Abo Bibliothek: Guest
Critical Reviews™ in Biomedical Engineering

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 0278-940X

ISSN Online: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Hydroxyapatite and Their Use As Coatings in Dental Implants: A Review

Volumen 28, Ausgabe 5&6, 2000, pp. 667-707
DOI: 10.1615/CritRevBiomedEng.v28.i56.10
Get accessGet access

ABSTRAKT

At present, no standard manufacturing guideline exists for depositing hydroxyapatite (HA) on implant surfaces. Although animal and in vitro studies have reported on the benefits of using HA-coated implants as well as the risks of dissolution, these short-term studies did not demonstrate that the dissolution of the HA coating leads to a loss of implants. In addition, many in vivo and clinical studies did not include the chemical and structural characterization of the coatings, and thus comparisons between studies are difficult.
In the clinics, the recommendation is that HA-coated screw implants be used for the anterior maxilla and posterior mandible where the bone depth exceeds 10 mm and when the cortical layer is thinner and spongiosia is less dense. In the posterior maxilla or when the cortical layer is very thin with low density, the use of HA-coated cylindrical implants is recommended. However, there are concerns for using HA-coated implants. The clinician needs to take into consideration the enhanced bacterial susceptibility of HA coatings compared with titanium implants. In addition, the clinician needs to consider the possible failure of HA coatings as a result of coating-substrate interfacial fracture. Finally, besides the surgical skills, it is also important that the clinical investigators be well versed with the materials characterization needed for HA-coated implants, the problems associated with the current HA coatings, and the indications for use. In addition, the correlation between well characterized coatings and their effect on bone formation rate and long-term implant success, coating-implant interfacial strength, and alternative superior coating process need to be investigated further.

REFERENZIERT VON
  1. Sun Limin, Berndt Christopher C., Gross Karlis A., Hydroxyapatite/polymer composite flame-sprayed coatings for orthopedic applications, Journal of Biomaterials Science, Polymer Edition, 13, 9, 2002. Crossref

  2. Urdaneta Rainier A., Leary Joseph, Panetta Kimberly M., Chuang Sung-Kiang, The effect of opposing structures, natural teeth vs. implants on crestal bone levels surrounding single-tooth implants, Clinical Oral Implants Research, 25, 2, 2014. Crossref

  3. Huse Robert O., Quinten Ruhe P., Wolke Johannes G. C., Jansen John A., The use of porous calcium phosphate scaffolds with transforming growth factor beta 1 as an onlay bone graft substitute. An experimental study in rats, Clinical Oral Implants Research, 15, 6, 2004. Crossref

  4. Schopper Christian, Moser Doris, Goriwoda Walter, Ziya-Ghazvini Farzad, Spassova Else, Lagogiannis Georgios, Auterith Alexandra, Ewers Rolf, The effect of three different calcium phosphate implant coatings on bone deposition and coating resorption: a long-term histological study in sheep, Clinical Oral Implants Research, 16, 3, 2005. Crossref

  5. Mochizuki Chihiro, Hara Hiroki, Takano Ichiro, Hayakawa Tohru, Sato Mitsunobu, Application of carbonated apatite coating on a Ti substrate by aqueous spray method, Materials Science and Engineering: C, 33, 2, 2013. Crossref

  6. Gu Zhipeng, Zhang Xu, Li Li, Wang Qiguang, Yu Xixun, Feng Ting, Acceleration of segmental bone regeneration in a rabbit model by strontium-doped calcium polyphosphate scaffold through stimulating VEGF and bFGF secretion from osteoblasts, Materials Science and Engineering: C, 33, 1, 2013. Crossref

  7. Bumgardner Joel D., Wiser Robin, Gerard Patrick D., Bergin Patrick, Chestnutt Betsy, Marini Mark, Ramsey Victoria, Elder Steve H., Gilbert Jerome A., Chitosan: potential use as a bioactive coating for orthopaedic and craniofacial/dental implants, Journal of Biomaterials Science, Polymer Edition, 14, 5, 2003. Crossref

  8. Artzi Zvi, Carmeli Guy, Kozlovsky Avital, A distinguishable observation between survival and success rate outcome of hydroxyapatite-coated implants in 5-10 years in function, Clinical Oral Implants Research, 17, 1, 2006. Crossref

  9. Gu Ying-Xin, Du Juan, Zhao Jing-Mei, Si Mi-Si, Mo Jia-Ji, Lai Hong-Chang, Characterization and preosteoblastic behavior of hydroxyapatite-deposited nanotube surface of titanium prepared by anodization coupled with alternative immersion method, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100B, 8, 2012. Crossref

  10. Chung Ren-Jei, Hsieh Ming-Fa, Huang Chine-Wen, Perng Li-Hsiang, Wen Hsiao-Wei, Chin Tsung-Shune, Antimicrobial effects and human gingival biocompatibility of hydroxyapatite sol-gel coatings, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 76B, 1, 2006. Crossref

  11. Guzzardella Gaetano A., Torricelli Paola, Nicoli-Aldini Nicolò, Giardino Roberto, Osseointegration of endosseous ceramic implants after postoperative low-power laser stimulation: anin vivocomparative study, Clinical Oral Implants Research, 14, 2, 2003. Crossref

  12. Knabe Christine, Howlett Cameron Rolfe, Klar Falk, Zreiqat Hala, The effect of different titanium and hydroxyapatite-coated dental implant surfaces on phenotypic expression of human bone-derived cells, Journal of Biomedical Materials Research, 71A, 1, 2004. Crossref

  13. Bajpai AK, Singh Raghvendra, Study of biomineralization of poly(vinyl alcohol)-based scaffolds using an alternate soaking approach, Polymer International, 56, 4, 2007. Crossref

  14. Dorozhkin Sergey V., Calcium orthophosphates in dentistry, Journal of Materials Science: Materials in Medicine, 24, 6, 2013. Crossref

  15. Motoc M. M., Axente E., Popescu C., Sima L. E., Petrescu S. M., Mihailescu I. N., Gyorgy E., Active protein and calcium hydroxyapatite bilayers grown by laser techniques for therapeutic applications, Journal of Biomedical Materials Research Part A, 101A, 9, 2013. Crossref

  16. Guo Jing, Wang Ying, Cao Chengbo, Dziak Rosemary, Preston Brian, Guan Guoqiang, Human periodontal ligament cells reaction on a novel hydroxyapatite-collagen scaffold, Dental Traumatology, 29, 2, 2013. Crossref

  17. PeŠŠková V., Kubies D., Hulejová H., Himmlová L., The influence of implant surface properties on cell adhesion and proliferation, Journal of Materials Science: Materials in Medicine, 18, 3, 2007. Crossref

  18. Mello A, Hong Z, Rossi A M, Luan L, Farina M, Querido W, Eon J, Terra J, Balasundaram G, Webster T, Feinerman A, Ellis D E, Ketterson J B, Ferreira C L, Osteoblast proliferation on hydroxyapatite thin coatings produced by right angle magnetron sputtering, Biomedical Materials, 2, 2, 2007. Crossref

  19. Khalid M., Mujahid M., Khan A. Nusair, Rawat R.S., Dip Coating of Nano Hydroxyapatite on Titanium Alloy with Plasma Assisted γ-Alumina Buffer Layer: A Novel Coating Approach, Journal of Materials Science & Technology, 29, 6, 2013. Crossref

