Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN Druckformat: 0278-940X
ISSN Online: 1943-619X

Volumes:
Volumen 47, 2019 Volumen 46, 2018 Volumen 45, 2017 Volumen 44, 2016 Volumen 43, 2015 Volumen 42, 2014 Volumen 41, 2013 Volumen 40, 2012 Volumen 39, 2011 Volumen 38, 2010 Volumen 37, 2009 Volumen 36, 2008 Volumen 35, 2007 Volumen 34, 2006 Volumen 33, 2005 Volumen 32, 2004 Volumen 31, 2003 Volumen 30, 2002 Volumen 29, 2001 Volumen 28, 2000 Volumen 27, 1999 Volumen 26, 1998 Volumen 25, 1997 Volumen 24, 1996 Volumen 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.2014011825
pages 383-417

A Mathematical Framework for Minimally Invasive Tumor Ablation Therapies

Sheldon K. Hall
Institute of Biomedical Engineering, University of Oxford, Oxford, UK
Ean Hin Ooi
School of Engineering, Monash University Malaysia, Bandar Sunway, Malaysia
Stephen J. Payne
Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK

ABSTRAKT

Minimally invasive tumor ablations (MITAs) are an increasingly important tool in the treatment of solid tumors across multiple organs. The problems experienced in modeling different types of MITAs are very similar, but the development of mathematical models is mostly performed in isolation according to modality. Fundamental research into the modeling of specific types of MITAs is indeed required, but to choose the optimal treatment for an individual the primary clinical requirement is to have reliable predictions for a range of MITAs.
In this review of the mathematical modeling of MITAs 4 modalities are considered: radiofrequency ablation, microwave ablation, cryoablation, and irreversible electroporation. The similarities in the mathematical modeling of these treatments are highlighted, and the analysis of the models within a general framework is discussed. This will aid in developing a deeper understanding of the sensitivity of MITA models to physiological parameters and the impact of uncertainty on predictions of the ablation zone.
Through robust validation and analysis of the models it will be possible to choose the best model for a given application. This is important because many different models exist with no objective comparison of their performance. The collection of relevant in vivo experimental data is also critical to parameterize such models accurately. This approach will be necessary to translate the field into clinical practice.