


Articles with similar content:

INFERENCE AND UNCERTAINTY PROPAGATION OF ATOMISTICALLY INFORMED CONTINUUM CONSTITUTIVE LAWS, PART 2: GENERALIZED CONTINUUM MODELS BASED ON GAUSSIAN PROCESSES
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 2
Jeremy A. Templeton, Maher Salloum
FORWARD AND INVERSE UNCERTAINTY QUANTIFICATION USING MULTILEVEL MONTE CARLO ALGORITHMS FOR AN ELLIPTIC NONLOCAL EQUATION
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 6
Ajay Jasra, Yan Zhou, Kody J. H. Law
ERROR AND UNCERTAINTY QUANTIFICATION AND SENSITIVITY ANALYSIS IN MECHANICS COMPUTATIONAL MODELS
International Journal for Uncertainty Quantification, Vol.1, 2011, issue 2
Sankaran Mahadevan, Bin Liang
MODELING HETEROGENEITY IN NETWORKS USING POLYNOMIAL CHAOS
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 3
Ioannis G. Kevrekidis, Carlo R. Laing, Constantinos I. Siettos, Karthikeyan Rajendran, Andreas C. Tsoumanis
BAYESIAN MULTISCALE FINITE ELEMENT METHODS. MODELING MISSING SUBGRID INFORMATION PROBABILISTICALLY
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 2
Wing Tat Leung, B. Mallick, Yalchin Efendiev, N. Guha, V. H. Hoang, S. W. Cheung