  20. Takebe J., Ito S., Champagne C.M., Cooper L.F., Ishibashi K., Anodic oxidation and hydrothermal treatment of commercially pure titanium surfaces increases expression of bone morphogenetic protein-2 in the adherent macrophage cell line J774A.1, Journal of Biomedical Materials Research Part A, 80A, 3, 2007. Crossref

  21. Cumpson Peter J., Portoles Jose F., Barlow Anders J., Sano Naoko, Birch Mark, Depth profiling organic/inorganic interfaces by argon gas cluster ion beams: sputter yield data for biomaterials,in-vitrodiagnostic and implant applications, Surface and Interface Analysis, 45, 13, 2013. Crossref

  22. Mohseni E., Zalnezhad E., Bushroa A.R., Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: A review paper, International Journal of Adhesion and Adhesives, 48, 2014. Crossref

  23. Teuberova Z., Seydlova M., Dostalova T., Dvorankova B., Smetana K., Jelinek M., Masinova P., Kocourek T., Kolarova K., Wilson J., Biological and physical properties of pulsed-Laser-deposited zirconia/hydroxyapatite on titanium: In vitro study, Laser Physics, 17, 1, 2007. Crossref

  24. Hamilton V., Yuan Y., Rigney D. A., Puckett A. D., Ong J. L., Yang Y., Elder S. H., Bumgardner J. D., Characterization of chitosan films and effects on fibroblast cell attachment and proliferation, Journal of Materials Science: Materials in Medicine, 17, 12, 2006. Crossref

  25. Dubey Ashutosh Kumar, Yamada Hiroaki, Kakimoto Ken-ichi, Space charge polarization induced augmented in vitro bioactivity of piezoelectric (Na,K) NbO3, Journal of Applied Physics, 114, 12, 2013. Crossref

  26. Dubey Ashutosh Kumar, Yamada Hiroaki, Kakimoto Ken-ichi, Surface charge induced enhanced crystallization on the piezoelectric sodium potassium niobate substrate, Journal of Crystal Growth, 382, 2013. Crossref

  27. von Wilmowsky Cornelius, Moest Tobias, Nkenke Emeka, Stelzle Florian, Schlegel Karl Andreas, Implants in bone: Part I. A current overview about tissue response, surface modifications and future perspectives, Oral and Maxillofacial Surgery, 18, 3, 2014. Crossref

  28. Seydlova Michaela, Teuberova Zuzana, Dostalova Tatjana, Dvorankova Barbora, Smetana Karel, Jelinek Miroslav, Kocourek Tomas, Mroz Waldemar, Biological properties of titanium implants covered with hydroxyapatite and zirconia layers by pulsed laser:In vitrostudy, Journal of Applied Physics, 99, 1, 2006. Crossref

  29. Dorozhkin Sergey V., Calcium orthophosphates, Biomatter, 1, 2, 2011. Crossref

  30. Park Jae Yoon, Yeom Jihyeon, Kim Jee Seon, Lee Mihyun, Lee Haeshin, Nam Yoon Sung, Cell-repellant Dextran Coatings of Porous Titania Using Mussel Adhesion Chemistry, Macromolecular Bioscience, 13, 11, 2013. Crossref

  31. Dorozhkin Sergey V., Calcium orthophosphates, Journal of Materials Science, 42, 4, 2007. Crossref

  32. Park Jae Yoon, Kim Jee Seon, Nam Yoon Sung, Mussel-inspired modification of dextran for protein-resistant coatings of titanium oxide, Carbohydrate Polymers, 97, 2, 2013. Crossref

  33. Zhao Shi-fang, Dong Wen-jing, Jiang Qiao-hong, He Fu-ming, Wang Xiao-xiang, Yang Guo-li, Effects of zinc-substituted nano-hydroxyapatite coatings on bone integration with implant surfaces, Journal of Zhejiang University SCIENCE B, 14, 6, 2013. Crossref

  34. Chesnutt B. M., Yuan Y., Brahmandam N., Yang Y., Ong J. L., Haggard W. O., Bumgardner J. D., Characterization of biomimetic calcium phosphate on phosphorylated chitosan films, Journal of Biomedical Materials Research Part A, 82A, 2, 2007. Crossref

  35. Mochizuki Chihiro, Hara Hiroki, Oya Kei, Aoki Shun, Hayakawa Tohru, Fujie Hiromichi, Sato Mitsunobu, Behaviors of MC3T3-E1 cells on carbonated apatite films, with a characteristic network structure, fabricated on a titanium plate by aqueous spray coating, Materials Science and Engineering: C, 39, 2014. Crossref

  36. Mohd Daud Nurizzati, Sing Ng Boon, Yusop Abdul Hakim, Abdul Majid Fadzilah Adibah, Hermawan Hendra, Degradation and in vitro cell–material interaction studies on hydroxyapatite-coated biodegradable porous iron for hard tissue scaffolds, Journal of Orthopaedic Translation, 2, 4, 2014. Crossref

  37. Dorozhkin Sergey V., Calcium orthophosphate coatings on magnesium and its biodegradable alloys, Acta Biomaterialia, 10, 7, 2014. Crossref

  38. Kürkcü Mehmet, Benlidayı Mehmet Emre, Özsoy Serhat, Özyeğin Lütfiye Sevgi, Oktar Faik Nuzhet, Kurtoğlu Cem, Histomorphometric evaluation of implants coated with enamel or dentine derived fluoride-substituted apatite, Journal of Materials Science: Materials in Medicine, 19, 1, 2008. Crossref

  39. Norowski P. Andrew, Bumgardner Joel D., Biomaterial and antibiotic strategies for peri-implantitis: A review, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 88B, 2, 2009. Crossref

  40. Ersanli S., Karabuda C., Beck F., Leblebicioglu B., Resonance Frequency Analysis of One- Stage Dental Implant Stability During the Osseointegration Period, Journal of Periodontology, 76, 7, 2005. Crossref

  41. Dorozhkin Sergey V., Biocomposites and hybrid biomaterials based on calcium orthophosphates, Biomatter, 1, 1, 2011. Crossref

  42. Neira Inés S., Guitián Francisco, Taniguchi Takaaki, Watanabe Tomoaki, Yoshimura Masahiro, Hydrothermal synthesis of hydroxyapatite whiskers with sharp faceted hexagonal morphology, Journal of Materials Science, 43, 7, 2008. Crossref

  43. Sargeant Timothy D., Oppenheimer Scott M., Dunand David C., Stupp Samuel I., Titanium foam-bioactive nanofiber hybrids for bone regeneration, Journal of Tissue Engineering and Regenerative Medicine, 2, 8, 2008. Crossref

  44. Bosco Ruggero, Van Den Beucken Jeroen, Leeuwenburgh Sander, Jansen John, Surface Engineering for Bone Implants: A Trend from Passive to Active Surfaces, Coatings, 2, 3, 2012. Crossref

  45. Hirota Masatsugu, Hayakawa Tohru, Ohkubo Chikahiro, Sato Mitsunobu, Hara Hiroki, Toyama Takeshi, Tanaka Yasuhiro, Bone responses to zirconia implants with a thin carbonate-containing hydroxyapatite coating using a molecular precursor method, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 102, 6, 2014. Crossref

  46. Ahmed M.A., Mansour S.F., El-dek S.I., Abd-Elwahab S.M., Ahmed M.K., Characterization and annealing performance of calcium phosphate nanoparticles synthesized by co-precipitation method, Ceramics International, 40, 8, 2014. Crossref

  47. Singh Gurpreet, Singh Hazoor, Sidhu Buta Singh, In vitro corrosion investigations of plasma-sprayed hydroxyapatite and hydroxyapatite-calcium phosphate coatings on 316L SS, Bulletin of Materials Science, 37, 6, 2014. Crossref

  48. Yuan Youling, Chesnutt Betsy M., Wright Lee, Haggard Warren O., Bumgardner Joel D., Mechanical property, degradation rate, and bone cell growth of chitosan coated titanium influenced by degree of deacetylation of chitosan, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86B, 1, 2008. Crossref

  49. Shang Han-Bing, Chen Feng, Wu Jin, Qi Chao, Lu Bing-Qiang, Chen Xi, Zhu Ying-Jie, Multifunctional biodegradable terbium-doped calcium phosphate nanoparticles: facile preparation, pH-sensitive drug release and in vitro bioimaging, RSC Adv., 4, 95, 2014. Crossref

  50. Generosi A., Rau J. V., Rossi Albertini V., Paci B., Crystallization process of carbonate substituted hydroxyapatite nanoparticles in toothpastes upon physiological conditions: an in situ time-resolved X-ray diffraction study, Journal of Materials Science: Materials in Medicine, 21, 2, 2010. Crossref

  51. Dorozhkin Sergey V., Calcium Orthophosphates as Bioceramics: State of the Art, Journal of Functional Biomaterials, 1, 1, 2010. Crossref

  52. He G., Guo B., Wang H., Liang C., Ye L., Lin Y., Cai X., Surface characterization and osteoblast response to a functionally graded hydroxyapatite/fluoro-hydroxyapatite/titanium oxide coating on titanium surface by sol-gel method, Cell Proliferation, 47, 3, 2014. Crossref

  53. Ma Wei, Wei Jian-Hua, Li Ying-Zhe, Wang Xin-Mu, Shi Hui-Ying, Tsutsumi Sadami, Li De-Hua, Histological evaluation and surface componential analysis of modified micro-arc oxidation-treated titanium implants, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86B, 1, 2008. Crossref

  54. Lin Dong‐Yang, Zhao Yu‐Tao, Preparation of Novel Hydroxyapatite/Yttria‐Stabilized‐Zirconia Gradient Coatings by Magnetron Sputtering, Advanced Engineering Materials, 13, 1-2, 2011. Crossref

  55. Juhasz J.A., Best S.M., Surface modification of biomaterials by calcium phosphate deposition, in Surface Modification of Biomaterials, 2011. Crossref

  56. Chanchareonsook N., Tideman H., Lee S., Hollister S.J., Flanagan C., Jansen J.A., Mandibular reconstruction with a bioactive-coated cementless Ti6Al4V modular endoprosthesis in Macaca fascicularis, International Journal of Oral and Maxillofacial Surgery, 43, 6, 2014. Crossref

  57. White Jane S., Walker Graeme M., Influence of cell surface characteristics on adhesion of Saccharomyces cerevisiae to the biomaterial hydroxylapatite, Antonie van Leeuwenhoek, 99, 2, 2011. Crossref

  58. Qiao Shi-Chong, Du Juan, Zhao Jing-Mei, Shi Jun-Yu, Gu Ying-Xin, Lai Hong-Chang, Effects of a Hydroxyapatite-Coated Nanotube Surface of Titanium on MC3T3-E1 Cells, Implant Dentistry, Publish Ahead of, 2015. Crossref

  59. Dorozhkin Sergey V., Calcium orthophosphate deposits: Preparation, properties and biomedical applications, Materials Science and Engineering: C, 55, 2015. Crossref

  60. Neumann Hans-Georg, Perrin Daniel, Zeggel Peter, Szmukler-Moncler Serge, Bernard Jean-Pierre, From Microroughness to Resorbable Bioactive Coatings, in Bio-Implant Interface, 2003. Crossref

  61. Almeida Alves C.F., Cavaleiro A., Carvalho S., Bioactivity response of Ta 1-x O x coatings deposited by reactive DC magnetron sputtering, Materials Science and Engineering: C, 58, 2016. Crossref

  62. Jadalannagari Sushma, More Sandeep, Kowshik Meenal, Ramanan Sutapa Roy, Low temperature synthesis of hydroxyapatite nano-rods by a modified sol–gel technique, Materials Science and Engineering: C, 31, 7, 2011. Crossref

  63. Cheng Kui, Ren Changbao, Weng Wenjian, Du Piyi, Shen Ge, Han Gaorong, Zhang Sam, Bonding strength of fluoridated hydroxyapatite coatings: A comparative study on pull-out and scratch analysis, Thin Solid Films, 517, 17, 2009. Crossref

  64. Dorozhkin S.V., Surface modification of magnesium and its biodegradable alloys by calcium orthophosphate coatings to improve corrosion resistance and biocompatibility, in Surface Modification of Magnesium and its Alloys for Biomedical Applications, 2015. Crossref

  65. Stadlinger Bernd, Hintze Vera, Bierbaum Susanne, Möller Stephanie, Schulz Matthias C., Mai Ronald, Kuhlisch Eberhard, Heinemann Sascha, Scharnweber Dieter, Schnabelrauch Matthias, Eckelt Uwe, Biological functionalization of dental implants with collagen and glycosaminoglycans-A comparative study, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100B, 2, 2012. Crossref

  66. Kikuchi Seiichiro, Takebe Jun, Characterization of the surface deposition on anodized-hydrothermally treated commercially pure titanium after immersion in simulated body fluid, Journal of Prosthodontic Research, 54, 2, 2010. Crossref

  67. Takebe Jun, Ito Shigeki, Miura Shingo, Miyata Kyohei, Ishibashi Kanji, Physicochemical state of the nanotopographic surface of commercially pure titanium following anodization-hydrothermal treatment reveals significantly improved hydrophilicity and surface energy profiles, Materials Science and Engineering: C, 32, 1, 2012. Crossref

  68. Liu Yonghui, Ma Jun, Zhang Shengmin, Synthesis and thermal stability of selenium-doped hydroxyapatite with different substitutions, Frontiers of Materials Science, 9, 4, 2015. Crossref

  69. Dorozhkin Sergey V., Calcium orthophosphates (CaPO4): occurrence and properties, Progress in Biomaterials, 5, 1, 2016. Crossref

  70. Ou Keng-Liang, Chung Ren-Jei, Tsai Fu-Yi, Liang Pei-Yu, Huang Shih-Wei, Chang Shou-Yi, Effect of collagen on the mechanical properties of hydroxyapatite coatings, Journal of the Mechanical Behavior of Biomedical Materials, 4, 4, 2011. Crossref

  71. Ren Yufu, Zhou Huan, Nabiyouni Maryam, Bhaduri Sarit B., Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy, Materials Science and Engineering: C, 49, 2015. Crossref

  72. Popa A.C., Stan G.E., Enculescu M., Tanase C., Tulyaganov D.U., Ferreira J.M.F., Superior biofunctionality of dental implant fixtures uniformly coated with durable bioglass films by magnetron sputtering, Journal of the Mechanical Behavior of Biomedical Materials, 51, 2015. Crossref

  73. Hao J., Kuroda S., Ohya K., Bartakova S., Aoki H., Kasugai S., Enhanced osteoblast and osteoclast responses to a thin film sputtered hydroxyapatite coating, Journal of Materials Science: Materials in Medicine, 22, 6, 2011. Crossref

  74. Sadat-Shojai Mehdi, Atai Mohammad, Nodehi Azizollah, Khanlar Leila Nasiri, Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application, Dental Materials, 26, 5, 2010. Crossref

  75. Demnati I., Parco M., Grossin D., Fagoaga I., Drouet C., Barykin G., Combes C., Braceras I., Goncalves S., Rey C., Hydroxyapatite coating on titanium by a low energy plasma spraying mini-gun, Surface and Coatings Technology, 206, 8-9, 2012. Crossref

  76. Grandfield Kathryn, Palmquist Anders, Gonçalves Stéphane, Taylor Andy, Taylor Mark, Emanuelsson Lena, Thomsen Peter, Engqvist Håkan, Free form fabricated features on CoCr implants with and without hydroxyapatite coating in vivo: a comparative study of bone contact and bone growth induction, Journal of Materials Science: Materials in Medicine, 22, 4, 2011. Crossref

  77. Khor K.A., Li H., Cheang P., Significance of melt-fraction in HVOF sprayed hydroxyapatite particles, splats and coatings, Biomaterials, 25, 7-8, 2004. Crossref

  78. Abdelrazek E.M., El Damrawi G., Al-Shahawy A., Some studies on calcium phosphate embedded in polyvinyl alcohol matrix before and after γ-irradiation, Physica B: Condensed Matter, 405, 3, 2010. Crossref

  79. Zhong Zhenyu, Qin Jinli, Ma Jun, Cellulose acetate/hydroxyapatite/chitosan coatings for improved corrosion resistance and bioactivity, Materials Science and Engineering: C, 49, 2015. Crossref

  80. Lin Dong-Yang, Wang Xiao-Xiang, Electrodeposition of hydroxyapatite coating on CoNiCrMo substrate in dilute solution, Surface and Coatings Technology, 204, 20, 2010. Crossref

  81. Ramazanoglu Mustafa, Lutz Rainer, Ergun Celaletdin, von Wilmowsky Cornelius, Nkenke Emeka, Schlegel Karl Andreas, The effect of combined delivery of recombinant human bone morphogenetic protein-2 and recombinant human vascular endothelial growth factor 165 from biomimetic calcium-phosphate-coated implants on osseointegration, Clinical Oral Implants Research, 22, 12, 2011. Crossref

  82. Dorozhkin Sergey V., Nanosized and nanocrystalline calcium orthophosphates, Acta Biomaterialia, 6, 3, 2010. Crossref

  83. Lobo A. O., Otubo J., Matsushima J. T., Corat E. J., Rapid Obtaining of Nano-Hydroxyapatite Bioactive Films on NiTi Shape Memory Alloy by Electrodeposition Process, Journal of Materials Engineering and Performance, 20, 4-5, 2011. Crossref

  84. Zhang S., Wang Y.S., Zeng X.T., Khor K.A., Weng Wenjian, Sun D.E., Evaluation of adhesion strength and toughness of fluoridated hydroxyapatite coatings, Thin Solid Films, 516, 16, 2008. Crossref

  85. Jakubowicz J., Adamek G., Jurczyk M.U., Jurczyk M., 3D surface topography study of the biofunctionalized nanocrystalline Ti–6Zr–4Nb/Ca–P, Materials Characterization, 70, 2012. Crossref

  86. Yin Kaifeng, Wang Zhifeng, Fan Xin, Bian Yuanyuan, Guo Jing, Lan Jing, The experimental research on two-generation BLB dental implants - Part I: surface modification and osseointegration, Clinical Oral Implants Research, 23, 7, 2012. Crossref

  87. Lee Eui-Hee, Ryu Sun-Mi, Kim Jwa-Young, Cho Byoung-Ouck, Lee Yong-Chan, Park Young-Ju, Kim Seong-Gon, Effects of Installation Depth on Survival of an Hydroxyapatite-Coated Bicon Implant for Single-Tooth Restoration, Journal of Oral and Maxillofacial Surgery, 68, 6, 2010. Crossref

  88. Zhang Zhen, Jiang Tao, Ma Kena, Cai Xinjie, Zhou Yi, Wang Yining, Low temperature electrophoretic deposition of porous chitosan/silk fibroin composite coating for titanium biofunctionalization, Journal of Materials Chemistry, 21, 21, 2011. Crossref

  89. Juhasz Judith A., Best Serena M., Bioactive ceramics: processing, structures and properties, Journal of Materials Science, 47, 2, 2012. Crossref

  90. Yoshida Eiji, Yoshimura Yoshitaka, Uo Motohiro, Yoshinari Masao, Hayakawa Tohru, Influence of nanometer smoothness and fibronectin immobilization of titanium surface on MC3T3-E1 cell behavior, Journal of Biomedical Materials Research Part A, 100A, 6, 2012. Crossref

  91. Yang Yunzhi, Ong Joo L., Tian Jiemo, In vivo evaluation of modified titanium implant surfaces produced using a hybrid plasma spraying processing, Materials Science and Engineering: C, 20, 1-2, 2002. Crossref

  92. Bai Xiao, Sandukas Stefan, Appleford Mark R., Ong Joo L., Rabiei Afsaneh, Deposition and investigation of functionally graded calcium phosphate coatings on titanium, Acta Biomaterialia, 5, 9, 2009. Crossref

  93. Dorozhkin Sergey V., Bioceramics of calcium orthophosphates, Biomaterials, 31, 7, 2010. Crossref

  94. PROFETA Andrea Corrado, PRUCHER Gian Marco, Bioactive-glass in periodontal surgery and implant dentistry, Dental Materials Journal, 34, 5, 2015. Crossref

  95. Natalio Filipe, Link Thorben, Müller Werner E.G., Schröder Heinz C., Cui Fu-Zhai, Wang Xiaohong, Wiens Matthias, Bioengineering of the silica-polymerizing enzyme silicatein-α for a targeted application to hydroxyapatite, Acta Biomaterialia, 6, 9, 2010. Crossref

  96. Muhammad Nawshad, Gao Yanan, Iqbal Farasat, Ahmad Pervaiz, Ge Rile, Nishan Umar, Rahim Abdur, Gonfa Girma, Ullah Zahoor, Extraction of biocompatible hydroxyapatite from fish scales using novel approach of ionic liquid pretreatment, Separation and Purification Technology, 161, 2016. Crossref

  97. Berube Patricia, Yang Yunzhi, Carnes David L., Stover Robert E., Boland Edward J., Ong Joo L., The Effect of Sputtered Calcium Phosphate Coatings of Different Crystallinity on Osteoblast Differentiation, Journal of Periodontology, 76, 10, 2005. Crossref

  98. Zhao Dewei, Witte Frank, Lu Faqiang, Wang Jiali, Li Junlei, Qin Ling, Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective, Biomaterials, 112, 2017. Crossref

  99. Gerk S. A., Golovanova O. A., Sharkeev Yu. P., Synthesis of a two-phase nanopowder from prototype human synovial fluid and the use of the nanopowder for the preparation of coatings on titanium plates, Inorganic Materials, 52, 9, 2016. Crossref

  100. Dorozhkin Sergey, Nanodimensional and Nanocrystalline Apatites and Other Calcium Orthophosphates in Biomedical Engineering, Biology and Medicine, Materials, 2, 4, 2009. Crossref

  101. Neacşu Ionela Andreea, Nicoară Adrian Ionuţ, Vasile Otilia Ruxandra, Vasile Bogdan Ştefan, Inorganic micro- and nanostructured implants for tissue engineering, in Nanobiomaterials in Hard Tissue Engineering, 2016. Crossref

  102. Şahin E., Çiftçioğlu M., Monetite promoting effect of citric acid on brushite cement setting kinetics, Materials Research Innovations, 18, 3, 2014. Crossref

  103. Ma Kena, Cai Xinjie, Zhou Yi, Wang Yining, Jiang Tao, In Vitro and In Vivo Evaluation of Tetracycline Loaded Chitosan-Gelatin Nanosphere Coatings for Titanium Surface Functionalization, Macromolecular Bioscience, 17, 2, 2017. Crossref

  104. Anil S., Venkatesan J., Shim M.S., Chalisserry E.P., Kim S.-K., Bone response to calcium phosphate coatings for dental implants, in Bone Response to Dental Implant Materials, 2017. Crossref

  105. The Members of CaPO4Family, in Calcium Orthophosphate-Based Bioceramics and Biocomposites, 2016. Crossref

  106. Koroleva M. Yu., Fadeeva E. Yu., Shkinev V. M., Katasonova O. N., Yurtov E. V., Hydroxyapatite nanoparticle prepared by controlled precipitation from aqueous phase, Russian Journal of Inorganic Chemistry, 61, 6, 2016. Crossref

  107. Dorozhkin Sergey, Calcium Orthophosphates in Nature, Biology and Medicine, Materials, 2, 2, 2009. Crossref

  108. Malchikhina Alena I., Shesterikov Evgeny V., Bolbasov Evgeny N., Ignatov Viktor P., Tverdokhlebov Sergei I., Hybrid calcium phosphate coatings for implants, 1760, 2016. Crossref

  109. Najeeb Shariq, Khurshid Zohaib, Zafar Muhammad, Khan Abdul, Zohaib Sana, Martí Juan, Sauro Salvatore, Matinlinna Jukka, Rehman Ihtesham, Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics, International Journal of Molecular Sciences, 17, 7, 2016. Crossref

  110. Jin Weihong, Chu Paul K., Orthopedic Implants, in Encyclopedia of Biomedical Engineering, 2019. Crossref

  111. Kiran P., Ramakrishna V., Udayashankar N.K., Shashikala H.D., The effective role of alkali earth/alkali ratio on formation HCA nano particles for soda lime phospho silicate glass system, OpenNano, 2, 2017. Crossref

  112. Abdallah Mohamed-Nur, Badran Zahi, Ciobanu Ovidiu, Hamdan Nader, Tamimi Faleh, Strategies for Optimizing the Soft Tissue Seal around Osseointegrated Implants, Advanced Healthcare Materials, 6, 20, 2017. Crossref

  113. Eliaz Noam, Metoki Noah, Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications, Materials, 10, 4, 2017. Crossref

  114. Singh Anamika, Tiwari Atul, Bajpai Jaya, Bajpai Anil K., Polymer-Based Antimicrobial Coatings as Potential Biomaterials, in Handbook of Antimicrobial Coatings, 2018. Crossref

  115. Mickiewicz Rafal A., Mayes Anne M., Knaack David, Polymer-calcium phosphate cement composites for bone substitutes, Journal of Biomedical Materials Research, 61, 4, 2002. Crossref

  116. Rodriguez y Baena Ruggero, Rizzo Silvana, Manzo Luigi, Lupi Saturnino Marco, Nanofeatured Titanium Surfaces for Dental Implantology: Biological Effects, Biocompatibility, and Safety, Journal of Nanomaterials, 2017, 2017. Crossref

  117. Coelho Paulo G., Suzuki Marcelo, Evaluation of an IBAD thin-film process as an alternative method for surface incorporation of bioceramics on dental implants: a study in dogs, Journal of Applied Oral Science, 13, 1, 2005. Crossref

  118. Gao Chaohua, Li Chen, Wang Chenyu, Qin Yanguo, Wang Zhonghan, Yang Fan, Liu He, Chang Fei, Wang Jincheng, Advances in the induction of osteogenesis by zinc surface modification based on titanium alloy substrates for medical implants, Journal of Alloys and Compounds, 726, 2017. Crossref

  119. Markham S., Stapleton A., Haq E. U., Kowal K., Tofail S. A. M., Piezoelectricity in screen-printed hydroxyapatite thick films, Ferroelectrics, 509, 1, 2017. Crossref

  120. Cho Y., Hong J., Ryoo H., Kim D., Park J., Han J., Osteogenic Responses to Zirconia with Hydroxyapatite Coating by Aerosol Deposition, Journal of Dental Research, 94, 3, 2015. Crossref

  121. Umeda Hirotsugu, Mano Takamitsu, Harada Koji, Tarannum Ferdous, Ueyama Yoshiya, Appearance of cell-adhesion factor in osteoblast proliferation and differentiation of apatite coating titanium by blast coating method, Journal of Materials Science: Materials in Medicine, 28, 8, 2017. Crossref

  122. Durdu Salih, Korkmaz Kemal, Aktuğ Salim Levent, Çakır Ali, Characterization and bioactivity of hydroxyapatite-based coatings formed on steel by electro-spark deposition and micro-arc oxidation, Surface and Coatings Technology, 326, 2017. Crossref

  123. Hajiali Faezeh, Tajbakhsh Saeid, Shojaei Akbar, Fabrication and Properties of Polycaprolactone Composites Containing Calcium Phosphate-Based Ceramics and Bioactive Glasses in Bone Tissue Engineering: A Review, Polymer Reviews, 58, 1, 2018. Crossref

  124. Zatovsky I.V., Nikolenko I.O., Slobodyanik M.S., Klyui N.I., Temchenko V.P., Interaction of calcium phosphate and CaO (CaCO3) while their disposing on the titanium surface under gas detonation conditions, Reports of the National Academy of Sciences of Ukraine, 5, 2017. Crossref

  125. Hahn Byung-Dong, Cho Young-Lae, Park Dong-Soo, Choi Jong-Jin, Ryu Jungho, Kim Jong-Woo, Ahn Cheol-Woo, Park Chan, Kim Hyoun-Ee, Kim Seong-Gon, Effect of fluorine addition on the biological performance of hydroxyapatite coatings on Ti by aerosol deposition, Journal of Biomaterials Applications, 27, 5, 2013. Crossref

  126. Shi Xin Chang, Jiang H.Z., Xue J., Liao Yun Mao, Xiao L.Y., Bao C.Y., Li W., Antibacterial Effects of Sol-Gel Derived Zinc-Containing Hydroxyapatite, Key Engineering Materials, 361-363, 2007. Crossref

  127. Liu Luting, Webster Thomas J., Nanotechnology for Reducing Orthopedic Implant Infections: Synthesis, Characterization, and Properties, in Orthopedic Biomaterials, 2017. Crossref

  128. Fernando Nimshi L., Kottegoda Nilwala, Jayanetti Sumedha, Karunaratne Veranja, Jayasundara Dilushan R., Stability of nano-hydroxyapatite thin coatings at liquid/solid interface, Surface and Coatings Technology, 349, 2018. Crossref

  129. Nicholson John, The Use of Bioactive Glasses in Periodontology, in Biomedical, Therapeutic and Clinical Applications of Bioactive Glasses, 2019. Crossref

  130. Yang Yunzhi, Ong Joo L., Bond strength, compositional, and structural properties of hydroxyapatite coating on Ti, ZrO2-coated Ti, and TPS-coated Ti substrate, Journal of Biomedical Materials Research, 64A, 3, 2003. Crossref

  131. Singhatanadgit Weerachai, Toso Montree, Pratheepsawangwong Boonsong, Pimpin Alongkorn, Srituravanich Werayut, Titanium dioxide nanotubes of defined diameter enhance mesenchymal stem cell proliferation via JNK- and ERK-dependent up-regulation of fibroblast growth factor-2 by T lymphocytes, Journal of Biomaterials Applications, 33, 7, 2019. Crossref

  132. Chen Xiuyong, Zhang Botao, Gong Yongfeng, Zhou Ping, Li Hua, Mechanical properties of nanodiamond-reinforced hydroxyapatite composite coatings deposited by suspension plasma spraying, Applied Surface Science, 439, 2018. Crossref

  133. Xia Lunguo, Xie Youtao, Fang Bing, Wang Xiuhui, Lin Kaili, In situ modulation of crystallinity and nano-structures to enhance the stability and osseointegration of hydroxyapatite coatings on Ti-6Al-4V implants, Chemical Engineering Journal, 347, 2018. Crossref

  134. Faghihi S., Bateni M.R., Azari Fereshteh, Szpunar Jerzy A., Vali H., Tabrizian M., The Role of Crystallographic Texture of Ti-6Al-4V Alloy on Cell Attachment and Proliferation, Materials Science Forum, 495-497, 2005. Crossref

  135. Azis Sharidah Azuar Abdul, Kennedy John, Cao Peng, Effect of Annealing on Microstructure of Hydroxyapatite Coatings and their Behaviours in Simulated Body Fluid, Advanced Materials Research, 922, 2014. Crossref

  136. Guzzardella G.A., Torricelli P., Aldini N Nicoli, Giardino R., Laser Technology in Orthopedics: Preliminary Study on Low Power Laser Therapy to Improve the Bone-Biomaterial Interface, The International Journal of Artificial Organs, 24, 12, 2001. Crossref

  137. Zhang Cheng Dong, Xiao Dong Qin, Fu Ya Kang, Duan Ke, Lu Xiong, Weng Jie, Fabrication of Nanostructured Hierarchical Coatings Composed of Calcium Phosphate/Titanate on Titanium Substrate, Key Engineering Materials, 575-576, 2013. Crossref

  138. Nasar Abu, Hydroxyapatite and its coatings in dental implants, in Applications of Nanocomposite Materials in Dentistry, 2019. Crossref

  139. L. MUNAR Melvin, UDOH Koh-ichi, ISHIKAWA Kunio, MATSUYA Shigeki, NAKAGAWA Masaharu, Effects of Sintering Temperature Over 1,300.DEG.C. on the Physical and Compositional Properties of Porous Hydroxyapatite Foam, Dental Materials Journal, 25, 1, 2006. Crossref

  140. Prasadh Somasundaram, Ratheesh Vaishnavi, Manakari Vyasaraj, Parande Gururaj, Gupta Manoj, Wong Raymond, The Potential of Magnesium Based Materials in Mandibular Reconstruction, Metals, 9, 3, 2019. Crossref

  141. Ain Quratul, Zeeshan Mahira, Khan Salman, Ali Hussain, Biomimetic hydroxyapatite as potential polymeric nanocarrier for the treatment of rheumatoid arthritis, Journal of Biomedical Materials Research Part A, 107, 12, 2019. Crossref

  142. Szałaj Urszula, Świderska-Środa Anna, Chodara Agnieszka, Gierlotka Stanisław, Łojkowski Witold, Nanoparticle Size Effect on Water Vapour Adsorption by Hydroxyapatite, Nanomaterials, 9, 7, 2019. Crossref

  143. Saxena Varun, Shukla Ishani, Pandey Lalit M., Hydroxyapatite: an inorganic ceramic for biomedical applications, in Materials for Biomedical Engineering, 2019. Crossref

  144. Wirth Jonathan, Tayebi Lobat, Engineering of Dental Titanium Implants and Their Coating Techniques, in Applications of Biomedical Engineering in Dentistry, 2020. Crossref

  145. SARI MUSTAFA ERHAN, İBİŞ SEVGİN, Modifiye Cam İyonomer Simanlar: Güncel bir yaklaşım, Selcuk Dental Journal, 2019. Crossref

  146. Madhan Kumar A., Adesina Akeem Yusuf, Hussein M.A., Ramakrishna Suresh, Al-Aqeeli N., Akhtar Sultan, Saravanan S., PEDOT/FHA nanocomposite coatings on newly developed Ti-Nb-Zr implants: Biocompatibility and surface protection against corrosion and bacterial infections, Materials Science and Engineering: C, 98, 2019. Crossref

  147. Wu Yan Zeng, Wang Qing Yuan, Ouyang Qiao Lin, Influence of Subjection to Plasma Nitriding Surface Modifications on Ultra-High Cycle Fatigue Behavior of Ti-6Al-4V, Applied Mechanics and Materials, 105-107, 2011. Crossref

  148. Ito Shigeki, Takebe Jun, Longitudinal Observation of Thin Hydroxyapatite Layers Formed on Anodic Oxide Titanium Implants after Hydrothermal Treatment in a Rat Maxilla Model, Prosthodontic Research & Practice, 7, 2, 2008. Crossref

  149. Sagsoz Omer, Polat Sagsoz Nurdan, Yurtcan Mustafa Tolga, Ozcelik Niyazi, Hydroxyapatite coating effect on the bond strength between CAD/CAM materials and a resin cement, Odontology, 107, 4, 2019. Crossref

  150. Montaño Carlos Julio, Campos Tarcisio Passos Ribeiro de, RADIOACTIVE CEMENT OF PMMA AND HAP-Sm-153, Ho-166, OR RE-188 FOR BONE METASTASIS TREATMENT, Acta Ortopédica Brasileira, 27, 1, 2019. Crossref

  151. Dorozhkin Sergey V., Calcium orthophosphates as a dental regenerative material, in Advanced Dental Biomaterials, 2019. Crossref

  152. Hayat Muhammad D., Singh Harshpreet, He Zhen, Cao Peng, Titanium metal matrix composites: An overview, Composites Part A: Applied Science and Manufacturing, 121, 2019. Crossref

  153. Ong Joo L., Yang Yunzhi, Oh Sunho, Appleford Mark, Chen Weihui, Liu Yongeing, Kim Kyo-Han, Park Sangwon, Bumgardner Jeol, Haggard Warren, Agrawal C. Mauli, Carner David L., Oh Namsik, Calcium Phosphate Coating Produced by a Sputter Deposition Process, in Thin Calcium Phosphate Coatings for Medical Implants, 2009. Crossref

  154. Lee Jungwon, Yoo Jung Min, Amara Heithem Ben, Lee Yong-Moo, Lim Young-Jun, Kim Haeyoung, Koo Ki-Tae, Bone healing dynamics associated with 3 implants with different surfaces: histologic and histomorphometric analyses in dogs, Journal of Periodontal & Implant Science, 49, 1, 2019. Crossref

  155. Liu Xingzhu, Yoshioka Tomohiko, Hayakawa Satoshi, Comparative study of in vitro apatite-forming abilities of highly ordered rutile nanorod arrays fabricated on cpTi and Ti6Al4V alloys, Journal of Asian Ceramic Societies, 8, 1, 2020. Crossref

  156. 음상철 , LEE JONG KOOK , 함다솜 , Fabrication of Bioactive Ca10(PO4)6(OH)2/CaSiO3 Composites, Journal of Advanced Engineering and Technology, 8, 3, 2015. Crossref

  157. Bhoomika V Jogiya, XRD, Thermal, Haemolysis and DNA Binding Studies of L-Arginine Functionalized Hydroxyapatite Nano-particles, Journal of Nanomedicine Research, 3, 6, 2016. Crossref

  158. W. Nicholson John, Titanium Alloys for Dental Implants: A Review, Prosthesis, 2, 2, 2020. Crossref

  159. Ma S., Yang Y., Carnes D. L., Kim K., Park S., Oh S. H., Ong J. L., Effects of Dissolved Calcium and Phosphorous on Osteoblast Responses, Journal of Oral Implantology, 31, 2, 2005. Crossref

  160. Iconaru Simona Liliana, Predoi Mihai Valentin, Motelica-Heino Mikael, Predoi Daniela, Buton Nicolas, Megier Christelle, Stan George E., Dextran-Thyme Magnesium-Doped Hydroxyapatite Composite Antimicrobial Coatings, Coatings, 10, 1, 2020. Crossref

  161. Patil Vathsala, Naik Nithesh, Gadicherla Srikanth, Smriti Komal, Raju Adithya, Rathee Udit, Biomechanical Behavior of Bioactive Material in Dental Implant: A Three-Dimensional Finite Element Analysis, The Scientific World Journal, 2020, 2020. Crossref

  162. Snyder Alexander D., Salehinia Iman, Study of nanoscale deformation mechanisms in bulk hexagonal hydroxyapatite under uniaxial loading using molecular dynamics, Journal of the Mechanical Behavior of Biomedical Materials, 110, 2020. Crossref

  163. Ghiasi Behrad, Sefidbakht Yahya, Mozaffari-Jovin Sina, Gharehcheloo Behnaz, Mehrarya Mehrnoush, Khodadadi Arash, Rezaei Maryam, Ranaei Siadat Seyed Omid, Uskoković Vuk, Hydroxyapatite as a biomaterial – a gift that keeps on giving, Drug Development and Industrial Pharmacy, 46, 7, 2020. Crossref

  164. HAYAKAWA Tohru, SATO Mitsunobu, Molecular precursor method for thin carbonate-containing apatite coating on dental implants, Dental Materials Journal, 39, 2, 2020. Crossref

  165. Long GAO, Zhaowenbin ZHANG, Jiang CHANG, Bioglass/Polylactic Acid Porous Microspheres: Preparation and Their Application as Cell Microcarriers, Journal of Inorganic Materials, 35, 10, 2020. Crossref

  166. Makha Mohammed, Ghailane Anas, Larhlimi Hicham, Busch Heinz, Alami Jones, Phosphorus Containing Coatings: Technologies and Applications, ChemistrySelect, 5, 22, 2020. Crossref

  167. Băbțan Anida-Maria, Timuș Daniela, Sorițău Olga, Boșca Bianca Adina, Barabas Reka, Ionel Anca, Petrescu Nausica Bianca, Feurdean Claudia Nicoleta, Bordea Ioana Roxana, Saraci George, Vesa Ştefan Cristian, Ilea Aranka, Tissue Integration and Biological Cellular Response of SLM-Manufactured Titanium Scaffolds, Metals, 10, 9, 2020. Crossref

  168. López-Valverde Nansi, Flores-Fraile Javier, Ramírez Juan Manuel, Macedo de Sousa Bruno, Herrero-Hernández Silvia, López-Valverde Antonio, Bioactive Surfaces vs. Conventional Surfaces in Titanium Dental Implants: A Comparative Systematic Review, Journal of Clinical Medicine, 9, 7, 2020. Crossref

  169. Comín Romina, Cid Mariana P., Grinschpun Luciano, Oldani Carlos, Salvatierra Nancy A., Titanium-Hydroxyapatite Composites Sintered at Low Temperature for Tissue Engineering: In vitro Cell Support and Biocompatibility, Journal of Applied Biomaterials & Functional Materials, 15, 2, 2017. Crossref

  170. Dicu Maria Magdalena, Balteanu Ancuta Mihaela, Coating Techniques For Materials Medical: A Mini-Review, 2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 2021. Crossref

  171. Sehrawat Monika , Sheoran Lalita , Bharathesh S , Ravi Nenavata , Nayak Laxmikant , Bora Deepjyoti , A literature review on different types of surface treatment in implants, IP Annals of Prosthodontics and Restorative Dentistry, 7, 2, 2021. Crossref

  172. Dorozhkin Sergey V., Calcium orthophosphate-based biocomposites and hybrid biomaterials, Journal of Materials Science, 44, 9, 2009. Crossref

  173. Mello-Machado Rafael Coutinho, Sartoretto Suelen Cristina, Granjeiro Jose Mauro, Calasans-Maia José de Albuquerque, de Uzeda Marcelo Jose Pinheiro Guedes, Mourão Carlos Fernando de Almeida Barros, Ghiraldini Bruna, Bezerra Fabio Jose Barbosa, Senna Plinio Mendes, Calasans-Maia Mônica Diuana, Osseodensification enables bone healing chambers with improved low-density bone site primary stability: an in vivo study, Scientific Reports, 11, 1, 2021. Crossref

  174. Prodana Mariana, Stoian Andrei Bogdan, Burnei Cristian, Ionita Daniela, Innovative Coatings of Metallic Alloys Used as Bioactive Surfaces in Implantology: A Review, Coatings, 11, 6, 2021. Crossref

  175. Aksoy M. E., Aksakal B., Aslan N., Dikici B., Enhanced Adhesion and Corrosion Properties of Boron Doped Bioceramic Coated 316L Implants, Protection of Metals and Physical Chemistry of Surfaces, 57, 5, 2021. Crossref

  176. Albertini Matteo, Herrero-Climent Federico, Díaz-Castro Carmen María, Nart Jose, Fernández-Palacín Ana, Ríos-Santos José Vicente, Herrero-Climent Mariano, A Radiographic and Clinical Comparison of Immediate vs. Early Loading (4 Weeks) of Implants with a New Thermo-Chemically Treated Surface: A Randomized Clinical Trial, International Journal of Environmental Research and Public Health, 18, 3, 2021. Crossref

  177. Kim Jinyoung, Kang In-Gu, Cheon Kwang-Hee, Lee Sungmi, Park Suhyung, Kim Hyoun-Ee, Han Cheol-Min, Stable sol–gel hydroxyapatite coating on zirconia dental implant for improved osseointegration, Journal of Materials Science: Materials in Medicine, 32, 7, 2021. Crossref

  178. GEDİKOĞLU Melek, KOLSAL Aleyna, TUTUŞ Hatice, TOKER Sıdıka Mine, Biyomedikal Alaşımların Yüzey İşlemlerinde Güncel Yaklaşımlar; Lazer İşlemleri, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 2021. Crossref

  179. Parande Gururaj, Manakari Vyasaraj, Gupta Manoj, Eco-friendly Metal Matrix Composites, in Encyclopedia of Materials: Composites, 2021. Crossref

  180. Dong Yangyang, Gui Zhou, Jiang Saihua, Hu Yuan, Zhou Keqing, Carbonization of Poly(methyl methacrylate) by Incorporating Hydroxyapatite Nanorods during Thermal Degradation, Industrial & Engineering Chemistry Research, 50, 19, 2011. Crossref

  181. Shen Tingting, Yang Weihu, Shen Xinkun, Chen Weizhen, Tao Bailong, Yang Xiaoqing, Yuan Jianping, Liu Peng, Cai Kaiyong, Polydopamine-Assisted Hydroxyapatite and Lactoferrin Multilayer on Titanium for Regulating Bone Balance and Enhancing Antibacterial Property, ACS Biomaterials Science & Engineering, 4, 9, 2018. Crossref

  182. Zamparini Fausto, Prati Carlo, Generali Luigi, Spinelli Andrea, Taddei Paola, Gandolfi Maria Giovanna, Micro-Nano Surface Characterization and Bioactivity of a Calcium Phosphate-Incorporated Titanium Implant Surface, Journal of Functional Biomaterials, 12, 1, 2021. Crossref

  183. Basu Subhadip, Basu Bikramjit, Unravelling Doped Biphasic Calcium Phosphate: Synthesis to Application, ACS Applied Bio Materials, 2, 12, 2019. Crossref

  184. Ortiz C.H., Aperador W., Caicedo J.C., Electrochemical response of (β-TCP and HA) individual coatings and [β-TCP/HA] multilayers coatings exposed to biocompatible environments, Surface and Coatings Technology, 435, 2022. Crossref

  185. Rizwan M., Basirun Wan Jefrey, Razak Bushroa Abd, Alias Rodianah, Bioinspired ceramics for bone tissue applications, in Ceramic Science and Engineering, 2022. Crossref

  186. Riau Andri K., Lwin Nyein C., Gelfand Larisa, Hu Huanlong, Liedberg Bo, Chodosh James, Venkatraman Subbu S., Mehta Jodhbir S., Surface modification of corneal prosthesis with nano-hydroxyapatite to enhance in vivo biointegration, Acta Biomaterialia, 107, 2020. Crossref

  187. Ortiz C.H., Aperador W., Caicedo J.C., Physical properties evolution of β-tricalcium phosphate/hydroxyapatite heterostructures in relation to the bilayer number, Thin Solid Films, 752, 2022. Crossref

  188. Hu Wei, Ma Jun, Wang Jianglin, Zhang Shengmin, Fine structure study on low concentration zinc substituted hydroxyapatite nanoparticles, Materials Science and Engineering: C, 32, 8, 2012. Crossref

  189. Sivaswamy Vinay, Vasudevan Sahana, Dental Implants: An Overview, in Dental Implants and Oral Microbiome Dysbiosis, 2022. Crossref

  190. Alkan Baris, Durucan Caner, Complete chemical and structural characterization of selenium-incorporated hydroxyapatite, Journal of Materials Science: Materials in Medicine, 33, 1, 2022. Crossref

  191. Kane Robert J., Ma Peter X., Biomimetic Nanofibrous Scaffolds for Bone Tissue Engineering Applications, in Biomimetics, 2013. Crossref

  192. Ortiz C. H., Caicedo J. C., Amaya C., Synthesis and Tribo-mechanical Characterization of [β-Tricalcium Phosphate/Hydroxyapatite] Multilayer System as a Function of the Spatial Periodicity, Journal of Materials Engineering and Performance, 2022. Crossref

  193. Peñarrieta-Juanito Gabriella, Cruz Mariana, Costa Mafalda, Miranda Georgina, Marques Joana, Magini Ricardo, Mata António, Souza Júlio C.M., Caramês João, Silva Filipe S., A novel gradated zirconia implant material embedding bioactive ceramics: Osteoblast behavior and physicochemical assessment, Materialia, 1, 2018. Crossref

  194. van Oirschot Bart A.J.A., Zhang Yang, Alghamdi Hamdan S., Cordeiro Jairo M., Nagay Bruna E., Barao Valentim A.R., de Avila Erica Dorigatti, van den Beucken Jeroen J.J.P., Surface Engineering for Dental Implantology: Favoring Tissue Responses Along the Implant, Tissue Engineering Part A, 28, 11-12, 2022. Crossref

  195. Jaffri Muhamad Zaki, Abdullah Hasan Zuhudi, Ismail Zamratul Maisarah Mohd, Dermawan Siti Khadijah, Characterization of the Halal Natural Hydroxyapatite Extract from Black Tilapia Fish Scale, Key Engineering Materials, 908, 2022. Crossref

  196. Jeyhani Najmeh, Masaeli Elahe, Mirahmadi-Zare Seyede Zohreh, Alirezaei Shahram, Shoaraye-Nejati Alireza, Effect of precursor on structural and antibacterial behaviour of hydroxyapatite/silver nanocomposites, Materials Technology, 37, 9, 2022. Crossref

  197. López-Valverde Nansi, Aragoneses Javier, López-Valverde Antonio, Rodríguez Cinthia, Macedo de Sousa Bruno, Aragoneses Juan Manuel, Role of chitosan in titanium coatings. trends and new generations of coatings, Frontiers in Bioengineering and Biotechnology, 10, 2022. Crossref

  198. Adeleke S. A., Bushroa A. R., Sopyan I., Recent development of calcium phosphate-based coatings on titanium alloy implants, Surface Engineering and Applied Electrochemistry, 53, 5, 2017. Crossref

  199. Mashak Arezou, Bazraee Saeed, Mobedi Hamid, Advances in drug delivery and biomedical applications of hydroxyapatite-based systems: a review, Bulletin of Materials Science, 45, 4, 2022. Crossref

  200. Bai Jiaming, Sun Jinxing, Binner Jon, Additive Manufacturing of Ceramics: Materials, Characterization and Applications, in Additive Manufacturing, 2023. Crossref

  201. Pang Yanyun, Li Dan, Zhou Jing, Liu Xue, Li Min, Zhang Yanling, Zhang Daixing, Zhang Xu, Cai Qing, In vitro and in vivo evaluation of biomimetic hydroxyapatite/whitlockite inorganic scaffolds for bone tissue regeneration, Biomedical Materials, 17, 6, 2022. Crossref

  202. Mathirat Ashwathi, Dalavi Pandurang Appana, Prabhu Ashwini, G.V. Yashaswini Devi, Anil Sukumaran, Senthilkumar Kalimuthu, Seong Gi Hun, Sargod Sharan S., Bhat Sham S., Venkatesan Jayachandran, Remineralizing Potential of Natural Nano-Hydroxyapatite Obtained from Epinephelus chlorostigma in Artificially Induced Early Enamel Lesion: An In Vitro Study, Nanomaterials, 12, 22, 2022. Crossref

  203. Nicholson John W., Periodontal Therapy Using Bioactive Glasses: A Review, Prosthesis, 4, 4, 2022. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain